Loop Summarization with
Rational Vector Addition
Systems

Jake Silverman

Zachary Kincaid

The Why

Invariant generation techniques are effective

but can be unpredictable

The Why

Invariant generation techniques are effective

but can be unpredictable

i =0

while(1 < 5) do
i++

assert(i1 == 5)

Polyhedron domain with
widening / narrowing verifies
assertion

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

The Why

Invariant generation techniques are effective

but can be unpredictable

i =1

] = 0

while(i < 5) do
j =3+
i++

assert(i1 == 5)

Polyhedron domain with
widening / narrowing fails to verify
assertion

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract

Domains (NSAD ’11)

The Why

Invariant generation techniques are effective

but can be unpredictable

'i:]_ 1:@

j =0 i =0

while(1 < 5) do while(1 < 1000) do
] =] + 1 i =1 + step
1++] =] + step

assert(i1 == 5) assert(i1 == 3)

Polyhedron domain with
widening / narrowing fails to verify
assertion

Ultimate Automizer verifies assertion

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

The Why

Invariant generation techniques are effective

but can be unpredictable
assume(step < 2)

i =1 i =0

] =0 j =0

while(i < 5) do while(1 < 1000) do
j =3 *t 1 1 =1 + step
1++] =] + step

assert(i1 == 5) assert(i1 == 3)

Polyhedron domain with
widening / narrowing fails to verify
assertion

Ultimate Automizer fails to verify
assertion within 1 hour

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

The What

Want: invariant generation technique that is

predictable - can make theoretical guarantees
about invariant quality (in particular,
monotonicity)

precise - assertion verification capabillity
comparable with state-of-the-art software
model checkers

The How

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

TR[x :=a] éx’=az/\/\y’=y
YFX

TR[if b then S| else S,]| = b A TR[S,1 V —b A TR[S,]
TRIS;; 5,0 = Ix” . TRIS, Nx"/ x'T A TRIS, N[x"/ %]
TR[[while b do ST = (b A TR[S]D* A =b[x'/X]

The How

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

TR[x :=a] éx’=a/\/\y’=y
yF#Xx

TR[if b then S| else S,]| = b A TR[[S,1 V —b A TR[[S,]
TRIS;; S,11 = Ix” . TRIS, N[x"/ x'T A TRIS, N[x"/ %]
TR[[while b do ST = (b A TR[S]D* A =b[x'/X]

Can encode loop-free segments without loss of information

1T(*) then
X = X + 1 r /I
el co xX=x+1vx=x+2

X = X + 2

The How

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

TR[x :=a] éx’=a/\/\y’=y
YFX

TR[if b then S| else S,]| = b A TR[S,1 V —b A TR[S,]
TRIS; S,11 2 3x” . TRIS, N[x"/ x'T A TRIS,N[x"/ X]
TR[[while b do ST = (b A TR[ST)* A =b[x' /%]

Can encode loop-free segments without loss of information

1T(*) then
X = X + 1 r /I
el co xX=x+1vx=x+2

X = X + 2

Reachability relation of loops needs to be over-approximated

The How

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

TR[x :=a] éx’=a/\/\y’=y
yFX

TR[if b then S| else S,]| = b A TR[S,1 V —b A TR[S,]
TRIS; S,11 2 3x” . TRIS, N[x"/ x'T A TRIS,N[x"/ X]
TR[[while b do ST = (b ATR[ST* A =b[x'/X]

Can encode loop-free segments without loss of information

1T(*) then
X = X + 1 r /I
el co xX=x+1vx=x+2

X = X + 2

Reachability relation of loops needs to be over-approximated

This talk

1) Predictable loop summarization using
rational vector addition system with resets

(Q-VASR)

2) Precision improvement via capturing
control flow using Q-VASR with states
(Q-VASRS)

| Reachability relation is LIRA-definable and computable in polytime

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

6

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

6

AL
| p——
< =
| I—

T'['=1Ay =y—1)V
T? |(x' =x+10Ay =y—1)

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

6

a Tl T2)
Finite set of transformers. | rx 0 11 x X 10
Describes reset/incto H - [y] T H - H R
each dimension

Corresponds to transition
formula of form T1 (x’ =1 A y’ =y— 1) \

\/ /\xj:ﬁ.xj-l_aij T2 xX'=x+10Ay =y —1)

——

€T jevars (0,1} Q

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
6

Describes reset/inc to)
each dimension

Finite set of transformers. | rx 0
] = L)+

Corresponds to transition
formula of form T1 (x’ =1 A y’ =y— 1) \

\/ /\xj:ﬁ'xj-l_aij T? xX'=x+10Ay =y—-1)

N—

€T jevars (0,1} Q

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
6

Describes reset/inc to)
each dimension

Finite set of transformers. | rx 0
] = L)+

S,
0.5

Corresponds to transition

formula of form T' & =1Ay=y—-1)V
_\/./\xf:fll"xf_lrfﬁ T? | =x+10AYy =y — 1)
ieT jevars (0,1} Q 25,

-1.5

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
6

Functional Queue

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Functional Queue

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Back Back
enqueue(TauiH, ac
ENEEE EnEEE Enans—— TR P P P
hd hd

Functional Queue

Proof Goal:

Amortized constant time operations

Achieved by representing queue as two lists (front and back)

enqueue(Tarres)

dequeue()

‘ If Front is
not empty

Back Back
s EnEE s —— (TSI SN SEe S
hd hd
Front Front
e e s VNN o s
hd result

Functional Queue

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Back
enqueue (T i) Back 7

hd hd

s e e — (T PR P e

dequeue()

If Front is Front Front

‘ not empty [rmres S TR > ENEEE %‘?.,ﬁ_,gigl

If Front is
empty hd

' hd result

Functional Queue

procedure enqueue(elt): Numeric abstraction reasoning about:
back len := back len + 1 . length of back list
size := size + 1

 length of front list

mem .= mem +
€m_0Op>5s €m_ops 1 « total list size

- number of memory operations

procedure dequeue():
1f (front _len == 0) then
//Reverse back, append to front
while (back len != 0) do
front len := front len + 1
back len := back len -1
mem_ops = mem _ops + 3
front len := front len - 1
size = size - 1
mem_ops = mem _ops + 2

Functional Queue

procedure enqueue(elt): Most general harness
back_len := back_len + 1 procedure harness():
size := size + 1 nb _ops := 0
mem_ops := mem_ops + 1 while nondet () do
nb_ops := nb_ops + 1
1T (size > 0 && nondet())
procedure dequeue(): . enqueue ()
1T (front len == 0) then cisc
— dequeue ()

//Reverse back, append to front
while (back len != 0) do
front len := front len + 1
back len := back len -1
mem_ops = mem _ops + 3
front len := front len - 1
size = size - 1
mem_ops = mem _ops + 2

Functional Queue

procedure enqueue(elt): Most general harness
back_len := back_len + 1 procedure harness():
size := size + 1 nb _ops := 0
mem_ops := mem_ops + 1 while nondet () do
nb_ops := nb_ops + 1
1T (size > 0 && nondet())
procedure dequeue(): . enqueue ()
1T (front len == 0) then cisc
— dequeue ()

//Reverse back, append to front

while (back len != 0) do
front len := front len + 1
back len := back len -1
mem_ops = mem _ops + 3

front len := front len - 1

size = size - 1

mem_ops = mem _ops + 2

Functional Queue Inner-Loop

. Transition formula
while (back_len !=0) do for single iteration

front _len := front len + 1_5\\\\\\\\\
back_len := back_len - 1 ’ , \
mem ops = mem ops + 3 front_len' =front_len+1
o - Aback len' =back len-1
Amem_ops' =mem_ops +3

(A Size' =size)

back_len # 0 A

Functional Queue Inner-Loop

_ Transition formula
while (back_len !=0) do for single iteration

front _len := front len + 1\
K len := K len - 1

back_le _ back_Le ([front len' =front len+1)

mem_ops = mem _ops + 3 - -

o - Aback len' =back len-1

Amem_ops' =mem_ops +3

(A Size' =size)

back_len # 0 A

Q-VASR Abstraction

_front_len_ _front_len_ 1
. back len back len —1
Vdeq = mem_ops ~ mem_ops T 3 >
- size | size 0]

Functional Queue Inner-Loop

while (back len

front 1len
back len
mem_ops =

Vdeq = <

Q-VASR Abstraction

_front_len_

back len
mem_ops

size

= 0) do
front len + 1

back len - 1

mem_ops + 3

_front_len_

back _len
mem_ops

size

back_len # 0 A

Transition formula

Wation

(front _len' = front_len+1\
Aback len' =back len-1
Amem_ops' =mem_ops +3
\ASize' =size)

| Reachability Relation

S

) front_len' = front_len + k A
back len’ = back_len — k A
‘mem_ops’ = mem_ops + 3k A

Jk € N

size' = size

Functional Queue

procedure harness():

nb ops := 0
procedure enqueue(elt): while nondet () do
back len := back len + 1 nb_ops := nb_ops + 1
size ‘= sijze + 1 1T (size > 0 && nondet())

enqueue ()
else
dequeue ()

mem_ops := mem ops + 1

procedure dequeue():
1f (front _len == 0) then
(front_len' = front_len + kA)

back len’ =0 A | back _len’ = back_len — k A
dk € N. | mem_ops’ = mem_ops + 3k A

SV
\SlZ@ = Sige),

front len := front len - 1
size = size - 1
mem_ops = mem_ops + 2

10

Functional Queue

procedure harness():

nb _ops := 0
procedure enqueue(elt): while nondet () do
back len := back len + 1 nb_ops := nb_ops + 1
size ‘= sijze + 1 1T (size > 0 && nondet())
mem_ops := mem ops + 1 enqueue ()
o — else
dequeue ()

procedure dequeue():
1f (front _len == 0) then
(front_len’ = front_len + k A

back len’ =0 A | back _len’ = back_len — k A
dk € N. | mem_ops’ = mem_ops + 3k A

\size’ = size

front len := front len - 1
size = size - 1
mem_ops = mem_ops + 2

10

Functional Queue

procedure harness():

nb _ops := 0

procedure enqueue(elt): while nondet() do

back len := back len + 1 nb_ops := nb _ops + 1

sjize := sijze + 1 if (size > 0 && nondet())

mem ops := mem ops + 1 enqueue ()

_ — else
dequeue ()

procedure dequeue():

1T (front_len == 0) then e e e e

- front_len

(front_len’ = front_len + k A) _
back len’ =0 A | back _len’ = back_len — k A
dk € N. | mem_ops’ = mem_ops + 3k A

| | | back_len + front_len
\size’ = size)

front len := front len - 1
size = size - 1
mem_ops = mem_ops + 2

| enqueue: (back_len + front_len) + +

10

Vhar = -

size | size | 1]
back len back len 1
— + ,
back_len + front_len back_len + front_len 1
enqueue
size | | size | 1]
back len back len 0
— + ,
back_len + front_len back_len + front_len —1
dequeue fast (conditional passed)
size | | size 1]
back len 0 0
- +
back_len + front_len back_len + front_len —1

dequeue slow (conditional taken)

11

>

mem_ops

nb_ops

State Space Transformation

i =0
while(*) do
X = X + 1 + 2
y =y +1
i=19+1

State Space Transformation

| I | I | BN
*

+ + + O

—. K X
= = .

Transition formula for single
iteration of loop

xX'=x+i+2

y=y+i
=1+ 1
Not representable as Q-VASR

12

State Space Transformation

i =0
while(*) do

X = X + 1 + 2
y =y +1
i=19+1

Transition formula for single
iteration of loop

xX'=x+i+2

y=y+i
=1+ 1
Not representable as Q-VASR

jtransition formula as @Q-VASR by ¢

12

State Space Transformation

i =0
while(*) do
X =X + 1 + 2
y =y *1
i=d+ 1
Transition formula for single X y i
iteration of loop _ i |
X =x+i+?2 oim1 {1 =10
Y=y +i Dim 2 _O 0 1_

=1+ 1
Not representable as Q-VASR

jtransition formula as @Q-VASR by ¢

12

Predictable Analysis using

'Key Result:

i For any LRA transition formula I, we can f
| compute a best Q-VASR abstraction of F |

13

Predictable Analysis using

es I:

i For any LRA transition formula F', we can '/-
. compute a best @-VASR abstraction of I |

Predictable Analysis using

'Key Result:

. For any LRA transition formula F', we can |
. compute a best Q-VASR abstraction of FF |

Computing Best Q-VASR
Abstractions

DNF(F)=C,v(iyv...C,

Computing Best Q-VASR
Abstractions

Convert transition
formula to DNF

Compute best @-VASR
for each LRA cube VAS_ABS(C,) VAS_ABS(C,) VAS_ABS(C)

D \ \)

DNF(F)=C,v(,v...C,

14

Computing Best Q-VASR
Abstractions

Convert transition VAS _AB S (F)

formula to DNF

Compute best @-VASR
for each LRA cube VAS_ABS(C)) | I|VAS_ABS(C,) || VAS_ABS(C,)

Key contribution

Compute best common
e abstraction of all @-VASR

abstractions DNF(F) — Cl V C2 V... Cn

Key contribution

14

Computing Best Q-VASR
Abstractions

Convert transition VAS _AB S (F)

formula to DNF

Compute best @-VASR
for each LRA cube VAS_ABS(C)) | I|VAS_ABS(C,) || VAS_ABS(C,)

Key contribution

e Compute best common

abstraction of all Q-VASR

abstractions DNF(F) — Cl V C2 V... Cn

Key contribution

Step 2 can only compute Can use SMT solver to
best @-VASR for LRA cube enumerate DNF lazily

14

This talk

1) Predictable loop summarization using
rational vector addition system with resets

(Q-VASR)

2) Precision improvement via capturing
control flow using Q-VASR with states

(Q-VASRS)

15

Q-VASRS Abstractions
Example

int x =0, 1 =20
while(*) do
1T(1%2 == 0)
1 =1 + 1
else
X
.i

x + 1
i + 1

16

Q-VASRS Abstractions
Example

int x =0, 1 =20

while(*) do : : : i+ 1
vaw =0 (L=
1 =1 + 1
else
X = x + 1
i =1 + 1

A Best Q-VASR Abstraction
Cannot show 2x < i

16

Q-VASRS Abstractions
Example

int x =0, 1 =20
while(*) do : : :
e {[-FE-
1 =1 + 1
else
X
.i

I+ 1
x4+ 1

i+ 1
x+1

-
i+ 1 A
A Best Q-VASR Abstraction
Cannot show 2x < i

Q-VASRS Abstraction

Q-VASRS Abstraction can prove that loop maintains invariant 2x < i

16

Q-VASRS

Transformer 1

— Reachability relation defined by
Transigrmer 3~ Sequences of transformers that form
~[ansformer 2. paths through graph.

Transf er5 Transférmer 4

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

17

Q-VASRS

Reachability relation defined by

Transformer 1

Transigrmer 3~ Sequences of transformers that form
paths through graph.

Transformer 2

erd

Predicate Q-VASRS:
Control States are predicates over program variables.
Predicates must partition state space.

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

17

Best (D-VASRS Abstractlons

'Key Result:
' Can compute best Q-VASRS abstraction of input LRA |
- formula F with a fixed set of predicates |

18

Best (D-VASRS Abstractlons

KeyResuIt
- Can compute best Q-VASRS abstraction of input LRA

~formula F with a fixed set of predicates |

AV I)
uonoensqe gyp

—

([x/x]gv

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

19

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

19

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

Solution
Use connected components of topological closure of dx’. F' as predicates

19

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

Solution
Use connected components of topological closure of dx’. F' as predicates

F FEG G

19

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

Solution
Use connected components of topological closure of dx’. F' as predicates

F FEG G

19 l

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

Solution
Use connected components of topological closure of dx’. F' as predicates

F FEG G

ye= G O

Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

Solution
Use connected components of topological closure of dx’. F as predicates

View formula as
G finite union of
convex polyhedra
Convert strict
e inequalities to
non-strict
Compute largest
connect components

19

Evaluation

78/84
. 31/35 40/46
0.75
{ C4B(35) HOLA (46) SVCOMP-19 (84
Q 0.5 4
Q\z 39S 65 S 107 S
B 20 S 56 S
0.25 SeaHorn | PRSI 2112 S ISl 3038 S
UltAuto | KREIZES 3003 S 6933 S
0
C4B (35) HOLA (46) SVCOMP-19 (84)
Accuracy Runtime
B Q-VASR Q-VASRS CRA [SeaHorn M UltAuto
Results newer than paper version: Timeout: 300 Seconds per case
@Q-VASR and @Q-VASRS faster after optimization SVCOMP-19 restricted to safe integer benchmarks from loops category
Q-VASR passes two more cases after bug fix Most accurate tool in any given suite does not subsume all others

20

Summary

e Developed predictable and compositional program
analysis with Q-VASR

e Extended analysis with Q-VASR with states to capture
control flow information

e Shown improvements in both accuracy and speed over
state-of-art-tools while providing guarantees about
invariant quality

21

