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The Why

Invariant generation techniques are effective

but can be unpredictable
assume(step < 2)

i =1 i =0

] =0 j =0

while(i < 5) do while(1 < 1000) do
j =3 *t 1 1 =1 + step
1++ ] = ] + step

assert(i1 == 5) assert(i1 == 3)

Polyhedron domain with
widening / narrowing fails to verify
assertion

Ultimate Automizer fails to verify
assertion within 1 hour

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)



The What

Want: invariant generation technique that is

predictable - can make theoretical guarantees
about invariant quality (in particular,
monotonicity)

precise - assertion verification capabillity
comparable with state-of-the-art software
model checkers
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This talk

1) Predictable loop summarization using
rational vector addition system with resets

(Q-VASR)

2) Precision improvement via capturing
control flow using Q-VASR with states
(Q-VASRS)



| Reachability relation is LIRA-definable and computable in polytime
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Functional Queue

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Back
enqueue (T i) Back 7

hd hd

s e e — (T PR P e

dequeue()

If Front is Front Front

‘ not empty [rmres S TR > ENEEE %‘?.,ﬁ_,gigl

If Front is
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Functional Queue

procedure enqueue(elt): Numeric abstraction reasoning about:
back len := back len + 1 . length of back list
size := size + 1

 length of front list

mem .= mem +
€m_0Op>5s €m_ops 1 « total list size

- number of memory operations

procedure dequeue():
1f (front _len == 0) then
//Reverse back, append to front
while (back len != 0) do
front len := front len + 1
back len := back len -1
mem_ops = mem _ops + 3
front len := front len - 1
size = size - 1
mem_ops = mem _ops + 2
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Functional Queue Inner-Loop

. Transition formula
while (back_len !=0) do for single iteration

front _len := front len + 1_5\\\\\\\\\
back_len := back_len - 1 ’ , \
mem ops = mem ops + 3 front_len' =front_len+1
o - Aback len' =back len-1
Amem_ops' =mem_ops +3

(A Size' =size )

back_len # 0 A




Functional Queue Inner-Loop

_ Transition formula
while (back_len !=0) do for single iteration

front _len := front len + 1\
K len := K len - 1

back_le _ back_Le ([ front len' =front len+1)

mem_ops = mem _ops + 3 - -

o - Aback len' =back len-1

Amem_ops' =mem_ops +3

(A Size' =size )

back_len # 0 A

Q-VASR Abstraction

_front_len_ _front_len_ 1
. back len back len —1
Vdeq = mem_ops ~ mem_ops T 3 >
- size | size 0 ]




Functional Queue Inner-Loop

while (back len

front 1len
back len
mem_ops =

Vdeq = <

Q-VASR Abstraction

_front_len_

back len
mem_ops

size

= 0) do
front len + 1

back len - 1

mem_ops + 3

_front_len_

back _len
mem_ops

size

back_len # 0 A

Transition formula

Wation

( front _len' = front_len+1\
Aback len' =back len-1
Amem_ops' =mem_ops +3
\ASize' =size )

| Reachability Relation

S

) front_len' = front_len + k A
back len’ = back_len — k A
‘mem_ops’ = mem_ops + 3k A

Jk € N

size' = size



Functional Queue

procedure harness():

nb ops := 0
procedure enqueue(elt): while nondet () do
back len := back len + 1 nb_ops := nb_ops + 1
size ‘= sijze + 1 1T (size > 0 && nondet())

enqueue ()
else
dequeue ()

mem_ops := mem ops + 1

procedure dequeue():
1f (front _len == 0) then
(front_len' = front_len + kA )

back len’ =0 A | back _len’ = back_len — k A
dk € N. | mem_ops’ = mem_ops + 3k A

SV
\SlZ@ = Sige ),

front len := front len - 1
size = size - 1
mem_ops = mem_ops + 2
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Functional Queue

procedure harness():

nb _ops := 0

procedure enqueue(elt): while nondet() do

back len := back len + 1 nb_ops := nb _ops + 1

sjize := sijze + 1 if (size > 0 && nondet())

mem ops := mem ops + 1 enqueue ()

_ — else
dequeue ()

procedure dequeue():

1T (front_len == 0) then e e e e

- front_len

(front_len’ = front_len + k A ) _
back len’ =0 A | back _len’ = back_len — k A
dk € N. | mem_ops’ = mem_ops + 3k A

| | | back_len + front_len
\size’ = size )

front len := front len - 1
size = size - 1
mem_ops = mem_ops + 2

| enqueue: (back_len + front_len) + +
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Vhar = -

size | size | 1]
back len back len 1
— + ,
back_len + front_len back_len + front_len 1
enqueue
size | | size | 1]
back len back len 0
— + ,
back_len + front_len back_len + front_len —1
dequeue fast (conditional passed)
size | | size 1]
back len 0 0
- +
back_len + front_len back_len + front_len —1

dequeue slow (conditional taken)
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i =0
while(*) do
X = X + 1 + 2
y =y +1
i=19+1



State Space Transformation
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Transition formula for single
iteration of loop

xX'=x+i+2

y=y+i
=1+ 1
Not representable as Q-VASR

12



State Space Transformation

i =0
while(*) do

X = X + 1 + 2
y =y +1
i=19+1

Transition formula for single
iteration of loop

xX'=x+i+2

y=y+i
=1+ 1
Not representable as Q-VASR

jtransition formula as @Q-VASR by ¢

12



State Space Transformation

i =0
while(*) do
X =X + 1 + 2
y =y *1
i=d+ 1
Transition formula for single X y i
iteration of loop _ i |
X =x+i+?2 oim1 {1 =10
Y=y +i Dim 2 _O 0 1_

=1+ 1
Not representable as Q-VASR

jtransition formula as @Q-VASR by ¢
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Computing Best Q-VASR
Abstractions

Convert transition
formula to DNF

Compute best @-VASR
for each LRA cube VAS_ABS(C,) VAS_ABS(C,) VAS_ABS(C)

D \ \ )
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Computing Best Q-VASR
Abstractions

Convert transition VAS _AB S (F )

formula to DNF

Compute best @-VASR
for each LRA cube VAS_ABS(C)) | I|VAS_ABS(C,) || VAS_ABS(C,)

Key contribution

e Compute best common

abstraction of all Q-VASR

abstractions DNF(F) — Cl V C2 V... Cn

Key contribution

Step 2 can only compute Can use SMT solver to
best @-VASR for LRA cube enumerate DNF lazily
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This talk

1) Predictable loop summarization using
rational vector addition system with resets

(Q-VASR)

2) Precision improvement via capturing
control flow using Q-VASR with states

(Q-VASRS)
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Q-VASRS Abstractions
Example

int x =0, 1 =20
while(*) do
1T(1%2 == 0)
1 =1 + 1
else
X
.i

x + 1
i + 1
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Q-VASRS Abstractions
Example

int x =0, 1 =20

while(*) do : : : i+ 1
vaw =0 (L=
1 =1 + 1
else
X = x + 1
i =1 + 1

A Best Q-VASR Abstraction
Cannot show 2x < i
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Q-VASRS Abstractions
Example

int x =0, 1 =20
while(*) do : : :
e {[-FE-
1 =1 + 1
else
X
.i

I+ 1
x4+ 1

i+ 1
x+1

-
i+ 1 A
A Best Q-VASR Abstraction
Cannot show 2x < i

Q-VASRS Abstraction

Q-VASRS Abstraction can prove that loop maintains invariant 2x < i
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Q-VASRS

Transformer 1

— Reachability relation defined by
Transigrmer 3~ Sequences of transformers that form
~[ansformer 2. paths through graph.

Transf er5 Transférmer 4

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
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Q-VASRS

Reachability relation defined by

Transformer 1

Transigrmer 3~ Sequences of transformers that form
paths through graph.

Transformer 2

erd

Predicate Q-VASRS:
Control States are predicates over program variables.
Predicates must partition state space.

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
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KeyResuIt
- Can compute best Q-VASRS abstraction of input LRA

~formula F with a fixed set of predicates |
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Predictable Q-VASRS
Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity
That if ' F G, then Predicates(F’) is at least as fine as Predicates(G)

Solution
Use connected components of topological closure of dx’. F as predicates

View formula as
G finite union of
convex polyhedra
Convert strict
e inequalities to
non-strict
Compute largest
connect components
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Evaluation

78/84
. 31/35 40/46
0.75
{ C4B(35) HOLA (46) SVCOMP-19 (84
Q 0.5 4
Q\z 39S 65 S 107 S
B 20 S 56 S
0.25 SeaHorn | PRSI 2112 S ISl 3038 S
UltAuto | KREIZES 3003 S 6933 S
0
C4B (35) HOLA (46) SVCOMP-19 (84)
Accuracy Runtime
B Q-VASR Q-VASRS CRA [ SeaHorn M UltAuto
Results newer than paper version: Timeout: 300 Seconds per case
@Q-VASR and @Q-VASRS faster after optimization SVCOMP-19 restricted to safe integer benchmarks from loops category
Q-VASR passes two more cases after bug fix Most accurate tool in any given suite does not subsume all others
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Summary

e Developed predictable and compositional program
analysis with Q-VASR

e Extended analysis with Q-VASR with states to capture
control flow information

e Shown improvements in both accuracy and speed over
state-of-art-tools while providing guarantees about
invariant quality
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