
Loop Summarization with
Rational Vector Addition

Systems

Jake Silverman
Zachary Kincaid

Princeton University

Invariant generation techniques are effective

but can be unpredictable

!2

The Why

Invariant generation techniques are effective

but can be unpredictable

!2

i = 0
while(i < 5) do
 i++
assert(i == 5)

Polyhedron domain with
widening / narrowing verifies
assertion

The Why

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

Invariant generation techniques are effective

but can be unpredictable

!2

i = 1
j = 0
while(i < 5) do
 j = j + i
 i++
assert(i == 5)

Polyhedron domain with
widening / narrowing fails to verify
assertion

Not monotone: more information led to worse analysis

The Why

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

Invariant generation techniques are effective

but can be unpredictable

!2

i = 1
j = 0
while(i < 5) do
 j = j + i
 i++
assert(i == 5)

Polyhedron domain with
widening / narrowing fails to verify
assertion

i = 0
j = 0
while(i < 1000) do
 i = i + step
 j = j + step
assert(i == j)

Ultimate Automizer verifies assertion

Not monotone: more information led to worse analysis

The Why

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

Invariant generation techniques are effective

but can be unpredictable

!2

i = 1
j = 0
while(i < 5) do
 j = j + i
 i++
assert(i == 5)

Polyhedron domain with
widening / narrowing fails to verify
assertion

assume(step < 2)
i = 0
j = 0
while(i < 1000) do
 i = i + step
 j = j + step
assert(i == j)

Ultimate Automizer fails to verify
assertion within 1 hour

Not monotone: more information led to worse analysis

The Why

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract
Domains (NSAD ’11)

Want: invariant generation technique that is

predictable - can make theoretical guarantees
about invariant quality (in particular,
monotonicity)

precise - assertion verification capability
comparable with state-of-the-art software
model checkers

The What

!3

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

The How

!4

�
�
�

TR[[if b then S1 else S2]] ≜ b ∧ TR[[S1]] ∨ ¬b ∧ TR[[S2]]
TR[[S1; S2]] ≜ ∃ ⃗x′�′� . TR[[S1]][⃗x′�′�/ ⃗x′�] ∧ TR[[S2]][⃗x′�′�/ ⃗x]
TR[[while b do S]] ≜ (b ∧ TR[[S]])* ∧ ¬b[⃗x′� / ⃗x]

TR[[x := a]] ≜ x′� = a ∧ ⋀
y≠x

y′� = y

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

The How

!4

if(*) then
 x = x + 1
else
 x = x + 2

x′� = x + 1 ∨ x′� = x + 2

�
�
�

TR[[if b then S1 else S2]] ≜ b ∧ TR[[S1]] ∨ ¬b ∧ TR[[S2]]
TR[[S1; S2]] ≜ ∃ ⃗x′�′� . TR[[S1]][⃗x′�′�/ ⃗x′�] ∧ TR[[S2]][⃗x′�′�/ ⃗x]
TR[[while b do S]] ≜ (b ∧ TR[[S]])* ∧ ¬b[⃗x′� / ⃗x]

TR[[x := a]] ≜ x′� = a ∧ ⋀
y≠x

y′� = y

Can encode loop-free segments without loss of information

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

The How

Reachability relation of loops needs to be over-approximated

!4

if(*) then
 x = x + 1
else
 x = x + 2

x′� = x + 1 ∨ x′� = x + 2

�
�
�

TR[[if b then S1 else S2]] ≜ b ∧ TR[[S1]] ∨ ¬b ∧ TR[[S2]]
TR[[S1; S2]] ≜ ∃ ⃗x′�′� . TR[[S1]][⃗x′�′�/ ⃗x′�] ∧ TR[[S2]][⃗x′�′�/ ⃗x]
TR[[while b do S]] ≜ (b ∧ TR[[S]])* ∧ ¬b[⃗x′� / ⃗x]

TR[[x := a]] ≜ x′� = a ∧ ⋀
y≠x

y′� = y

Can encode loop-free segments without loss of information

Exploit compositionality to compute transition formula that
over-approximates reachability relation of input

The How

Reachability relation of loops needs to be over-approximated

!4

if(*) then
 x = x + 1
else
 x = x + 2

x′� = x + 1 ∨ x′� = x + 2

�
�
�

TR[[if b then S1 else S2]] ≜ b ∧ TR[[S1]] ∨ ¬b ∧ TR[[S2]]
TR[[S1; S2]] ≜ ∃ ⃗x′�′� . TR[[S1]][⃗x′�′�/ ⃗x′�] ∧ TR[[S2]][⃗x′�′�/ ⃗x]
TR[[while b do S]] ≜ (b ∧ TR[[S]])* ∧ ¬b[⃗x′� / ⃗x]

TR[[x := a]] ≜ x′� = a ∧ ⋀
y≠x

y′� = y

Can encode loop-free segments without loss of information

If star operator is monotone, entire analysis in monotone

This talk
1) Predictable loop summarization using
rational vector addition system with resets
(ℚ-VASR)

2) Precision improvement via capturing
control flow using ℚ-VASR with states
(ℚ-VASRS)

!5

ℚ-VASR
Key property:

Reachability relation is LIRA-definable and computable in polytime

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
!6

ℚ-VASR
Key property:

Reachability relation is LIRA-definable and computable in polytime

� [x
y]

T1

→ [0
y] + [1

−1],

T2

[x
y] → [x

y] + [10
−1]

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
!6

Finite set of transformers.
Describes reset/inc to
each dimension

ℚ-VASR
Key property:

Reachability relation is LIRA-definable and computable in polytime

� [x
y]

T1

→ [0
y] + [1

−1],

T2

[x
y] → [x

y] + [10
−1]

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

T1 (x′� = 1 ∧ y′� = y − 1) ∨
T2 (x′� = x + 10 ∧ y′ � = y − 1)

!6

Corresponds to transition
formula of form
�⋁
i∈T

⋀
j∈vars

x′�j = rij
⏟

⋅ xj + aij
⏟{0,1} ℚ

Finite set of transformers.
Describes reset/inc to
each dimension

ℚ-VASR
Key property:

Reachability relation is LIRA-definable and computable in polytime

� [x
y]

T1

→ [0
y] + [1

−1],

T2

[x
y] → [x

y] + [10
−1]

5,
0.5

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

T1 (x′� = 1 ∧ y′� = y − 1) ∨
T2 (x′� = x + 10 ∧ y′ � = y − 1)

!6

Corresponds to transition
formula of form
�⋁
i∈T

⋀
j∈vars

x′�j = rij
⏟

⋅ xj + aij
⏟{0,1} ℚ

Finite set of transformers.
Describes reset/inc to
each dimension

ℚ-VASR
Key property:

Reachability relation is LIRA-definable and computable in polytime

� [x
y]

T1

→ [0
y] + [1

−1],

T2

[x
y] → [x

y] + [10
−1]

5,
0.5

1,
-0.5

15,
-0.5

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

T1 (x′� = 1 ∧ y′� = y − 1) ∨
T2 (x′� = x + 10 ∧ y′ � = y − 1)

!6

Corresponds to transition
formula of form
�⋁
i∈T

⋀
j∈vars

x′�j = rij
⏟

⋅ xj + aij
⏟{0,1} ℚ

Finite set of transformers.
Describes reset/inc to
each dimension

ℚ-VASR
Key property:

Reachability relation is LIRA-definable and computable in polytime

� [x
y]

T1

→ [0
y] + [1

−1],

T2

[x
y] → [x

y] + [10
−1]

5,
0.5

1,
-0.5

15,
-0.5

1,
-1.5

11,
-1.5

25,
-1.5

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

T1 (x′� = 1 ∧ y′� = y − 1) ∨
T2 (x′� = x + 10 ∧ y′ � = y − 1)

!6

Corresponds to transition
formula of form
�⋁
i∈T

⋀
j∈vars

x′�j = rij
⏟

⋅ xj + aij
⏟{0,1} ℚ

Finite set of transformers.
Describes reset/inc to
each dimension

Functional Queue

!7

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Functional Queue

!7

enqueue(�) Back Back

hdhd

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Functional Queue

!7

enqueue(�) Back Back

hd

dequeue()
If Front is
not empty

1

hd

Front

hd

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

Front

hdresult

Functional Queue

!7

enqueue(�) Back Back

hd

dequeue()
If Front is
not empty

Back

Front
hd

Back

Front

1

hd

hd

Front

hd

Front

hdresult

Proof Goal:
Amortized constant time operations

Achieved by representing queue as two lists (front and back)

If Front is
empty

2

Front

hdresult

Functional Queue
procedure enqueue(elt):
 back_len := back_len + 1
 size := size + 1
 mem_ops := mem_ops + 1

procedure dequeue():
 if (front_len == 0) then
 //Reverse back, append to front
 while (back_len != 0) do
 front_len := front_len + 1
 back_len := back_len - 1
 mem_ops = mem_ops + 3
 front_len := front_len - 1
 size = size - 1
 mem_ops = mem_ops + 2

!8

Numeric abstraction reasoning about:
• length of back list
• length of front list
• total list size
• number of memory operations

Functional Queue
procedure enqueue(elt):
 back_len := back_len + 1
 size := size + 1
 mem_ops := mem_ops + 1

procedure dequeue():
 if (front_len == 0) then
 //Reverse back, append to front
 while (back_len != 0) do
 front_len := front_len + 1
 back_len := back_len - 1
 mem_ops = mem_ops + 3
 front_len := front_len - 1
 size = size - 1
 mem_ops = mem_ops + 2

procedure harness():
 nb_ops := 0
 while nondet() do
 nb_ops := nb_ops + 1
 if (size > 0 && nondet())
 enqueue()
 else
 dequeue()

!8

Most general harness

Functional Queue
procedure enqueue(elt):
 back_len := back_len + 1
 size := size + 1
 mem_ops := mem_ops + 1

procedure dequeue():
 if (front_len == 0) then
 //Reverse back, append to front
 while (back_len != 0) do
 front_len := front_len + 1
 back_len := back_len - 1
 mem_ops = mem_ops + 3
 front_len := front_len - 1
 size = size - 1
 mem_ops = mem_ops + 2

procedure harness():
 nb_ops := 0
 while nondet() do
 nb_ops := nb_ops + 1
 if (size > 0 && nondet())
 enqueue()
 else
 dequeue()

!8

Most general harness

Functional Queue Inner-Loop
while (back_len != 0) do
 front_len := front_len + 1
 back_len := back_len - 1
 mem_ops = mem_ops + 3

back_len ≠ 0 ∧

front_len' = front_len + 1
∧ back_len' = back_len − 1
∧ mem_ops' = mem_ops + 3
∧ size' = size

!9

Transition formula
for single iteration

Functional Queue Inner-Loop
while (back_len != 0) do
 front_len := front_len + 1
 back_len := back_len - 1
 mem_ops = mem_ops + 3

back_len ≠ 0 ∧

front_len' = front_len + 1
∧ back_len' = back_len − 1
∧ mem_ops' = mem_ops + 3
∧ size' = size

Vdeq =

front_len
back_len
mem_ops

size

→

front_len
back_len
mem_ops

size

+

1
−1
3
0

ℚ-VASR Abstraction

!9

Transition formula
for single iteration

Functional Queue Inner-Loop
while (back_len != 0) do
 front_len := front_len + 1
 back_len := back_len - 1
 mem_ops = mem_ops + 3

back_len ≠ 0 ∧

front_len' = front_len + 1
∧ back_len' = back_len − 1
∧ mem_ops' = mem_ops + 3
∧ size' = size

Vdeq =

front_len
back_len
mem_ops

size

→

front_len
back_len
mem_ops

size

+

1
−1
3
0

ℚ-VASR Abstraction

!9

∃k ∈ ℕ .

front_len′� = front_len + k ∧
back_len′� = back_len − k ∧
mem_ops′� = mem_ops + 3k ∧
size′� = size

Reachability Relation

Transition formula
for single iteration

procedure enqueue(elt):
 back_len := back_len + 1
 size := size + 1
 mem_ops := mem_ops + 1

procedure dequeue():
 if (front_len == 0) then

 front_len := front_len - 1
 size = size - 1
 mem_ops = mem_ops + 2

back_len′� = 0 ∧
∃k ∈ ℕ .

front_len′� = front_len + k ∧
back_len′� = back_len − k ∧
mem_ops′� = mem_ops + 3k ∧
size′� = size

Functional Queue
procedure harness():
 nb_ops := 0
 while nondet() do
 nb_ops := nb_ops + 1
 if (size > 0 && nondet())
 enqueue()
 else
 dequeue()

!10

procedure enqueue(elt):
 back_len := back_len + 1
 size := size + 1
 mem_ops := mem_ops + 1

procedure dequeue():
 if (front_len == 0) then

 front_len := front_len - 1
 size = size - 1
 mem_ops = mem_ops + 2

back_len′� = 0 ∧
∃k ∈ ℕ .

front_len′� = front_len + k ∧
back_len′� = back_len − k ∧
mem_ops′� = mem_ops + 3k ∧
size′� = size

Functional Queue
procedure harness():
 nb_ops := 0
 while nondet() do
 nb_ops := nb_ops + 1
 if (size > 0 && nondet())
 enqueue()
 else
 dequeue()

!10

procedure enqueue(elt):
 back_len := back_len + 1
 size := size + 1
 mem_ops := mem_ops + 1

procedure dequeue():
 if (front_len == 0) then

 front_len := front_len - 1
 size = size - 1
 mem_ops = mem_ops + 2

back_len′� = 0 ∧
∃k ∈ ℕ .

front_len′� = front_len + k ∧
back_len′� = back_len − k ∧
mem_ops′� = mem_ops + 3k ∧
size′� = size

Functional Queue
procedure harness():
 nb_ops := 0
 while nondet() do
 nb_ops := nb_ops + 1
 if (size > 0 && nondet())
 enqueue()
 else
 dequeue()

� can increase by arbitrary
value

� is always
incremented or decremented by 1

enqueue: !
dequeue: !

front_len

back_len + front_len

(back_len + front_len) + +
(back_len + front_len) − −

!10

� grows
at most 4 times as
quickly as �

mem_ops

nb_ops
Vhar =

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

→

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

+

1
1
4
1
1

enqueue

,

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

→

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

+

−1
0
2

−1
1

dequeue fast (conditional passed)

,

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

→

size
0

mem_ops + 3 * back_len
back_len + front_len

nb_ops

+

−1
0
2

−1
1

dequeue slow (conditional taken)

!11

State Space Transformation
i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

!12

State Space Transformation
i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

�
x′ � = x + i + 2
y′ � = y + i
i′� = i + 1

!12

Transition formula for single
iteration of loop

Not representable as ℚ-VASR

State Space Transformation
i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

�
x′ � = x + i + 2
y′ � = y + i
i′� = i + 1

Can always over-approximate
transition formula as ℚ-VASR by
applying a lin. transformation

!12

Transition formula for single
iteration of loop

Not representable as ℚ-VASR

State Space Transformation
i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

�
x′ � = x + i + 2
y′ � = y + i
i′� = i + 1

Can always over-approximate
transition formula as ℚ-VASR by
applying a lin. transformation

!12

{[x − y
i] → [x − y

i] + [2
1]}[1 −1 0

0 0 1]Dim 1

Dim 2

x y iTransition formula for single
iteration of loop

Not representable as ℚ-VASR

Key Result:

For any LRA transition formula � , we can
compute a best ℚ-VASR abstraction of �

F
F

Predictable Analysis using
ℚ-VASR Abstractions

!13

Key Result:

For any LRA transition formula � , we can
compute a best ℚ-VASR abstraction of �

F
F

VAS1

Predictable Analysis using
ℚ-VASR Abstractions

VAS2

F

Lin Transformation

!13

Lin Transformation

Key Result:

For any LRA transition formula � , we can
compute a best ℚ-VASR abstraction of �

F
F

VAS1

Predictable Analysis using
ℚ-VASR Abstractions

VAS2

F

Lin Transformation

Lin Transformation

!13

Best VAS

Lin Transformation

Lin Transformation

Lin Transformation

Computing Best ℚ-VASR
Abstractions

Convert transition
formula to DNF1

!14

DNF(F) = C1 ∨ C2 ∨ . . . Cn

Computing Best ℚ-VASR
Abstractions

Convert transition
formula to DNF1

2

!14

Compute best ℚ-VASR
for each LRA cube

DNF(F) = C1 ∨ C2 ∨ . . . Cn

VAS_ABS(C1) VAS_ABS(C2) VAS_ABS(Cn)
Key contribution

Computing Best ℚ-VASR
Abstractions

Convert transition
formula to DNF1

2

Compute best common
abstraction of all ℚ-VASR
abstractions

3

!14

Compute best ℚ-VASR
for each LRA cube

DNF(F) = C1 ∨ C2 ∨ . . . Cn

VAS_ABS(C1) VAS_ABS(C2) VAS_ABS(Cn)⊔ ⊔

VAS_ABS(F)

Key contribution

Key contribution

Computing Best ℚ-VASR
Abstractions

Convert transition
formula to DNF1

2

Compute best common
abstraction of all ℚ-VASR
abstractions

3

Step 2 can only compute
best ℚ-VASR for LRA cube

!14

Compute best ℚ-VASR
for each LRA cube

DNF(F) = C1 ∨ C2 ∨ . . . Cn

VAS_ABS(C1) VAS_ABS(C2) VAS_ABS(Cn)⊔ ⊔

VAS_ABS(F)

Can use SMT solver to
enumerate DNF lazily1 2

Key contribution

Key contribution

This talk
1) Predictable loop summarization using
rational vector addition system with resets
(ℚ-VASR)

2) Precision improvement via capturing
control flow using ℚ-VASR with states
(ℚ-VASRS)

!15

ℚ-VASRS Abstractions
Example

int x = 0, i = 0
while(*) do
 if(i%2 == 0)
 i = i + 1
 else
 x = x + 1
 i = i + 1

!16

ℚ-VASRS Abstractions
Example

int x = 0, i = 0
while(*) do
 if(i%2 == 0)
 i = i + 1
 else
 x = x + 1
 i = i + 1

{[i
x] → [i + 1

x], [i
x] → [i + 1

x + 1]}

A Best ℚ-VASR Abstraction
Cannot show 2x ≤ i

!16

ℚ-VASRS Abstractions
Example

int x = 0, i = 0
while(*) do
 if(i%2 == 0)
 i = i + 1
 else
 x = x + 1
 i = i + 1

i%2 == 0 i%2 == 1

[i
x] → [i + 1

x]

[i
x] → [i + 1

x + 1]
{[i

x] → [i + 1
x], [i

x] → [i + 1
x + 1]}

ℚ-VASRS AbstractionA Best ℚ-VASR Abstraction
Cannot show 2x ≤ i

ℚ-VASRS Abstraction can prove that loop maintains invariant 2x ≤ i

!16

ℚ-VASRS
State 1 State 2

State 3

Transformer 1

Transformer 2
Transformer 3

Transformer 4Transformer 5

Transition formula representing reachability
relation computable in polytime*

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

Reachability relation defined by
sequences of transformers that form
paths through graph.

!17

ℚ-VASRS
State 1 State 2

State 3

Transformer 1

Transformer 2
Transformer 3

Transformer 4Transformer 5

Transition formula representing reachability
relation computable in polytime*

Predicate Q-VASRS:
Control States are predicates over program variables.
Predicates must partition state space.

i > 0 i = 0

i < 0

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

Reachability relation defined by
sequences of transformers that form
paths through graph.

!17

Key Result:

Can compute best ℚ-VASRS abstraction of input LRA
formula � with a fixed set of predicatesF

Best ℚ-VASRS Abstractions

!18

Key Result:

Can compute best ℚ-VASRS abstraction of input LRA
formula � with a fixed set of predicatesF

Best ℚ-VASRS Abstractions

!a

!b

!c

VAS abstraction

�(a ∧ F ∧ b[
⃗x′ � /

⃗x])

VAS abstraction
�(c

∧
F

∧
b[

⃗x′�/
⃗x])…

VA
S

ab
st

ra
ct

io
n

�(a
∧

F
∧

a[
⃗

x′
�/

⃗
x

])

…

…

…

…

…

!18

Predictable ℚ-VASRS
Abstractions

!19

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable ℚ-VASRS
Abstractions

Need monotonicity

!19

That if � , then � is at least as fine as �F ⊧ G Predicates(F) Predicates(G)

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable ℚ-VASRS
Abstractions

Solution

Need monotonicity

!19

That if � , then � is at least as fine as �F ⊧ G Predicates(F) Predicates(G)

Use connected components of topological closure of � as predicates∃x′�. F

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable ℚ-VASRS
Abstractions

Solution

Need monotonicity

!19

That if � , then � is at least as fine as �F ⊧ G Predicates(F) Predicates(G)

Use connected components of topological closure of � as predicates∃x′�. F

�F �G�F ⊧ G

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable ℚ-VASRS
Abstractions

Solution

Need monotonicity

!19

That if � , then � is at least as fine as �F ⊧ G Predicates(F) Predicates(G)

Use connected components of topological closure of � as predicates∃x′�. F

�F �G�F ⊧ G
View formula as
finite union of
convex polyhedra

1

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable ℚ-VASRS
Abstractions

Solution

Need monotonicity

!19

That if � , then � is at least as fine as �F ⊧ G Predicates(F) Predicates(G)

Use connected components of topological closure of � as predicates∃x′�. F

�F �G�F ⊧ G
View formula as
finite union of
convex polyhedra

1

Convert strict
inequalities to
non-strict

2

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable ℚ-VASRS
Abstractions

Solution

Need monotonicity

!19

That if � , then � is at least as fine as �F ⊧ G Predicates(F) Predicates(G)

Use connected components of topological closure of � as predicates∃x′�. F

�F �G�F ⊧ G
View formula as
finite union of
convex polyhedra

1

Convert strict
inequalities to
non-strict

2

Compute largest
connect components3

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Results newer than paper version:
 ℚ-VASR and ℚ-VASRS faster after optimization
 ℚ-VASR passes two more cases after bug fix

Evaluation
%

 C
or

re
ct

0

0.25

0.5

0.75

1

C4B (35) HOLA (46) SVCOMP-19 (84)

ℚ-VASR ℚ-VASRS CRA SeaHorn UltAuto

31/35 40/46
78/84

!20

Accuracy Runtime

ℚ-VASR
ℚ-VASRS

CRA

C4B (35) HOLA (46) SVCOMP-19 (84)

SeaHorn
UltAuto

29 S 50 S 73 S
33 S 65 S 107 S
30 S 56 S 87 S

2431 S 2112 S 3038 S
3974 S 3003 S 6933 S

Timeout: 300 Seconds per case
SVCOMP-19 restricted to safe integer benchmarks from loops category

Most accurate tool in any given suite does not subsume all others

Summary

• Developed predictable and compositional program
analysis with ℚ-VASR

• Extended analysis with ℚ-VASR with states to capture
control flow information

• Shown improvements in both accuracy and speed over
state-of-art-tools while providing guarantees about
invariant quality

!21

