Loop Summarization with Rational Vector Addition Systems

Jake Silverman

Zachary Kincaid

Princeton University

The Why

Invariant generation techniques are effective but can be unpredictable

The Why

Invariant generation techniques are effective but can be unpredictable

```
i = 0
while(i < 5) do
    i++
assert(i == 5)
```

Polyhedron domain with
widening / narrowing verifies
assertion

The Why

Invariant generation techniques are effective but can be unpredictable

```
i \(=1\)
j \(=0\)
while(i < 5) do
    j \(=\) j \(+i\)
    i++
assert(i == 5)
```

Polyhedron domain with widening / narrowing fails to verify assertion

Not monotone: more information led to worse analysis

The Why

Invariant generation techniques are effective but can be unpredictable

$$
\begin{aligned}
& i=1 \\
& j=0 \\
& \text { while }(i<5) \text { do } \\
& \quad j=j+i \\
& \quad i++ \\
& \text { assert }(i==5)
\end{aligned}
$$

Polyhedron domain with widening / narrowing fails to verify assertion

$$
\begin{aligned}
& \mathrm{i}=0 \\
& \mathrm{j}=0 \\
& \text { while(i<1000) do } \\
& \quad \mathrm{i}=\mathrm{i}+\text { step } \\
& j=j+\text { step } \\
& \text { assert }(\mathrm{i}==\mathrm{j})
\end{aligned}
$$

Ultimate Automizer verifies assertion

Not monotone: more information led to worse analysis

The Why

Invariant generation techniques are effective but can be unpredictable

$$
\begin{aligned}
& i=1 \\
& j=0 \\
& \text { while }(i<5) \text { do } \\
& \quad j=j+i \\
& \quad i++ \\
& \text { assert }(i==5)
\end{aligned}
$$

Polyhedron domain with widening / narrowing fails to verify assertion

$$
\begin{aligned}
& \text { assume }(\text { step }<2) \\
& i=0 \\
& j=0 \\
& \text { while }(i<1000) \text { do } \\
& i=i+\text { step } \\
& j=j+s t e p \\
& \text { assert }(i==j)
\end{aligned}
$$

Ultimate Automizer fails to verify assertion within 1 hour

Not monotone: more information led to worse analysis

The What

Want: invariant generation technique that is
predictable - can make theoretical guarantees about invariant quality (in particular, monotonicity)
precise - assertion verification capability comparable with state-of-the-art software model checkers

The How

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$
\begin{aligned}
& \boldsymbol{T R} \llbracket x:=a \rrbracket \triangleq x^{\prime}=a \wedge \bigwedge y^{\prime}=y \\
& y \neq x \\
& \operatorname{TR} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket \triangleq b \wedge \operatorname{TR} \llbracket S_{1} \rrbracket \vee \neg b \wedge \operatorname{TR} \llbracket S_{2} \rrbracket \\
& \mathbf{T R} \llbracket S_{1} ; S_{2} \rrbracket \triangleq \exists \overrightarrow{x^{\prime \prime}} . \operatorname{TR} \llbracket S_{1} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \overrightarrow{x^{\prime}}\right] \wedge \operatorname{TR} \llbracket S_{2} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \vec{x}\right] \\
& \operatorname{TR} \llbracket \text { while } b \text { do } S \rrbracket \triangleq(b \wedge \operatorname{TR} \llbracket S \rrbracket)^{*} \wedge \neg b\left[\overrightarrow{x^{\prime}} / \vec{x}\right]
\end{aligned}
$$

The How

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$
\begin{aligned}
& \operatorname{TR} \llbracket x:=a \rrbracket \triangleq x^{\prime}=a \wedge \bigwedge_{y \neq x} y^{\prime}=y \\
& \operatorname{TR} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket \triangleq b \wedge \mathbf{\operatorname { R R } \llbracket S _ { 1 } \rrbracket \vee \neg b \wedge \mathbf { T R } \llbracket S _ { 2 } \rrbracket} \\
& \mathbf{T R} \llbracket S_{1} ; S_{2} \rrbracket \triangleq \exists \overrightarrow{x^{\prime \prime}} \cdot \operatorname{TR} \llbracket S_{1} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \overrightarrow{x^{\prime}}\right] \wedge \operatorname{TR} \llbracket S_{2} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \vec{x}\right] \\
& \mathbf{T R} \llbracket \text { while } b \text { do } S \rrbracket \triangleq(b \wedge \mathbf{T R} \llbracket S \rrbracket)^{*} \wedge \neg b\left[\overrightarrow{x^{\prime}} / \vec{x}\right]
\end{aligned}
$$

Can encode loop-free segments without loss of information

```
if(*) then
        \(x=x+1\)
else
\(x^{\prime}=x+1 \vee x^{\prime}=x+2\)
    \(x=x+2\)
```


The How

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$
\begin{aligned}
& \operatorname{TR} \llbracket x:=a \rrbracket \triangleq x^{\prime}=a \wedge \bigwedge y^{\prime}=y \\
& y \neq x \\
& \operatorname{TR} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket \triangleq b \wedge \underset{\rightarrow R}{ } \text { TR } \llbracket S_{1} \rrbracket \vee \neg b \wedge \mathbf{T R} \llbracket S_{2} \rrbracket \\
& \operatorname{TR} \llbracket S_{1} ; S_{2} \rrbracket \triangleq \exists \overrightarrow{x^{\prime \prime}} . \operatorname{TR} \llbracket S_{1} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \overrightarrow{x^{\prime}}\right] \wedge \operatorname{TR} \llbracket S_{2} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \vec{x}\right] \\
& \mathbf{T R} \llbracket \text { while } b \text { do } S \rrbracket \triangleq(b \wedge \mathbf{T R} \llbracket S \rrbracket)^{*} \wedge \neg b\left[\overrightarrow{x^{\prime}} / \vec{x}\right]
\end{aligned}
$$

Can encode loop-free segments without loss of information

```
if \((*)\) then
        \(x=x+1\)
else
\(x^{\prime}=x+1 \vee x^{\prime}=x+2\)
    \(x=x+2\)
```

Reachability relation of loops needs to be over-approximated

The How

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$
\begin{aligned}
& \operatorname{TR} \llbracket x:=a \rrbracket \triangleq x^{\prime}=a \wedge \bigwedge y^{\prime}=y \\
& y \neq x \\
& \operatorname{TR} \llbracket \text { if } b \text { then } S_{1} \text { else } S_{2} \rrbracket \triangleq b \wedge \underset{\rightarrow R}{ } \text { TRS } S_{1} \rrbracket \vee \neg b \wedge \mathbf{T R} \llbracket S_{2} \rrbracket \\
& \operatorname{TR} \llbracket S_{1} ; S_{2} \rrbracket \triangleq \exists \overrightarrow{x^{\prime \prime}} . \operatorname{TR} \llbracket S_{1} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \overrightarrow{x^{\prime}}\right] \wedge \operatorname{TR} \llbracket S_{2} \rrbracket\left[\overrightarrow{x^{\prime \prime}} / \vec{x}\right] \\
& \operatorname{TR} \llbracket \text { while } b \text { do } S \rrbracket \triangleq(b \wedge \operatorname{TR} \llbracket S \rrbracket)^{*} \wedge \neg b\left[\overrightarrow{x^{\prime}} / \vec{x}\right]
\end{aligned}
$$

Can encode loop-free segments without loss of information

```
if(*) then
        \(x=x+1\)
else
    \(x^{\prime}=x+1 \vee x^{\prime}=x+2\)
    \(x=x+2\)
```

Reachability relation of loops needs to be over-approximated
If star operator is monotone, entire analysis in monotone

This talk

1) Predictable loop summarization using rational vector addition system with resets (Q-VASR)
2) Precision improvement via capturing control flow using \mathbb{Q}-VASR with states (Q-VASRS)

\mathbb{Q}-VASR

Key property:

Reachability relation is LIRA-definable and computable in polytime

\mathbb{Q}-VASR

Key property:

Reachability relation is LIRA-definable and computable in polytime
$\begin{array}{l}\text { Finite set of transformers. }\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ y\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right]\right. \\ \text { Descrilbes reset/inc to } \\ \text { each dimension }\end{array} \overbrace{\left.\left[\begin{array}{c}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}x \\ y\end{array}\right]+\left[\begin{array}{c}10 \\ -1\end{array}\right]\right\}}^{T^{1}}\}$

Q-VASR

Key property:

Reachability relation is LIRA-definable and computable in polytime $\begin{array}{l}\text { Finite set of transformers. }\left\{\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ y\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right]\right. \\ T^{\text {Describes reset/inc to }} \text { each dimension }\end{array} \overbrace{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{c}10 \\ -1\end{array}\right]\right\}}^{T^{2}}\}$

Corresponds to transition formula of form
$\bigvee_{i \in T} \bigwedge_{j \in \text { vars }} x_{j}^{\prime}=\underbrace{r_{i j}}_{\{0,1\}} \cdot x_{j}+\underbrace{a_{i j}}_{\mathbb{Q}}$

$$
\begin{aligned}
& T^{1} \begin{array}{l}
\left(x^{\prime}=1 \wedge y^{\prime}=y-1\right) \vee \\
T^{2} \\
\left(x^{\prime}=x+10 \wedge y^{\prime}=y-1\right)
\end{array}
\end{aligned}
$$

\mathbb{Q}-VASR

Key property:

Reachability relation is LIRA-definable and computable in polytime

Corresponds to transition formula of form
$\bigvee_{i \in T} \bigwedge_{j \in \text { vars }} x_{j}^{\prime}=\underbrace{r_{i j}}_{\{0,1\}} \cdot x_{j}+\underbrace{a_{i j}}_{\mathbb{Q}}$

\mathbb{Q}-VASR

Key property:

Reachability relation is LIRA-definable and computable in polytime

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP '14)

\mathbb{Q}-VASR

Key property:
Reachability relation is LIRA-definable and computable in polytime $\begin{array}{l}\text { Finite set of transformers. } \\ \begin{array}{l}\text { Describes reset/inc to } \\ \text { each dimension }\end{array} \\ {\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ y\end{array}\right]+\left[\begin{array}{c}1 \\ -1\end{array}\right]}\end{array} \overbrace{\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{c}10 \\ -1\end{array}\right]}^{T^{1}}\}$

Corresponds to transition formula of form
$\bigvee_{i \in T} \bigwedge_{j \in \text { vars }} x_{j}^{\prime}=\underbrace{r_{i j}}_{\{0,1\}} \cdot x_{j}+\underbrace{a_{i j}}_{\mathbb{Q}}$

Functional Queue

Proof Goal:

Amortized constant time operations
Achieved by representing queue as two lists (front and back)

Functional Queue

Proof Goal:

Amortized constant time operations
Achieved by representing queue as two lists (front and back)

Functional Queue

Proof Goal:

Amortized constant time operations
Achieved by representing queue as two lists (front and back)

dequeue()

Functional Queue

Proof Goal:

Amortized constant time operations
Achieved by representing queue as two lists (front and back)

enqueue ($-\ldots$,

dequeue()

(2) If Front is

Functional Queue

procedure enqueue(elt):
back_len := back_len + 1
size := size + 1
mem_ops := mem_ops + 1

Numeric abstraction reasoning about:

- length of back list
- length of front list
- total list size
- number of memory operations
procedure dequeue ():
if (front_len == 0) then
//Reverse back, append to front
while (back_len ! = 0) do
front_len : = front_len + 1
back_len := back_len - 1
mem_ops $=$ mem_ops +3
front_len := front_len - 1
size = size - 1
mem_ops $=$ mem_ops +2

Functional Queue

procedure enqueue(elt):
back_len := back_len + 1
size := size + 1
mem_ops := mem_ops + 1
procedure dequeue():
if (front_len == 0) then //Reverse back, append to front while (back_len ! = 0) do front_len : = front_len + 1 back_len := back_len - 1 mem_ops $=$ mem_ops +3 front_len := front_len - 1 size = size - 1
mem_ops $=$ mem_ops +2

Most general harness
procedure harness():
nb_ops := 0
while nondet() do nb_ops := nb_ops + 1 if (size > 0 \&\& nondet()) enqueue() else
dequeue()

Functional Queue

procedure enqueue (elt): back_len := back_len + 1 size := size + 1 mem_ops := mem_ops + 1
procedure dequeue():
if (front_len == 0) then

$$
\begin{aligned}
& \text { //Reverse back, append to front } \\
& \begin{array}{l}
\text { while (back_len != 0) do } \\
\text { front_len }:=\text { front_len }+1 \\
\text { back_len }:=\text { back_len }-1 \\
\text { mem_ops }=\text { mem_ops }+3
\end{array} \\
& \text { front_len }:=\text { front_len }-1 \\
& \text { size }=\text { size }-1 \\
& \text { mem_ops }=\text { mem_ops }+2
\end{aligned}
$$

Most general harness
procedure harness():
nb_ops := 0
while nondet() do nb_ops := nb_ops + 1 if (size > 0 \&\& nondet()) enqueue() else
dequeue()

Functional Queue Inner-Loop

$$
\begin{aligned}
& \text { while (back_len }!=0) \text { do } \\
& \text { Transition formula } \\
& \text { front } \bar{n} \text { : front en }+1 \text { for single iteration } \\
& \text { back_len := back_len - } 1 \\
& \text { mem_ops }=\text { mem_ops }+3 \\
& \text { back_len } \neq 0 \wedge\left(\begin{array}{l}
\text { front_len' }=\text { front_len }+1 \\
\wedge \text { back_len' }=\text { back_len }-1 \\
\wedge \text { mem_ops' }=\text { mem_ops }+3 \\
\wedge \text { size' }=\text { size }
\end{array}\right)
\end{aligned}
$$

Functional Queue Inner-Loop

$$
\begin{aligned}
& \text { while (back_len }!=0) \text { do } \\
& \text { Transition formula } \\
& \text { front_len }:=\text { front_len }+1
\end{aligned}
$$

Functional Queue Inner-Loop

$$
\begin{aligned}
& \text { while (back_len != 0) do } \\
& \text { Transition formula }
\end{aligned}
$$

Functional Queue

procedure enqueue(elt): back_len := back_len + 1
size := size + 1
mem_ops := mem_ops + 1
procedure harness(): nb ops := 0
While nondet() do
nb_ops := nb_ops + 1
$i f^{-}$(size > 0 \&\& nondet()) enqueue()
else
dequeue()
procedure dequeue():

$$
\left.\begin{array}{l}
\text { if (front_len }==0) \text { then } \\
\text { back_len }^{\prime}=0 \wedge \\
\exists k \in \mathbb{N} .\left(\begin{array}{l}
\text { front_len }=\text { front_len }+k \wedge \\
\text { back_len' }=\text { back_len }-k \wedge \\
\text { mem_ops }^{\prime}=\text { mem_ops }+3 k \wedge \\
\text { size }=\text { size }
\end{array}\right.
\end{array}\right) .
$$

front_len := front_len - 1
size = size - 1
mem_ops $=$ mem_ops +2

Functional Queue

procedure enqueue(elt):

$$
\begin{aligned}
& \text { back_len }:=\text { back_len }+1 \\
& \text { size }:=\text { size }+1 \\
& \text { mem_ops }:=\text { mem_ops }+1
\end{aligned}
$$

procedure harness():

$$
\text { nb_ops := } 0
$$

while nondet() do

$$
\text { nb_ops := nb_ops }+1
$$

$$
\text { if (size > } 0 \text { \&\& nondet()) }
$$ enqueue()

else
dequeue()
procedure dequeue():
if (front_len == 0) then

back_len $^{\prime}=0 \wedge$	
$\exists k \in \mathbb{N}$.	$\left(\begin{array}{l}\text { front_len }^{\prime}=\text { front_len }+k \wedge \\ \text { back_len }^{\prime}=\text { back_len }-k \wedge \\ \text { mem_ops } \\ =\text { mem_ops }+3 k \wedge \\ \text { size }=\text { size }\end{array}\right.$

front_len := front_len - 1
size = size - 1
mem_ops = mem_ops + 2

Functional Queue

procedure enqueue(elt):
back_len := back_len + 1
size := size + 1
mem_ops := mem_ops + 1
procedure harness():

$$
\text { nb_ops := } 0
$$

while nondet() do

$$
\text { nb_ops }:=\text { nb_ops }+1
$$

if ${ }^{-}$(size > $0^{-} \& \&$ nondet()) enqueue()
else dequeue()
procedure dequeue():
if (front_len == 0) then
back_len' $=0 \wedge$
$\exists k \in \mathbb{N} .\left(\begin{array}{l}\text { front_len }=\text { front_len }+k \wedge \\ \text { back_len' }=\text { back_len }-k \wedge \\ \text { mem_ops }=\text { mem_ops }+3 k \wedge \\ \text { size } e^{\prime}=\text { size }\end{array}\right)$

```
front_len can increase by arbitrary
value
    back_len + front_len is always
    incremented or decremented by }
```

 front_len := front_len - 1
 size = size - 1
 mem_ops \(=\) mem_ops +2
 front_len can increase by arbitrary
value
back_len + front_len is always
incremented or decremented by 1
enqueue: (back_len + front_len $)++$
dequeue: (back_len + front_len $)--$

State Space Transformation

$$
\begin{aligned}
& i=0 \\
& \text { while (*) do } \\
& \quad x=x+i+2 \\
& y=y+i \\
& i=j+1
\end{aligned}
$$

State Space Transformation

$$
\begin{aligned}
& \mathrm{i}=0 \\
& \text { while(*) do } \\
& \quad \begin{array}{l}
\mathrm{x}=\mathrm{x}+\mathrm{i}+2 \\
\mathrm{y}=\mathrm{y}+\mathrm{i} \\
\mathrm{i}=\mathrm{i}+1
\end{array}
\end{aligned}
$$

Transition formula for single iteration of loop
$x^{\prime}=x+i+2$
$y^{\prime}=y+i$
$i^{\prime}=i+1$
Not representable as \mathbb{Q}-VASR

State Space Transformation

$$
\begin{aligned}
& \mathrm{i}=0 \\
& \text { while(*) do } \\
& \quad \begin{array}{l}
\mathrm{x}=\mathrm{x}+\mathrm{i}+2 \\
\mathrm{y}=\mathrm{y}+\mathrm{i} \\
\mathrm{i}=\mathrm{i}+1
\end{array}
\end{aligned}
$$

Transition formula for single iteration of loop
$x^{\prime}=x+i+2$
$y^{\prime}=y+i$
$i^{\prime}=i+1$
Not representable as \mathbb{Q}-VASR

Can always over-approximate transition formula as \mathbb{Q}-VASR by lapplying a lin. transformation

State Space Transformation

$$
\begin{aligned}
& \mathrm{i}=0 \\
& \text { while (*) do } \\
& \quad \begin{array}{l}
\mathrm{x}=\mathrm{x}+\mathrm{i}+2 \\
\mathrm{y}=\mathrm{y}+\mathrm{i} \\
\mathrm{i}=\mathrm{i}+1
\end{array}
\end{aligned}
$$

Transition formula for single iteration of loop
$x^{\prime}=x+i+2$
$y^{\prime}=y+i$
$i^{\prime}=i+1$
Not representable as \mathbb{Q}-VASR

Can always over-approximate transition formula as \mathbb{Q}-VASR by lapplying a lin. transformation

Predictable Analysis using Q-VASR Abstractions

Key Result:

For any LRA transition formula F, we can compute a best \mathbb{Q}-VASR abstraction of F

Predictable Analysis using Q-VASR Abstractions

Key Result:
For any LRA transition formula F, we can compute a best \mathbb{Q}-VASR abstraction of F

Predictable Analysis using Q-VASR Abstractions

Key Result:

For any LRA transition formula F, we can compute a best \mathbb{Q}-VASR abstraction of F

Computing Best \mathbb{Q}-VASR Abstractions

$\operatorname{DNF}(F)=C_{1} \vee C_{2} \vee \ldots C_{n}$

Computing Best \mathbb{Q}-VASR Abstractions

 Convert transitionformula to DNF

Compute best \mathbb{Q}-VASR

for each LRA cube

Computing Best \mathbb{Q}-VASR Abstractions

 Convert transition formula to DNFCompute best \mathbb{Q}-VASR for each LRA cube abstraction of all Q-VASR abstractions

Computing Best \mathbb{Q}-VASR Abstractions

Compute best common abstraction of all \mathbb{Q}-VASR abstractions

Step 2 can only compute best \mathbb{Q}-VASR for LRA cube

Can use SMT solver to enumerate DNF lazily

This talk

1) Predictable loop summarization using

 rational vector addition system with resets (Q-VASR)2) Precision improvement via capturing control flow using \mathbb{Q}-VASR with states (Q-VASRS)

Q-VASRS Abstractions Example

```
int x = 0, i = 0
while(*) do
    if(i%2 == 0)
        j = j + 1
    else
        x = x + 1
        i = i + 1
```


Q-VASRS Abstractions Example

```
int x = 0, i = 0
while(*) do
    if(i%2 == 0)
        i = i + 1
    else
        x = x + 1
        i = i + 1
        {[鿆
```

A Best Q-VASR Abstraction Cannot show $2 x \leq i$

\mathbb{Q}-VASRS Abstractions Example

$$
\begin{gathered}
\text { int } x=0, \quad i=0 \\
\text { while(*) do } \\
\text { if(i\%2 = }=0) \\
i=j+1 \\
\text { else } \\
x=x+1 \\
i=i+1
\end{gathered}
$$

$$
\left\{\left[\begin{array}{c}
i \\
x
\end{array}\right] \rightarrow\left[\begin{array}{c}
i+1 \\
x
\end{array}\right],\left[\begin{array}{c}
i \\
x
\end{array}\right] \rightarrow\left[\begin{array}{c}
i+1 \\
x+1
\end{array}\right]\right\}
$$

$$
\mathrm{i} \% 2=0
$$

Q-VASRS Abstraction

Q-VASRS Abstraction can prove that loop maintains invariant $2 \mathrm{x} \leq \mathrm{i}$

\mathbb{Q}-VASRS

\mathbb{Q}-VASRS

Predicate Q-VASRS:
Control States are predicates over program variables. Predicates must partition state space.

Best \mathbb{Q}-VASRS Abstractions

Key Result:
Can compute best \mathbb{Q}-VASRS abstraction of input LRA formula F with a fixed set of predicates

Best \mathbb{Q}-VASRS Abstractions

Key Result:
Can compute best \mathbb{Q}-VASRS abstraction of input LRA formula F with a fixed set of predicates

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \vDash G$, then $\operatorname{Predicates}(F)$ is at least as fine as $\operatorname{Predicates}(G)$

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \vDash G$, then $\operatorname{Predicates}(F)$ is at least as fine as $\operatorname{Predicates}(G)$

Solution

Use connected components of topological closure of $\exists x^{\prime} . F$ as predicates

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \vDash G$, then $\operatorname{Predicates}(F)$ is at least as fine as $\operatorname{Predicates}(G)$

Solution

Use connected components of topological closure of $\exists x^{\prime} . F$ as predicates

$$
F \quad F \vDash G \quad G
$$

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \vDash G$, then $\operatorname{Predicates}(F)$ is at least as fine as $\operatorname{Predicates}(G)$

Solution

Use connected components of topological closure of $\exists x^{\prime} . F$ as predicates

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \vDash G$, then $\operatorname{Predicates}(F)$ is at least as fine as $\operatorname{Predicates}(G)$

Solution

Use connected components of topological closure of $\exists x^{\prime} . F$ as predicates

Predictable \mathbb{Q}-VASRS Abstractions

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \vDash G$, then $\operatorname{Predicates}(F)$ is at least as fine as $\operatorname{Predicates}(G)$

Solution

Use connected components of topological closure of $\exists x^{\prime} . F$ as predicates

Evaluation

Results newer than paper version:
\mathbb{Q}-VASR and $\mathbb{Q}-$ VASRS faster after optimization Q-VASR passes two more cases after bug fix

Timeout: 300 Seconds per case
SVCOMP-19 restricted to safe integer benchmarks from loops category
Most accurate tool in any given suite does not subsume all others

Summary

- Developed predictable and compositional program analysis with $\mathbb{Q}-V A S R$
- Extended analysis with \mathbb{Q}-VASR with states to capture control flow information
- Shown improvements in both accuracy and speed over state-of-art-tools while providing guarantees about invariant quality

