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i = 1 
j = 0 
while(i < 5) do 
  j = j + i 
  i++ 
assert(i == 5)

Polyhedron domain with 
widening / narrowing fails to verify 
assertion

assume(step < 2) 
i = 0 
j = 0 
while(i < 1000) do 
   i = i + step 
   j = j + step 
assert(i == j)

Ultimate Automizer fails to verify 
assertion within 1 hour

Not monotone: more information led to worse analysis

The Why

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable 
Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract 
Domains (NSAD ’11)



Want: invariant generation technique that is 


predictable - can make theoretical guarantees 
about invariant quality (in particular, 
monotonicity)


precise - assertion verification capability 
comparable with state-of-the-art software 
model checkers

The What
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Exploit compositionality to compute transition formula that 
over-approximates reachability relation of input

The How
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TR[[if b then S1 else S2]] ≜ b ∧ TR[[S1]] ∨ ¬b ∧ TR[[S2]]
TR[[S1; S2]] ≜ ∃ ⃗x′�′� . TR[[S1]][ ⃗x′�′�/ ⃗x′�] ∧ TR[[S2]][ ⃗x′�′�/ ⃗x ]
TR[[while b do S]] ≜ (b ∧ TR[[S]])* ∧ ¬b[ ⃗x′� / ⃗x ]

TR[[x := a]] ≜ x′� = a ∧ ⋀
y≠x

y′� = y
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   x = x + 1 
else 
   x = x + 2

x′� = x + 1 ∨ x′� = x + 2
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TR[[if b then S1 else S2]] ≜ b ∧ TR[[S1]] ∨ ¬b ∧ TR[[S2]]
TR[[S1; S2]] ≜ ∃ ⃗x′�′� . TR[[S1]][ ⃗x′�′�/ ⃗x′�] ∧ TR[[S2]][ ⃗x′�′�/ ⃗x ]
TR[[while b do S]] ≜ (b ∧ TR[[S]])* ∧ ¬b[ ⃗x′� / ⃗x ]

TR[[x := a]] ≜ x′� = a ∧ ⋀
y≠x

y′� = y

Can encode loop-free segments without loss of information

If star operator is monotone, entire analysis in monotone



This talk
1) Predictable loop summarization using 
rational vector addition system with resets 
(ℚ-VASR)


2) Precision improvement via capturing 
control flow using ℚ-VASR with states   
(ℚ-VASRS)
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ℚ-VASR
Key property:


Reachability relation is LIRA-definable and computable in polytime

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
!6



ℚ-VASR
Key property:


Reachability relation is LIRA-definable and computable in polytime

� [x
y]

T1

→ [0
y] + [ 1

−1],

T2

[x
y] → [x

y] + [10
−1]

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)
!6

Finite set of transformers. 
Describes reset/inc to 
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formula of form 
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⏟
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⏟{0,1} ℚ

Finite set of transformers. 
Describes reset/inc to 
each dimension
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enqueue(� ) Back Back

hd

dequeue()
If Front is 
not empty

Back

Front
hd

Back

Front

1

hd

hd

Front

hd

Front

hdresult

Proof Goal: 
Amortized constant time operations 

Achieved by representing queue as two lists (front and back)

If Front is 
empty

2

Front

hdresult



Functional Queue
procedure enqueue(elt): 
   back_len := back_len + 1 
   size := size + 1 
   mem_ops := mem_ops + 1 

procedure dequeue(): 
   if (front_len == 0) then 
     //Reverse back, append to front 
     while (back_len != 0) do 
       front_len := front_len + 1 
       back_len := back_len - 1 
       mem_ops = mem_ops + 3 
   front_len := front_len - 1 
   size = size - 1 
   mem_ops = mem_ops + 2
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Numeric abstraction reasoning about: 
• length of back list 
• length of front list 
• total list size 
• number of memory operations
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Functional Queue Inner-Loop
while (back_len != 0) do 
   front_len := front_len + 1 
   back_len := back_len - 1 
   mem_ops = mem_ops + 3

back_len ≠ 0 ∧

front_len' = front_len + 1
∧ back_len' = back_len − 1
∧ mem_ops' = mem_ops + 3
∧ size' = size

!9

Transition formula 
for single iteration
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∃k ∈ ℕ .

front_len′� = front_len + k ∧
back_len′� = back_len − k ∧
mem_ops′� = mem_ops + 3k ∧
size′� = size

Reachability Relation

Transition formula 
for single iteration



procedure enqueue(elt): 
   back_len := back_len + 1 
   size := size + 1 
   mem_ops := mem_ops + 1 

procedure dequeue(): 
   if (front_len == 0) then 
    

   front_len := front_len - 1 
   size = size - 1 
   mem_ops = mem_ops + 2

back_len′� = 0 ∧
∃k ∈ ℕ .

front_len′� = front_len + k ∧
back_len′� = back_len − k ∧
mem_ops′� = mem_ops + 3k ∧
size′� = size

Functional Queue
procedure harness(): 
   nb_ops := 0 
   while nondet() do 
      nb_ops := nb_ops + 1 
      if (size > 0 && nondet()) 
         enqueue() 
      else 
         dequeue()
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procedure enqueue(elt): 
   back_len := back_len + 1 
   size := size + 1 
   mem_ops := mem_ops + 1 

procedure dequeue(): 
   if (front_len == 0) then 
    

   front_len := front_len - 1 
   size = size - 1 
   mem_ops = mem_ops + 2

back_len′� = 0 ∧
∃k ∈ ℕ .

front_len′� = front_len + k ∧
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Functional Queue
procedure harness(): 
   nb_ops := 0 
   while nondet() do 
      nb_ops := nb_ops + 1 
      if (size > 0 && nondet()) 
         enqueue() 
      else 
         dequeue()

�  can increase by arbitrary 
value 

�  is always 
incremented or decremented by 1 

enqueue: !  
dequeue: !

front_len

back_len + front_len

(back_len + front_len) + +
(back_len + front_len) − −
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�  grows 
at most 4 times as 
quickly as �

mem_ops

nb_ops
Vhar =

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

→

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

+

1
1
4
1
1

enqueue

,

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

→

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

+

−1
0
2

−1
1

dequeue fast (conditional passed)

,

size
back_len

mem_ops + 3 * back_len
back_len + front_len

nb_ops

→

size
0

mem_ops + 3 * back_len
back_len + front_len

nb_ops

+

−1
0
2

−1
1

dequeue slow (conditional taken)
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State Space Transformation
i = 0 
while(*) do 
   x = x + i + 2 
   y = y + i 
   i = i + 1
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{[x − y
i ] → [x − y

i ] + [2
1]}[1 −1 0

0 0 1]Dim 1 

Dim 2

x       y       iTransition formula for single 
iteration of loop

Not representable as ℚ-VASR



Key Result:


For any LRA transition formula � , we can 
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Computing Best ℚ-VASR 
Abstractions

Convert transition 
formula to DNF1
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Computing Best ℚ-VASR 
Abstractions

Convert transition 
formula to DNF1

2

Compute best common 
abstraction of all ℚ-VASR 
abstractions

3

Step 2 can only compute 
best ℚ-VASR for LRA cube

!14

Compute best ℚ-VASR 
for each LRA cube

DNF(F) = C1 ∨ C2 ∨ . . . Cn

VAS_ABS(C1) VAS_ABS(C2) VAS_ABS(Cn)⊔ ⊔

VAS_ABS(F)

Can use SMT solver to 
enumerate DNF lazily1 2

Key contribution

Key contribution



This talk
1) Predictable loop summarization using 
rational vector addition system with resets 
(ℚ-VASR)


2) Precision improvement via capturing 
control flow using ℚ-VASR with states   
(ℚ-VASRS)
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ℚ-VASRS Abstractions 
Example

int x = 0, i = 0 
while(*) do 
   if(i%2 == 0) 
     i = i + 1 
   else 
      x = x + 1 
      i = i + 1
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ℚ-VASRS Abstractions 
Example

int x = 0, i = 0 
while(*) do 
   if(i%2 == 0) 
     i = i + 1 
   else 
      x = x + 1 
      i = i + 1

i%2 == 0 i%2 == 1

[i
x] → [i + 1

x ]

[i
x] → [i + 1

x + 1]
{[i

x] → [i + 1
x ], [i

x] → [i + 1
x + 1]}

ℚ-VASRS AbstractionA Best ℚ-VASR Abstraction 
Cannot show 2x ≤ i 

ℚ-VASRS Abstraction can prove that loop maintains invariant 2x ≤ i
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ℚ-VASRS
State 1 State 2

State 3

Transformer 1

Transformer 2
Transformer 3

Transformer 4Transformer 5

Transition formula representing reachability 
relation computable in polytime*

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

Reachability relation defined by 
sequences of transformers that form 
paths through graph.
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ℚ-VASRS
State 1 State 2

State 3

Transformer 1

Transformer 2
Transformer 3

Transformer 4Transformer 5

Transition formula representing reachability 
relation computable in polytime*

Predicate Q-VASRS: 
Control States are predicates over program variables. 
Predicates must partition state space.

i > 0 i = 0

i < 0

*C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP ‘14)

Reachability relation defined by 
sequences of transformers that form 
paths through graph.
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Key Result:

Can compute best ℚ-VASRS abstraction of input LRA 
formula �  with a fixed set of predicatesF

Best ℚ-VASRS Abstractions
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Key Result:

Can compute best ℚ-VASRS abstraction of input LRA 
formula �  with a fixed set of predicatesF

Best ℚ-VASRS Abstractions

!a

!b

!c

VAS abstraction  

�(a ∧ F ∧ b[
⃗x′ � /

⃗x ])

VAS abstraction 
�(c

∧
F

∧
b[

⃗x′�/
⃗x])…

VA
S 

ab
st

ra
ct

io
n 

�(a
∧

F
∧

a[
⃗

x′
�/

⃗
x

])

…

…

…

…

…
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Predictable ℚ-VASRS 
Abstractions

!19

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one
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Results newer than paper version: 
   ℚ-VASR and ℚ-VASRS faster after optimization 
   ℚ-VASR passes two more cases after bug fix

Evaluation
%

 C
or

re
ct
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0.75

1

C4B (35) HOLA (46) SVCOMP-19 (84)

ℚ-VASR ℚ-VASRS CRA SeaHorn UltAuto

31/35 40/46
78/84
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Accuracy Runtime

ℚ-VASR
ℚ-VASRS

CRA

C4B (35) HOLA (46) SVCOMP-19 (84)

SeaHorn
UltAuto

29 S 50 S 73 S
33 S 65 S 107 S
30 S 56 S 87 S

2431 S 2112 S 3038 S
3974 S 3003 S 6933 S

Timeout: 300 Seconds per case
SVCOMP-19 restricted to safe integer benchmarks from loops category

Most accurate tool in any given suite does not subsume all others



Summary

• Developed predictable and compositional program 
analysis with ℚ-VASR


• Extended analysis with ℚ-VASR with states to capture 
control flow information


• Shown improvements in both accuracy and speed over 
state-of-art-tools while providing guarantees about 
invariant quality
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