Loop Summarization with Rational Vector Addition Systems

Jake Silverman

Zachary Kincaid

Princeton University

Invariant generation techniques are effective

but can be unpredictable

Invariant generation techniques are effective

but can be unpredictable

Polyhedron domain with widening / narrowing verifies assertion

^{*}D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract Domains (NSAD '11)

Invariant generation techniques are effective

but can be unpredictable

Polyhedron domain with widening / narrowing fails to verify assertion

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract Domains (NSAD '11)

Invariant generation techniques are effective

but can be unpredictable

Polyhedron domain with widening / narrowing fails to verify assertion

Ultimate Automizer verifies assertion

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract Domains (NSAD '11)

Invariant generation techniques are effective

but can be unpredictable

Polyhedron domain with widening / narrowing fails to verify assertion

Ultimate Automizer fails to verify assertion within 1 hour

Not monotone: more information led to worse analysis

*D. Monniaux and J. Le Guen. Stratified Static Analysis Based on Variable Dependencies. in Proc: International Workshop on Numerical and Symbolic Abstract Domains (NSAD '11)

The What

Want: invariant generation technique that is

predictable - can make theoretical guarantees about invariant quality (in particular, monotonicity)

precise - assertion verification capability comparable with state-of-the-art software model checkers

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$\begin{aligned} \mathbf{TR}\llbracket x &:= a \rrbracket \triangleq x' = a \land \bigwedge_{y \neq x} y' = y \\ \mathbf{TR}\llbracket \mathbf{if} \ b \ \mathbf{then} \ S_1 \ \mathbf{else} \ S_2 \rrbracket \triangleq b \land \mathbf{TR}\llbracket S_1 \rrbracket \lor \neg b \land \mathbf{TR}\llbracket S_2 \rrbracket \\ \mathbf{TR}\llbracket S_1; S_2 \rrbracket \triangleq \exists \overrightarrow{x''} \cdot \mathbf{TR}\llbracket S_1 \rrbracket [\overrightarrow{x''} / \overrightarrow{x'}] \land \mathbf{TR}\llbracket S_2 \rrbracket [\overrightarrow{x''} / \overrightarrow{x}] \\ \mathbf{TR}\llbracket \mathbf{while} \ b \ \mathbf{do} \ S \rrbracket \triangleq (b \land \mathbf{TR}\llbracket S \rrbracket)^* \land \neg b[\overrightarrow{x'} / \overrightarrow{x}] \end{aligned}$$

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$\begin{aligned} \mathbf{TR}[[x := a]] &\triangleq x' = a \land \bigwedge_{y \neq x} y' = y \\ \mathbf{TR}[[if b \text{ then } S_1 \text{ else } S_2]] &\triangleq b \land \mathbf{TR}[[S_1]] \lor \neg b \land \mathbf{TR}[[S_2]] \\ \mathbf{TR}[[S_1; S_2]] &\triangleq \exists \overrightarrow{x''} \cdot \mathbf{TR}[[S_1]][\overrightarrow{x''}/\overrightarrow{x'}] \land \mathbf{TR}[[S_2]][\overrightarrow{x''}/\overrightarrow{x}] \\ \mathbf{TR}[[while b \text{ do } S]] &\triangleq (b \land \mathbf{TR}[[S]])^* \land \neg b[\overrightarrow{x'}/\overrightarrow{x}] \end{aligned}$$

Can encode loop-free segments without loss of information

if (*) then

$$x = x + 1$$

else
 $x = x + 2$
 $x' = x + 1 \lor x' = x + 2$

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$\begin{aligned} \mathbf{TR}[[x := a]] &\triangleq x' = a \land \bigwedge_{y \neq x} y' = y \\ \mathbf{TR}[[if b \text{ then } S_1 \text{ else } S_2]] &\triangleq b \land \mathbf{TR}[[S_1]] \lor \neg b \land \mathbf{TR}[[S_2]] \\ \mathbf{TR}[[S_1; S_2]] &\triangleq \exists \overrightarrow{x''} \cdot \mathbf{TR}[[S_1]][\overrightarrow{x''}/\overrightarrow{x'}] \land \mathbf{TR}[[S_2]][\overrightarrow{x''}/\overrightarrow{x}] \\ \mathbf{TR}[[while b \text{ do } S]] &\triangleq (b \land \mathbf{TR}[[S]])^* \land \neg b[\overrightarrow{x'}/\overrightarrow{x}] \end{aligned}$$

Can encode loop-free segments without loss of information

if (*) then

$$x = x + 1$$

else
 $x = x + 2$
 $x' = x + 1 \lor x' = x + 2$

Reachability relation of loops needs to be over-approximated

Exploit compositionality to compute transition formula that over-approximates reachability relation of input

$$\begin{aligned} \mathbf{TR}[[x := a]] &\triangleq x' = a \land \bigwedge_{y \neq x} y' = y \\ \mathbf{TR}[[\text{if } b \text{ then } S_1 \text{ else } S_2]] &\triangleq b \land \mathbf{TR}[[S_1]] \lor \neg b \land \mathbf{TR}[[S_2]] \\ \mathbf{TR}[[S_1; S_2]] &\triangleq \exists \overrightarrow{x''} \cdot \mathbf{TR}[[S_1]][\overrightarrow{x''}/\overrightarrow{x'}] \land \mathbf{TR}[[S_2]][\overrightarrow{x''}/\overrightarrow{x}] \\ \mathbf{TR}[[\text{while } b \text{ do } S]] &\triangleq (b \land \mathbf{TR}[[S]])^* \land \neg b[\overrightarrow{x'}/\overrightarrow{x}] \end{aligned}$$

Can encode loop-free segments without loss of information

if (*) then x = x + 1else x = x + 2 $x' = x + 1 \lor x' = x + 2$

Reachability relation of loops needs to be over-approximated

If star operator is monotone, entire analysis in monotone

This talk

1) Predictable loop summarization using rational vector addition system with resets (Q-VASR)

2) Precision improvement via capturing control flow using Q-VASR with states (Q-VASRS)

Key property:

Reachability relation is LIRA-definable and computable in polytime

Key property:

Reachability relation is LIRA-definable and computable in polytime

Finite set of transformers. Describes reset/inc to each dimension

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{T^1} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{T^2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Key property:

Reachability relation is LIRA-definable and computable in polytime

>

Finite set of transformers. Describes reset/inc to each dimension

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{T^1} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Corresponds to transition formula of form $\bigvee_{i \in T} \bigwedge_{j \in vars} x'_{j} = \underbrace{r_{ij}}_{\{0,1\}} \cdot x_{j} + \underbrace{a_{ij}}_{\mathbb{Q}} T^{2}$ $T^{1} \quad (x' = 1 \land y' = y - 1) \lor (x' = x + 10 \land y' = y - 1)$

^{*}C. Haase and S. Halfon. Integer vector addition systems with states. in Proc: International Workshop on Reachability Problems (RP '14)

Key property:

Reachability relation is LIRA-definable and computable in polytime

Finite set of transformers. Describes reset/inc to each dimension

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{T^1} \begin{bmatrix} T^1 \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 10 \\ -1 \end{bmatrix}$$

Corresponds to transition formula of form

$$\bigvee_{i \in T} \bigwedge_{j \in vars} x'_j = \underbrace{r_{ij}}_{\{0,1\}} \cdot x_j + \underbrace{a_{ij}}_{\mathbb{Q}} T^2$$

T

5,
0.5

$$(x' = 1 \land y' = y - 1) \lor (x' = x + 10 \land y' = y - 1)$$

Key property:

Reachability relation is LIRA-definable and computable in polytime

1,

-0.5

15,

-0.5

Finite set of transformers. Describes reset/inc to each dimension $\begin{cases}
\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{T^1} \\
\rightarrow \begin{bmatrix} 0 \\ y \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 10 \\ -1 \end{bmatrix}
\end{cases}$

Key property:

Reachability relation is LIRA-definable and computable in polytime

Proof Goal:

Amortized constant time operations

Proof Goal:

Amortized constant time operations

Proof Goal:

Amortized constant time operations

Proof Goal:

Amortized constant time operations


```
procedure enqueue(elt):
    back_len := back_len + 1
    size := size + 1
    mem_ops := mem_ops + 1
```

Numeric abstraction reasoning about:

- length of back list
- length of front list
- total list size
- number of memory operations

```
procedure dequeue():
    if (front_len == 0) then
        //Reverse back, append to front
        while (back_len != 0) do
        front_len := front_len + 1
        back_len := back_len - 1
        mem_ops = mem_ops + 3
        front_len := front_len - 1
        size = size - 1
        mem_ops = mem_ops + 2
```

```
procedure enqueue(elt):
   back len := back len + 1
   size := size + 1
   mem ops := mem ops + 1
procedure dequeue():
   if (front len == 0) then
     //Reverse back, append to front
     while (back len != 0) do
       front len := front len + 1
       back len := back len - 1
       mem ops = mem ops + 3
   front len := front len - 1
   size = size - 1
   mem ops = mem ops + 2
```

Most general harness

```
procedure harness():
    nb_ops := 0
    while nondet() do
        nb_ops := nb_ops + 1
        if (size > 0 && nondet())
            enqueue()
        else
            dequeue()
```

```
procedure enqueue(elt):
   back len := back len + 1
   size := size + 1
   mem_ops := mem_ops + 1
procedure dequeue():
   if (front len == 0) then
     //Reverse back, append to front
     while (back len != 0) do
       front len := front len + 1
       back len := back len - 1
       mem ops = mem_ops + 3
   front len := front len - 1
   size = size - 1
   mem ops = mem ops + 2
```

Most general harness

```
procedure harness():
    nb_ops := 0
    while nondet() do
        nb_ops := nb_ops + 1
        if (size > 0 && nondet())
            enqueue()
        else
            dequeue()
```

Functional Queue Inner-Loop

Functional Queue Inner-Loop

Functional Queue Inner-Loop


```
procedure enqueue(elt):
    back_len := back_len + 1
    size := size + 1
    mem_ops := mem_ops + 1
```

```
procedure harness():
    nb_ops := 0
while nondet() do
    nb_ops := nb_ops + 1
    if (size > 0 && nondet())
        enqueue()
    else
        dequeue()
```

procedure dequeue():
 if (front_len == 0) then
 back_len' = 0 \

$$\exists k \in \mathbb{N}$$
.
 $\begin{cases} front_len' = front_len + k \land \\ back_len' = back_len - k \land \\ mem_ops' = mem_ops + 3k \land \\ size' = size \end{cases}$
 front_len := front_len - 1

mem_ops = mem_ops + 2

size = size - 1

```
procedure enqueue(elt):
    back_len := back_len + 1
    size := size + 1
    mem_ops := mem_ops + 1
```

```
procedure harness():
    nb_ops := 0
    while nondet() do
        nb_ops := nb_ops + 1
        if (size > 0 && nondet())
            enqueue()
        else
            dequeue()
```

procedure dequeue():
 if (front_len == 0) then

	$(front_len' = front_len + k \land)$
$back_len' = 0 \land$	$back_len' = back_len - k \land$
$\exists k \in \mathbb{N} .$	$mem_ops' = mem_ops + 3k \land$
	size' = size

front_len := front_len - 1
size = size - 1
mem_ops = mem_ops + 2

```
procedure harness():
                                                nb ops := 0
procedure enqueue(elt):
                                                while nondet() do
                                                   nb ops := nb ops + 1
   back len := back len + 1
                                                   if (size > 0 && nondet())
   size := size + 1
                                                       enqueue()
   mem ops := mem ops + 1
                                                   else
                                                       dequeue()
procedure dequeue():
   if (front len == 0) then
                                            front_len can increase by arbitrary
                 front\_len' = front\_len + k \land
                                             value
    back\_len' = 0 \land | back\_len' = back\_len - k \land
          \exists k \in \mathbb{N}. mem_ops' = mem_ops + 3k \land
                                             back_len + front_len is always
                  size' = size
                                             incremented or decremented by 1
   front len := front len - 1
                                             enqueue: (back_len + front_len) + +
   size = size - 1
                                             dequeue: (back\_len + front\_len) - -
   mem ops = mem ops + 2
```

$$V_{har} = \begin{cases} size \\ back_len \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} \rightarrow \begin{bmatrix} size \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 4 \\ 1 \\ 1 \end{bmatrix}, \\ mem_ops + 3 * back_len \\ back_len + front_len \\ back_len + front_len \\ nb_ops \end{bmatrix} \rightarrow \begin{bmatrix} size \\ back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ at most 4 times as } \text{ quickly as } nb_ops \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} \rightarrow \begin{bmatrix} size \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ at most 4 times as } \text{ quickly as } nb_ops \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} \rightarrow \begin{bmatrix} size \\ 0 \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ at most 4 times as } \text{ quickly as } nb_ops \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} \rightarrow \begin{bmatrix} size \\ 0 \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ at most 4 times as } \text{ quickly as } nb_ops \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} size \\ 0 \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ at most 4 times as } \text{ quickly as } nb_ops \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ at most 4 times as } \text{ quickly as } nb_ops \\ mem_ops + 3 * back_len \\ back_len + front_len \\ nb_ops \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ -1 \\ 1 \end{bmatrix}, \\ mem_ops \text{ grows} \text{ grows$$

i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

Not representable as Q-VASR

i = 0
while(*) do
 x = x + i + 2
 y = y + i
 i = i + 1

Transition formula for single iteration of loop x' = x + i + 2 y' = y + ii' = i + 1

Not representable as Q-VASR

Can always over-approximate transition formula as Q-VASR by applying a lin. transformation

Not representable as Q-VASR

Can always over-approximate transition formula as Q-VASR by applying a lin. transformation

Predictable Analysis using Q-VASR Abstractions

Key Result:

For any LRA transition formula F, we can compute a best Q-VASR abstraction of F

Predictable Analysis using Q-VASR Abstractions

Key Result:

For any LRA transition formula F, we can compute a best Q-VASR abstraction of F

Predictable Analysis using Q-VASR Abstractions

Key Result:

For any LRA transition formula F, we can compute a best Q-VASR abstraction of F

 $DNF(F) = C_1 \vee C_2 \vee \ldots \cap C_n$

$$S_ABS(C_1) \quad VAS_ABS(C_2) \quad VAS_ABS(C_n)$$

$$DNF(F) = C_1 \lor C_2 \lor \dots \circlearrowright C_n$$

Can use SMT solver to enumerate DNF lazily

This talk

1) Predictable loop summarization using rational vector addition system with resets (Q-VASR)

2) Precision improvement via capturing control flow using Q-VASR with states (Q-VASRS)

Q-VASRS Abstractions Example

Q-VASRS Abstractions Example

A Best Q-VASR Abstraction Cannot show $2x \le i$

Q-VASRS Abstractions Example

 $\begin{bmatrix} i \\ x \end{bmatrix} \rightarrow \begin{bmatrix} i+1 \\ x \end{bmatrix}$ i%2 == 0 i%2 == 1 $\begin{bmatrix} i \\ x \end{bmatrix} \rightarrow \begin{bmatrix} i+1 \\ x+1 \end{bmatrix}$

Cannot show $2x \le i$

Q-VASRS Abstraction

Q-VASRS Abstraction can prove that loop maintains invariant $2x \le i$

Predicate Q-VASRS: Control States are predicates over program variables. Predicates must partition state space.

Best Q-VASRS Abstractions

Key Result:

Can compute best Q-VASRS abstraction of input LRA formula F with a fixed set of predicates

Best Q-VASRS Abstractions

Key Result:

Can compute best Q-VASRS abstraction of input LRA formula F with a fixed set of predicates

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \models G$, then Predicates(F) is at least as fine as Predicates(G)

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \models G$, then Predicates(F) is at least as fine as Predicates(G)

Solution

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \models G$, then Predicates(F) is at least as fine as Predicates(G)

Solution

$F F \models G C$	\widetilde{J}
-----------------------	-----------------

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \models G$, then Predicates(F) is at least as fine as Predicates(G)

Solution

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \models G$, then Predicates(F) is at least as fine as Predicates(G)

Solution

Finer set of predicates => potentially more precise abstraction

No best set of predicates, must settle for a good one

Need monotonicity

That if $F \models G$, then Predicates(F) is at least as fine as Predicates(G)

Solution

Evaluation

Results newer than paper version: Q-VASR and Q-VASRS faster after optimization Q-VASR passes two more cases after bug fix

Timeout: 300 Seconds per case

SVCOMP-19 restricted to safe integer benchmarks from loops category Most accurate tool in any given suite does not subsume all others

Summary

- Developed predictable and compositional program analysis with Q-VASR
- Extended analysis with Q-VASR with states to capture control flow information
- Shown improvements in both accuracy and speed over state-of-art-tools while providing guarantees about invariant quality