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ABSTRACT

Video-conferencing applications impose high loads and stringent
performance requirements on the network. To better understand
and manage these applications, we need effective ways to measure
performance in the wild. For example, these measurements would
help network operators in capacity planning, troubleshooting, and
setting QoS policies. Unfortunately, large-scale measurements of
production networks cannot rely on end-host cooperation, and
an in-depth analysis of packet traces requires knowledge of the
header formats. Zoom is one of the most sophisticated and popular
applications, but it uses a proprietary network protocol. In this
paper, we demystify how Zoom works at the packet level, and
design techniques for analyzing Zoom performance from packet
traces. We conduct systematic controlled experiments to discover
the relevant unencrypted fields in Zoom packets, as well as how
to group streams into meetings and how to identify peer-to-peer
meetings. We show how to use the header fields to compute metrics
like media bit rates, frame sizes and rates, and latency and jitter, and
demonstrate the value of these fine-grained metrics on a 12-hour
trace of Zoom traffic on our campus network.

CCS CONCEPTS

+ Networks — Application layer protocols; Network measure-
ment; Network architectures.

KEYWORDS

Video Conferencing, Zoom, Measurement, Network Performance,
Protocol Analysis, Reverse Engineering

ACM Reference Format:

Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer
Rexford. 2022. Enabling Passive Measurement of Zoom Performance in
Production Networks. In Proceedings of the 22nd ACM Internet Measurement
Conference (IMC ’22), October 25-27, 2022, Nice, France. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3517745.3561414

This work is licensed under a Creative Commons Attribution International 4.0 License.

IMC ’22, October 25-27, 2022, Nice, France

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9259-4/22/10.
https://doi.org/10.1145/3517745.3561414

Satadal Sengupta
Princeton University
Princeton, USA
satadal.sengupta@cs.princeton.edu

244

Hyojoon Kim
Princeton University
Princeton, USA
hyojoonk@cs.princeton.edu

Jennifer Rexford
Princeton University
Princeton, USA
jrex@cs.princeton.edu

1 INTRODUCTION

Video-conferencing applications have seen an unprecedented surge
in popularity over the past few years [10, 16]. Zoom has been at the
forefront of this phenomenon, with adoption by many organizations
to foster teaching, meetings, and presentations during the COVID-
19 pandemic [12, 15, 35].

To keep pace with ever-stringent user performance expecta-
tions [18, 51] and increasing resource contention, practitioners and
researchers need the ability to measure (and improve) Zoom per-
formance in the wild, without requiring cooperation from end hosts.
For instance, granting this capability to network operators would
enable more targeted capacity planning, problem troubleshooting,
and traffic-prioritization policies. Realizing this requires the ability
to extract metrics such as media bit rates, delay, frame rates, and
frame-level jitter solely via analysis of packet captures of Zoom
sessions. These insights, in turn, grant a clear understanding of
the inner-workings of a Zoom meeting, and the performance and
quality experienced by each of its participants. Taken together, we
require fine-grained measurements and performance insights for
Zoom derived from analyzing passively-collected network traffic
in the wild.

Unfortunately, existing measurement approaches all fall short of
at least one of these goals. Some researchers instrument end hosts
to run controlled experiments that study Zoom’s rate adaptation
and performance [7, 10, 25, 27]. However, controlled experiments
are labor-intensive, limited in scope, and do not reveal Zoom perfor-
mance in the wild. Other researchers conduct measurement studies
on production networks [12, 35]. Due to Zoom’s proprietary net-
work protocol, these studies collect only coarse-grained statistics
such as byte and packet rates, which are insufficient for the use
cases outlined above. Lastly, while some performance metrics are
available to operators through Zoom’s API, this data is also coarse-
grained (i.e., not packet level) and measured far from the operator’s
network (i.e., in Zoom’s data centers); consequently, this API data
is insufficient for rapid adaptation at on-premise network devices.

In this paper, we address this void, and enable direct (and sys-
tematic) measurements of Zoom by (1) demystifying how Zoom
works at the packet level and (2) designing tools and techniques
for analyzing Zoom performance from packet traces. The key chal-
lenges are twofold. First, Zoom uses a proprietary packet format,
encrypted control and media traffic, and closed-source client soft-
ware [12, 25, 29, 35]. As a result, Zoom cannot be analyzed easily
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using diagnostic tools for WebRTC [4] or packet-analysis tools
like Wireshark [49]. Second, Zoom employs complex control logic
whereby both user behavior (e.g., muting audio/video, changing
the display configuration, sharing the screen, enabling recording)
and network behavior (e.g., packet loss, delay, and throughput) can
result in similar changes in application behavior.

To grow our understanding and overcome these hurdles, we first
use controlled experiments (solely) to decipher Zoom’s protocols,
discovering (1) the relevant unencrypted fields in the Zoom packet
format, (2) how to group streams into meetings, and (3) how to
identify peer-to-peer meetings. We make our packet-parsing logic
available as a Wireshark plugin for the community to use. Perhaps
surprisingly, we find that valuable information can be gleaned from
the unencrypted parts of Zoom traffic. We expect these unencrypted
parts of Zoom packets to remain in the clear, since Zoom itself
requires these for scalable forwarding of media traffic.

Armed with this knowledge, we show how to estimate Zoom
meeting performance from in-network measurements at fine gran-
ularity, supporting metrics such as media bit rates, packet latency,
jitter, retransmission, and more. To validate our methodology and
ability to collect fine-grained performance insights without end-
host modifications, we apply our passive measurement techniques
to Zoom traffic collected on our campus network. Our study used a
scalable Zoom traffic capture system we built in the data plane (us-
ing P4 [6] on Intel Tofino [1, 20] switches) to filter and anonymize
Zoom packets for analysis on servers.

While our analysis and study focuses on Zoom, many of our tech-
niques should generalize across video-conferencing applications
that use the Real-Time Protocol (RTP) which is the vast majority of
such applications, including Google Meet and Microsoft Teams [35].
We describe in detail how we deciphered Zoom'’s protocols and pro-
vide a blueprint for future studies on proprietary network protocols.
Finally, the core of our work is the analysis of Zoom and the de-
velopment of measurement techniques; as such, the measurements
reported only serve to demonstrate and validate the accuracy and
granularity of our techniques. We leave a full measurement study
of Zoom performance in the wild as future work.

Taken together, our paper makes the following contributions:

(1) We demystify the most relevant parts of Zoom’s proprietary
protocols and shed new light on how Zoom delivers media
streams over the network.

(2) We demonstrate how understanding Zoom’s protocol enables us
to extract a wider range of metrics from Zoom network traffic,
including packet loss, latency, jitter, media bit rates, frame rate,
and frame sizes.

(3) We make our artifacts — the Wireshark plugin, the P4 traffic-
capture program, and the software-based analysis tools — avail-
able to the community [31].

2 VIDEO CONFERENCING BACKGROUND

Video-conferencing applications (VCAs) are complex distributed
systems with many components. Design and implementation choices
that must be made when building a VCA fall into three main cate-
gories which we will now outline.

Network Protocols and Mechanisms. Most major confer-
encing applications use the Real Time Protocol (RTP) [40] and its
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Figure 1: Video Conferencing Architectures: Peer-To-Peer
(P2P) vs. Selective Forwarding Unit (SFU). Each Color Repre-
sents a Participant’s Video Stream.

counterpart, the Real Time Control Protocol (RTCP) [40], to trans-
port media. An RTP stream is identified by a unique identifier, the
Synchronization Source Identifier (SSRC), which can be used to
multiplex several media streams (e.g., audio and video) over a sin-
gle UDP flow. Each stream can contain several sub-streams to, for
example, carry forward error correction (FEC) data. While RTP
headers are usually transmitted in cleartext to allow conferencing
servers to forward or modify streams without having to decrypt
them, RTP payload is mostly encrypted (see SRTP [36]). Before
media can flow between participants, clients negotiate through a
signaling mechanism what codecs to use, how to encapsulate media,
and where to send the respective streams. The Session Initiation
Protocol (SIP) [38] and the Session Description Protocol (SDP) [37]
are commonly used for this.

Media Encoding and Rate Adaptation. Over the past years,
audio and video codecs (e.g., Opus [46] and H.264/AVC [48]) have
become increasingly efficient; to achieve high quality at low band-
width consumption, video codecs leverage complex intra- and inter-
frame prediction schemes [43, 44]. A feature of modern video codecs
particularly relevant to video conferencing is Scalable Video Coding
(SVC). A scalable video stream contains several layers correspond-
ing to different quality levels where higher-quality layers build
upon lower-quality layers. SVC allows the conferencing server to
remove higher-quality parts of a video bit stream to rapidly adapt
to, for example, varying network conditions or device capabilities,
for each participant individually [41].

System Architecture and Topology. Video-conferencing ap-
plications may choose different architectures for interconnecting
meeting participants. Direct peer-to-peer (P2P) connections be-
tween meeting participants result in the lowest latency between
two given clients but can be challenging to realize in the presence
of firewalls and network address translators (NAT) [3, 17, 23]. Ad-
ditionally, P2P meetings with many participants become infeasible
due to the quadratically growing number of streams between the
clients. As a result, most VCAs use P2P connections only for two-
party calls (e.g., Zoom) or not at all (e.g., Google Meet) [35]. The
alternative is to use an intermediate conferencing server that either
transcodes incoming streams to a single outgoing stream per partic-
ipant or one that selectively replicates and forwards media streams
among clients. The server in the latter approach is called a Selective
Forwarding Unit (SFU). SFUs enable the use of SVC and are the
de-facto standard in video conferencing today. Figure 1 illustrates
the difference between a P2P meeting and one using an SFU.
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Finally, as the space of possible implementation choices is vast,
WebRTC provides a common framework for implementing real-
time collaboration and communication systems [4]. WebRTC pro-
vides several APIs, means to coordinate the use of the various
protocols, a standard congestion control algorithm (Google CC [9]),
and a common set of media codecs.

3 WHAT IS (NOT) KNOWN ABOUT ZOOM

Prior studies have reported on the flow-level structure of Zoom
meetings [10, 12, 25, 35] and shed light on Zoom’s rate-adaptation
algorithm through controlled experiments [10, 25]. Additionally,
Zoom provides high-level documentation about some internals of
their system [52, 56, 59]. In contrast to prior results, we are inter-
ested in extracting finer-grained, continuous performance metrics,
such as frame rates and frame-level jitter, from large-scale passive
packet captures. We will now give a brief overview of prior findings,
and outline why they fall short in enabling our target use cases for
operators and researchers outlined in Section 1.

Server Traffic. Zoom publishes the list of IP subnets they use [59]
to aid operators with firewall configuration. Prior works have used
this list to filter traffic to and from Zoom servers and analyzed the
resulting traffic from a client’s perspective. The network traffic
observable during a Zoom call consists of several TCP connections
to various Zoom servers and between one and three UDP flows
to a single Zoom server. The TCP connections use server port 443
and carry TLS-encrypted data [12] which is presumably control
traffic. The UDP flows carry the actual media traffic; there is always
one flow per media type in use (audio, video, or screen sharing),
regardless of the number of participants in the meeting. Prior works
have confirmed this by enabling and disabling audio, video, and
screen sharing during a meeting and observing the respective flows
appear or disappear in their network trace [10, 12, 25, 35]. The
media flows use ephemeral port numbers at the client and port 8801
at the server [10, 12].

P2P Traffic. On top of connections to Zoom servers, prior stud-
ies have observed that Zoom media traffic switches to a direct,
peer-to-peer (P2P) connection between participants for meetings
with exactly two participants. In this case, all three media types are
sent over the same UDP flow which uses ephemeral port numbers
at both peers. When the meeting media traffic switches from being
sent through a server to P2P, the new single UDP media flow starts
with a new port number [10, 12, 25, 35]. Meetings with a single
participant (before any others have joined) start transmitting to
a server. Once the second participant joins, the Zoom client then
sometimes establishes the direct P2P connection within tens of
seconds. As soon as a third participant joins, the meeting reverts
back to using a server where it then stays even if the number of
participants goes back to two [12]. No prior work has been able
to deterministically detect and filter these P2P connections due to
the unknown peer IP addresses and ephemeral port numbers, as
opposed to the public IP and port information published for Zoom
servers.

Header Format. Only Nistico et al. [35] went beyond flow-level
characteristics of Zoom’s network traffic by reporting that Zoom
uses RTP embedded in a custom, undocumented four-byte header.
They observed two different values in this header. Their study does
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not go further than this and their publicly available tool to extract
RTP headers from Zoom traffic [33] (from May 2020) was not able
to extract any headers from our traces collected during 2021 and
2022. We further discuss this in Section 4.2.

Rate Adaptation. Finally, prior works on Zoom’s session qual-
ity and rate adaptation [10, 25] used controlled experiments where
they injected a video stream at one side of a two-party meeting
and compared a capture at the receiver with the original video.
Lee et al. [25] studied Zoom’s rate-adaptation algorithm by moni-
toring its bandwidth use and frame rate (using a timestamp in the
source video) while injecting cross-traffic. They find that Zoom
media streams adapt to network congestion primarily by adjusting
the sender’s bit- and frame rate, as opposed to adjusting the stream
at the SFU. Furthermore, the paper reports that Zoom uses jitter as
opposed to absolute delay for rate adaptation. Chang et al. go fur-
ther by also comparing the Structural Similarity Index (SSIM) [47]
of the sent and received videos to quantify picture quality degrada-
tion. The authors find that Zoom’s video encoding is sensitive to
the type of video with high-motion videos significantly reducing
the received video quality. It has been reported that Zoom uses SVC
over AVC for rate adaptation and scaling of video streams [19].

Taken together, all prior studies on Zoom report operational
details at a flow level, e.g., overall packet and data rates of Zoom
traffic. Unfortunately, this level of detail is not sufficient to obtain
deeper understandings of the performance of a Zoom meeting.
For example, previous approaches are unable to deterministically
differentiate audio from video packets, quantify packet loss, or infer
frame rates or latency from Zoom traffic. Attributes and metrics like
these are (at a minimum) required to estimate if an ongoing meeting
suffers from poor quality as experienced through, for instance, low
frame rates, poor video resolution, or audio lag. In Section 4, we
outline our approach to understand Zoom’s network protocols in
more detail and extract such packet-level metrics.

4 DEMYSTIFYING ZOOM’S PROTOCOLS

We identified three main questions that must be answered to un-
derstand Zoom’s network protocols in detail and to estimate Zoom
performance:

(1) How do we reliably detect all Zoom traffic (including P2P con-
nections) in a network? (Section 4.1)

(2) What is Zoom’s header format and what information can be
extracted from individual packets? (Section 4.2)

(3) How do we group packets belonging to the same meeting to-
gether to make meeting-wide inferences? (Section 4.3)

We developed a set of methodologies to dissect and analyze the
captured traffic and use these methods on data gathered from con-
trolled experiments to answer the questions above step-by-step. In
contrast to earlier work, we do not use our controlled experiments
to draw conclusions about Zoom performance or rate adaptation
specifics, rather, we use them to understand enough about Zoom’s
protocols to enable large-scale passive measurement studies in the
future. Even though only applied to Zoom traffic in this paper, we
believe that our approach is applicable to studying other propri-
etary, black-box protocols (cf. Section 8).
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Figure 2: Connection Establishment in a P2P Meeting.
4.1 P2P Connection Detection

While previous work has reported that Zoom uses P2P connec-
tions for two-participant meetings [10, 12, 25], no prior work has
been able to deterministically detect this traffic due to the use of
ephemeral port numbers at both ends and the fact that the IP ad-
dresses belong to the clients and are not publicly known (in contrast
to Zoom’s server addresses).

We observed that before any P2P connection is established, each
client exchanges Session Traversal Utilities for NAT (STUN) [30]
packets with a Zoom server. This exchange determines if a P2P
connection is possible and always uses UDP port 3478 (the well-
known port for STUN) on the server side and the ephemeral port
which is later used for the P2P connection on the client side. The
packets are a series of STUN binding requests and are transmitted
in cleartext. Figure 2 illustrates this process with :X denoting the
UDP port number that is later used for the media flow.

These observations about the P2P connection establishment pro-
cess allow us to reliably capture not only server-based, but also P2P
Zoom traffic within and leaving our campus. To do so, we observe
STUN packet exchanges with Zoom servers, store the IP address
and ephemeral port number used at the client together with the
time of the STUN exchange. If the same client then uses this port
number within a configurable timeout again to communicate with
another IP address, we treat this traffic as a Zoom P2P media flow.
While this method, depending on the timeout used, can lead to
false positives due to port reuse, in all traffic that we collected, all
resulting P2P flows did actually contain Zoom media traffic. Even
if false positives are collected, they can easily be filtered out by
inspecting the packet format (cf. Section 4.2).

] - X Client

4.2 Entropy-based Header Analysis

Previous work [35] has reported that Zoom uses RTP within a
custom four-byte header but does not go further than this (cf. Sec-
tion 3). The Zoom traffic that we captured in late 2021 and early
2022 uses a different packet format than the one described in previ-
ous work and, as a result, we could not reproduce the prior findings.
We assume that Zoom changed the used header format since the
publication of this particular work in 2020.

Our findings are also vulnerable to becoming (partially) invalid
if Zoom’s protocols change. Many of our techniques, however, are
based off widely-used protocols (e.g., RTP, RTCP, and STUN) and
we do not expect Zoom to dramatically change the set of standard
protocols employed. Of course, the way Zoom uses and encapsu-
lates them may change, which would require slight modifications to
our application logic. For this reason, we share in detail our method-
ology of analyzing Zoom’s header format; this methodology can
be repeated if the format changes.
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Figure 4: Patterns Observed in Packet Header Analysis.

4.2.1 Finding Unencrypted Header Fields in Zoom Traffic. While
Zoom claims that all media traffic is encrypted [55], it does not
specify at what granularity encryption is applied and what informa-
tion may be transmitted in the clear. To find out whether all UDP
payload is encrypted or not, we wrote a program that extracts the
(binary) values of 8, 16, and 32-bit blocks at various offsets from the
beginning of the UDP payload across all packets within a UDP flow.
For example, for four bytes of payload, this results in four 8-bit, two
16-bit, and one 32-bit value sequences. We then plotted each such
sequence with the packet index on the x-axis and the respective
byte range’s values on the y-axis to see if the values appear to be
uniformly distributed and show maximum entropy, as expected in
encrypted data. This approach, illustrated in Figure 3, allowed us
to quickly and visually inspect Zoom’s protocol. Oftentimes, after
finding parts of the payload that does not seem to be random (or
encrypted), we manually adjusted the block sizes and offsets of the
value sequences extracted to further inspect the protocol fields.

We automatically generated hundreds of such plots; they show
three different types of value distributions. For illustration, Figure 4
depicts (fabricated) examples of these distribution types: values are
either entirely randomly distributed (red dots), follow horizontal
lines (green squares), or follow angled lines (blue triangles). Several
such lines, often with different slopes, usually overlap at the level of
a UDP flow; angled lines commonly wrap around. We suspect that
randomly distributed points, especially when covering the entire
value space, indeed belong to encrypted portions of the header.
Data points following horizontal lines are likely either identifiers
(e.g., a stream identifier) or a bitmask (e.g., as in TCP flags). Data
points following angled lines are probably either sequence num-
bers, timestamps, or counters, depending on the range covered and
whether the values are monotonically increasing or not.

Figure 5 shows actual examples of such plots from Zoom packets
that we collected during controlled experiments. Each plot is labeled
with the two different header field types that we inferred. Note that
not necessarily every data point is the inferred type as other, non-
RTP/RTCP packets are typically interleaved with media packets.
Figure 5a shows two different 1-byte-wide value sequences of a
single UDP stream over 30 seconds (250 randomly sampled points);
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the sequences correspond to a superset of bits that contain the Zoom
media type and the RTP payload type, respectively. Figure 5b shows
the same type of plot with two 2-byte-wide fields, corresponding
to the frame sequence number and the RTP (packet) sequence
number. Lastly, Figure 5¢ shows sequences corresponding to the
RTP timestamp and to four bytes of encrypted payload.

As we were expecting to find RTP headers, we started looking
for the most discernible pattern within the RTP header, which is
a two-byte sequence-type field (RTP sequence number), followed
by a four-byte sequence-type field (RTP timestamp), followed by a
four-byte identifier-type field (SSRC). Using this methodology, we
are able to detect RTP headers at various offsets in most packets
within our trace. We could confirm the presence of RTP headers
also by checking the other header values for compliance with the
protocol specification [40]; for example, the first two bits of the
RTP header, the version field, must contain the value 10.

Finally, suspecting that Zoom also uses RTP’s counterpart, the
RTP Control Protocol (RTCP), we searched all remaining payloads
(where we did not see RTP headers) for the set of SSRC values seen
in RTP packets. This is based on the insight that RTCP packets
always refer to one or more specific SSRCs and that these values
are also carried in the RTCP header. Using this method, we were
indeed able to find RTCP sender reports (SR) containing timestamps
and packet counters being emitted from each sender for each media
stream at every second. We did not find any RTCP receiver reports
(RR) that would contain performance-related information, such as
jitter and lost packets. Later on, we will show how these metrics
can also be calculated from analyzing the RTP packets alone.

4.2.2  ldentifying Different Types of Zoom Media Packets. After
finding RTP and RTCP headers at different offsets, we needed a
recipe to determine where the headers for a given packet start. To
do so, we analyzed the payload before the RTP or RTCP header.
We took a group of packets with the same RTP header offset and
compared them with groups of packets with a different offset. This
method allows us to see if there are any header fields before the
RTP header whose values are consistently the same within one
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Field Name Byte Range Comment

Zoom SFU Encapsulation
- Type 0 0x05 for 98.4% of packets
- Sequence # 1-2
- Direction 7 0x00/0x04 - to/from SFU

Zoom Media Encapsulation

- Type 0 media type or RTCP
- Sequence # 9-10

- Timestamp 11-14

- Frame seq. # 21-22 only in video packets
- # Packets/frame 23 only in video packets

Table 1: Select Header Fields in Cleartext
group but differ between groups. Such a field could be an identifier
for the type of packet.

We used this method on the eight different groups of RTP/RTCP
header offsets in our traces. Using this methodology, we determined
that there is a variable-length header before the respective RTP
or RTCP header where the first byte indicates the type of packet
which also determines where the RTP/RTCP header starts; we will
refer to this header as Zoom Media Encapsulation. While P2P traffic
starts with this header directly (after the UDP header), server-based
traffic first has another fixed-length, 8-byte header; we refer to this
header as Zoom SFU Encapsulation. The overall structure of these
headers is depicted in Figure 7. Both headers start with a one-byte
identifier; we refer to them as type fields. The vast majority of SFU
encapsulation headers (98.4% of Zoom server-based UDP packets
in our trace) start with the type value 5. We found that this value
indicates that a Zoom media encapsulation header is following. The
remaining header fields we identified and their respective locations
within the headers are listed in Table 1.

The vast majority (90.03%) of media encapsulation headers in
our trace start with the values 13, 15, 16, 33, and 34. Types 13, 15,
and 16 are used for RTP media packets and indicate the media type
while packets of types 33 and 34 contain RTCP headers. Table 2
shows the mapping between type values, corresponding payload,
and offset (from end of the UDP header) where the encapsulated
payload starts.
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Value Packet' Type Offset % Pkts. % Bytes periods of silence or only background noise, Zoom uses fixed-
16 §¥§ de(;o fg 22'48 80.67 size (40B of RTP payload) packets of type 99. This enables us to
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1ocreen are 5 3 . .
34 RTCP: SR + SDES 16 0.89 0.09 a meeting when not muted. When type 113 is used, we cannot
33 RTCP: SR 16 0'27 0'02 tell if the participant talks or not; we saw type 113 used when
Sum: 90.03 9157 joining a Zoom meeting from the mobile app. Screen sharing

Table 2: Zoom Media Encapsulation Type Values

Media Type RTP PT Description % Pkts. % Bytes
Video (16) 98 main stream 62.00 79.27
Audio (15) 112 speaking mode 22.04 7.92
Video (16) 110 FEC 6.14 7.47
Screen Share (13) 99 main stream 3.59 3.72
Audio (15) 113 mode unknown 2.96 0.89
Audio (15) 99 silent mode 2.60 0.56
Audio (15) 110 FEC 0.62 0.13

Sum: 99.98 99.99

Table 3: RTP Payload Types Values in Trace.

The table also includes the percentage of packets or bytes that
contain the specific type in our trace (see more in Section 6); we
were able to decode over 90% of all Zoom packets as media-carrying
packets (94.5% of bytes). We conjecture that the remaining less than
10% of packets carry other control information, e.g., congestion
control packets. While we did see some sequence numbers in such
packets, we did not further analyze their payload.

4.2.3 How Zoom Uses RTP and RTCP. RTP follows a structure of
aggregation levels to map a packet to a media stream (cf. Section 2).
The levels are depicted in the center part of Figure 6 and Zoom uses
them in the following way:

e To identify media streams (i.e., a participant’s audio or video),
Zoom uses a limited set of synchronization source identifiers
(SSRC). These are unique within a meeting, yet neither glob-
ally unique nor appear to be randomly sampled as specified in
the relevant RFC [40].

e Each Zoom media stream carries between one and three sub-
streams identified by an RTP payload type (PT). For audio and
video streams, we see the combination of PTs 99, 110, 112, and 113,
and 98 and 110, respectively. The sub-streams with PT 110 are not
always present and generally make up the minority of packets in
a stream. If present, they use the same timestamps but different
sequence numbers than the other sub-stream. We suspect that
these streams carry forward error correction data (FEC). In audio
streams, we either see packets of types 99 and 112 interleaved or
type 113 exclusively. Through controlled experiments, we found
that sub-stream 112 carries audio packets when the respective
participant is talking (or emitting any significant sound). During
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always uses type 99. Our trace occasionally contained packets
with other payload types where we do not understand their
meaning; however,these packets made up less than 0.02% of the
over 1.5 billion media packets in our trace. Table 3 shows the
RTP payload types we understand and their relative frequency.

e Fach sub-stream carries frames identified by a timestamp cor-
responding to the time when the media was sampled. These
timestamps are not expressed in wall-clock time but depend on
the sampling rate (see [40]).

e Each frame can be spread over several packets. Each packet
within a sub-stream is uniquely identified by a sequence number.
The last packet of a frame generally has RTP’s marker bit set.

Further Observations. The contributing source count (CSRC count)
in Zoom RTP packets is always zero indicating that every RTP
packet only carries a single media source. This suggests that Zoom
indeed uses an SFU architecture and not a multipoint control unit
(MCU) where media is transcoded and resulting frames effectively
carry several signals (sources).

The RTP header in media packets includes RTP extensions and
is followed by a H.264 fragmentation unit (FU) network abstraction
layer (NAL) header in case of video packets. After this header, the
remaining payload appears to be encrypted. We did not further
investigate the payload of audio packets.

The RTCP packets that we see are only sender reports (SR). RTCP
sender reports accompany a media stream and are used to periodi-
cally synchronize wall-clock time with RTP timestamps by carrying
an NTP timestamp. This mechanism ensures that receivers play
media at the right speed and that different streams from the same
source (e.g., audio and video) are synchronized. Some SRs also in-
clude a source description (SDES) which is, however, always empty.
Wireshark Plugin. We wrote a Wireshark dissector plugin in-
corporating all our findings. Using this plugin, which we make
available to the community, it is easily possible to analyze Zoom
traffic. More details on the plugin can be found in Appendix C.

4.3 Grouping Streams into Meetings

Finally, we developed a heuristic to group media streams belonging
to a single meeting together. This enables us to (1) calculate round-
trip-time (RTT) between our monitor and the SFU by comparing
copies of the same stream while going to and coming from the
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Figure 8: Process for Grouping Streams Into Meetings.

SFU and (2) judge whether only a single participant is affected by
poor meeting performance or if the meeting in general suffers from
problems. During our experiments and campus-level traffic analysis,
we did not find a meeting identifier in Zoom’s packet headers, and
as a result, we need to rely on other flow properties and header
fields including IP addresses, port numbers, SSRC, RTP timestamps,
and sequence numbers to group streams.

4.3.1 Challenges Associated with Grouping Streams. Developing
such a heuristic, however, is challenging for several reasons: (1)
Locally used port numbers and server/peer IP addresses and port
numbers change when a meeting switches between SFU and P2P
modes. As a result, a heuristic cannot easily associate an IP ad-
dress with a meeting and must account for changes in the meeting
mode. (2) SSRCs used by Zoom are unique within a meeting but
not globally unique nor randomly chosen (as specified in the RTP
RFC), making it difficult to detect duplicates of a particular meeting
stream (i.e., after stream replication by the SFU) solely through its
SSRC. (3) A participant that mutes their microphone and has their
camera turned off also does not emit any media streams despite
being a participant in the meeting. As network-level heuristics for
this task rely on observing media streams, depending on the van-
tage point, such passive participants may be invisible. This point,
in particular, compromises the accuracy of any such heuristic and
makes it difficult to validate their accuracy. Fortunately, to estimate
performance, we are only interested in active participants as there is
no stream performance to measure when there is no media stream.

While the above-mentioned limitations can compromise the
accuracy of the participant count and meeting duration, one of
the main purposes of this heuristic for our study is to enable fine-
grained RTT estimation. For this, we look at copies of a media stream
observable from our vantage point. This occurs when an on-campus
participant sends a media stream which is then replicated by the
SFU and sent “back”, through our monitor, to another on-campus
participant. We explain this method in more detail in Section 5.3.
Detecting stream copies, which is the only part of the heuristic
required for RTT estimation, is based on four different features
(time, SSRC, RTP sequence number, and RTP timestamp) that all
need to match, making it relatively robust.

4.3.2  Heuristically Grouping Streams into Meetings. Despite these
limitations, we developed a heuristic to provide an estimate of the
number of meetings and participants in a meeting. As an example,
consider an SFU-based, audio-only Zoom meeting with two partici-
pants (C1 and Cy) as illustrated in Figure 8. Each participant sends
their audio stream (S; and S2) to the SFU which forwards it to the
other participant. Our heuristic consists of two steps.
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Figure 9: Limitations of Grouping Heuristic.

Step 1: Finding Duplicate Streams. The first step reads RTP
packet records and groups them into media streams identified by
IP 5-tuple and SSRC. Whenever a new stream is created (i.e., when
the stream key does not exist yet), it checks if there is an existing
stream with the same SSRC (but different 5-tuple) where the most
recently seen RTP timestamp is within a small range of the first
RTP timestamp of the new stream. This is based on the insight that
during a transition between P2P and SFU modes the IP 5-tuple of
the flow changes, but not any of the RTP-level information (e.g.,
SSRC). Also, Zoom’s SFU does not translate timestamps or sequence
numbers and, as a result, an outgoing media stream that is sent
back to a different client within a campus (i.e., within the moni-
tor’s vantage) will have the same RTP-level information but appear
slightly later (RTT to SFU plus processing time). After this step,
every stream that carries the same media (e.g., a single participant’s
audio or video) is assigned a unique identifier (here S; and Ss).

Step 2: Assigning Streams to Meetings. The second step oper-
ates on stream records, including SSRC, IP 5-tuple, stream start and
end time, and, most importantly, the unique identifier from step
one. This identifier (based on RTP header values) greatly increases
the accuracy of the following algorithm. The algorithm starts by
assigning the first stream to a new meeting. For every subsequent
record, it then decides whether to assign the stream to an existing
meeting or to create a new meeting for the stream. The heuristic
maintains mappings from the unique stream id, the client’s IP, and
client’s IP and port combination to meeting identifiers. If a lookup
in this data returns at least one match, the stream is assigned to
the respective meeting. If there are several matches with different
meeting ids, the matched meetings are merged. If there is no match,
a new meeting is created.

This heuristic works well in most cases but its efficacy is con-
strained, as mentioned above, by the vantage point where packets
are captured. The two key issues of our approach are depicted in
Figure 9. The left side of the figure shows the above mentioned case
of a passive meeting participant whose media stream is not visible
at the monitor. The right side shows the issue that arises when NAT
is used within the campus (e.g., by connecting a personal hotspot)
or when the monitor is placed outside of a large-scale NAT. Here,
meetings M; and M, could be merged as they appear to the monitor
as using the same IP address.

5 ESTIMATING PERFORMANCE METRICS

Understanding parts of Zoom’s packet headers, enables us to extract
and analyze a wide range of protocol fields from media traffic.
However, extracting the fields does not, by itself, provide useful
insights into meeting performance. In this section, we discuss our
methods of deriving various network-level and performance metrics
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Requires  Available

Metric Headers inZ. Client Validated
Overall Bit Rate (§5.1)

Media Bit Rate (§5.1) .

Frame Rate (§5.2) . . o (Fig. 10a)
Frame Size (§5.2) .

Latency (§5.3) . o (Fig. 10b)
Jitter (§5.4) . ° o (Fig. 10c)

Table 4: Key Zoom Performance and Quality Metrics
from Zoom traffic and show how we validate our methods using
statistics provided by the Zoom client application. Table 4 provides
an overview of the most important metrics discussed below.

Validation of Metrics. Zoom provides session performance
statistics to users and operators in three different ways: (1) in the
Zoom client application’s Statistics window, (2) through a dashboard
and REST API for operators [57], and (3) programmatically through
an SDK [58]. The available metrics are latency, jitter, packet loss,
audio frequency, video resolution, and video frame rate. Each metric
is available for each of the three media types. Both the Zoom client
and the SDK seem to update their data roughly once per second
while the REST API provides updated data once per minute [54].

Using the GUI would require us to automatically take frequent
screenshots of different tabs in the Settings window and process
the images later. The APT’s update rate of once per minute is too
coarse-grained. Consequently, we decided to use the SDK to val-
idate our methods and compare the accuracy of our metrics to
the ground truth provided by Zoom. We wrote a custom Zoom
client application using the macOS SDK in Objective-C based on
the example code provided by Zoom [58]. The application opens a
standard Zoom meeting window and session. The traffic generated
by this client looks exactly like the traffic generated by the public
Zoom client. We instrumented the code to log all available perfor-
mance metrics for both audio and video once per second (the finest
granularity that the API supports).

Using this setup, we performed a series of controlled experiments
where we collected both the Zoom-provided data and all network
traffic for later analysis using our tools. We ran several 5-6 minute-
long two-person meetings where we introduced cross-traffic twice
during each call by running a network bandwidth test for 10-20
seconds each.

5.1 Overall and Per-Media Bit Rates

Flow-level Bit Rate. The overall data rate of Zoom flows (per
IP 5-tuple) can be easily measured from network traffic captures
and does not require parsing any Zoom headers. Data rate has
been used to (1) characterize Zoom’s bandwidth requirements,
(2) estimate session quality, and (3) differentiate between audio
and video streams (via the relative difference in data rate between
flows) [12, 25, 27, 35].

While suitable for quantifying bandwidth requirements, the over-
all data rate does not correctly characterize session performance
or quality. Zoom’s rate-adaptation algorithm adjusts the sending
picture quality and frame rate in response to network conditions,
user interactions, and device capabilities. Recall from Section 4 that
the following user interactions and circumstances affect the overall
bit rate:
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e Moving a little or a lot while on camera causes the video
data rate to change rapidly.

o Resizing the video display (e.g., to thumbnails during screen
sharing or using “speaker-only” view) at the receiver, can
reduce the frame rate by half.

e In Zoom, mobile devices use different aspect ratios and video
resolutions than desktop computers, making comparisons
between overall data rates difficult.

Furthermore, a single UDP flow may carry several, individual media
streams. Thus, overall flow-level bit rate is insufficient to estimate
meeting quality as low bit rates can be caused by other factors.
Moreover, differentiating between media types based on relative
bit rate of a flow is inaccurate as a stream with low frame rate
and low resolution (as possible in thumbnail mode or sometimes
during screen sharing) can have a similarly low overall bit rate as
an audio stream (more in Section 6). Lastly, in our trace, roughly
10% of Zoom UDP packets carry no media data (cf. Table 2), causing
inferences about media bit rate from overall flow bit rate to be
inherently inaccurate.

Per-media Bit Rate. Our deeper understanding of Zoom’s pro-
tocol, including the ability to determine the media type and sender
(via SSRC) for each packet, allows us to put packet and bit rates into
context. Further, knowing exactly which packets carry media and
where the media payload starts, enables us to compute the actual
media bit rate.

5.2 Frame Rate and Frame Size

Frame Rate. The frame rate of a Zoom video or screen-sharing
stream can precisely be calculated in two ways. As each frame is
identified by an RTP timestamp for the decoder to know when to
play back the frame, frame rate can be estimated simply by counting
the number of unique timestamps seen in a 1-second period. The
second approach is to derive the encoder’s frame rate from the
increments of the RTP timestamp in conjunction with the stream’s
sampling rate. The results of this approach can be different from
the first method in the presence of network congestion; we explain
the difference in more detail after describing both methods.

Method 1: To compute the frame rate, we use a circular buffer to
store all frames that were completely delivered within the last sec-
ond. We discovered a field in the Zoom Media Encapsulation header
that contains the number N of packets in a given frame (cf. Sec-
tion 4.2). We consider a frame complete when we see N distinct
(per sequence number) RTP packets with the same RTP timestamp.
Whenever a new frame completes, we check if the head of the
buffer still falls within a 1-second interval from the current time
and remove it if not. The current frame rate is then simply the
occupancy of this buffer and can be computed at any time (e.g., for
each frame). Using this method, we can also calculate how long
it takes to deliver a given frame which can then be compared to
the time the frame covers in the media stream, the packetization
time [40] (more in Section 5.5).

Method 2: A second approach to calculate frame rate leverages
the RTP timestamp to exactly calculate the encoder’s (i.e., the “in-
tended”) frame rate but requires knowledge of the stream’s sam-
pling rate. Through a simple parameter sweep and comparing the
result with data obtained through the method above, we found that
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Figure 10: Estimation Accuracies From Single Experiment.

Zoom’s video streams use a sampling rate of 90 kHz, which also
happens to be the recommended value for sending conferencing
video over RTP [39]. The frame rate FR at sampling rate SR for each
frame can then be calculated as FR = SR/ARTP where ARTP is the
RTP timestamp increment from the last frame. The packetization
time is then given by FR™!. Note that the encoder’s frame rate
is not necessarily the rate of successfully delivered frames over
the network as computed using the first method; it is rather the
frame rate the encoder is currently sending at. In the presence of
congestion, the two numbers can temporarily diverge before the
encoder adjusts the frame rate, indicating a network problem.

We validated our frame rate estimation based on the first method
using the statistics provided by the Zoom SDK. Figure 10a shows
the results of one such experiment; our estimate closely matches
the data provided by Zoom. The frame rate mostly fluctuated be-
tween 26 and 28 fps and dropped temporarily during the competing
download. Our data also reveals the frame rate dropping twice be-
fore where only the first drop is reflected in Zoom’s data due to its
relatively low refresh rate and potentially a smoothing mechanism.

Frame Size. Finally, knowing which packets belong to a par-
ticular frame, how many packets are expected in a given frame,
and where the RTP payload starts, allows us to exactly calculate
the size (in bytes) of a media frame. Even though frame size does
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Figure 11: Methods for Measuring Session Latency.

not account for user interaction (e.g., reduced frame size due to
thumbnail mode), together with frame rate, it gives a more accu-
rate estimate of the size, resolution, and quality of the currently
displayed picture than the overall flow bit rate.

5.3 Latency

End-to-end latency between participants is a key performance met-
ric in video conferencing. The ITU found that users begin noticing
difficulty having conversations when the mouth-to-ear latency (i.e.,
the time from recording an audio signal to playing it back at the
receiver) exceeds 200 ms [22]. While we cannot accurately measure
mouth-to-ear latency, we developed techniques to (1) estimate the
end-to-end latency (through the SFU) between pairs of on-campus
participants in the same meeting and (2) estimate the round-trip
time between an individual participant and the SFU.

Method 1 (latency via RTP sequence numbers): The first approach
to estimate session latency leverages the media stream itself. RTP
packets carry sequence numbers and the SFU simply forwards
these packets to all meeting participants. As a result, if we monitor
a meeting with several participants and have RTP streams carry-
ing the same media grouped together, the RTT between the point
where packets are captured and the Zoom SFU can be measured
by comparing the egress and ingress timestamps of RTP packets
with matching sequence numbers (see blue, solid lines in Figure 11).
Depending on media type and quality, each stream produces tens
and up to hundreds of packets per second, making this method a
way to obtain very frequent RTT probes.

Method 2 (latency via TCP as a proxy): Even if our monitor sees
only one of the meeting participants communicating with the SFU,
we can leverage the client’s TCP control connection (cf. Section 3)
to estimate the RTT from the monitor to the client and to the
SFU. This is shown by the red dashed line in Figure 11. TCP RTTs
can be measured by matching TCP sequence numbers of outgoing
packets with acknowledgment numbers of incoming packets [11,
42]. That is, we use TCP RTTs as a proxy for the latency of real-time
media [2, 32]. Despite providing fewer samples than the RTP-based
method due to the comparatively lower packet rate of the control
connection, it does help us measure the latency from our vantage
point both to the Zoom SFU and the client. The difference between
the two can be used to pinpoint whether congestion is located
upstream or downstream from the measurement device, e.g., inside
vs. outside our campus network.

Figure 10b shows the accuracy of our latency estimation based
on the first method for the same experiment and video stream as in
Figure 10a. We can see that Zoom only updates its latency estimate
every five seconds. Without cross traffic, our estimate matches the
data provided by Zoom but yields significantly more data points as
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we can calculate latency for every single RTP packet. As a result, our
method more clearly highlights fluctuations in latency, especially
during periods of rapid variation in network condition.

5.4 Jitter

Jitter, defined as the “statistical variance of the RTP data packet
interarrival time”, provides a short-term measure for network con-
gestion and may indicate congestion before loss occurs [40]. Of
the metrics outlined in Table 4, it is the most direct estimator for
network quality and therefore important for reasoning whether, for
example, low frame rate is caused by the network or by the user’s
behavior as explained above.

Simply computing the variance in interarrival time between
packets is not useful in the context of RTP streams for two reasons.
First, a UDP video-conferencing stream can carry several media
streams which can then carry multiple sub-streams. The notion
of packet order (via RTP sequence numbers) is only valid within
each such sub-stream, requiring parsing the respective RTP headers.
Second, RTP traffic at the packet level is bursty by nature, as each
frame generally spans several packets which are transmitted back-
to-back. As a result, we usually see short bursts of packets belonging
to a frame, followed by a pause before the next burst, as illustrated
in Figure 12. Moreover, the packetization time (i.e., the time a frame
covers in the media signal) is not necessarily constant throughout
the stream which requires correcting the jitter computation by
what the interarrival time for any two frames should be. In fact,
Zoom uses variable packetization intervals as indicated by variable
increments between RTP timestamps in Zoom traffic. We use the
formulas outlined in the RTP RFC [40] to compute this adjusted
time difference and subsequently the frame-level jitter. Jitter can
either be computed in terms of RTP time or as wall-clock time by
first converting between them using the stream’s sampling rate.

In our experiments, Zoom always reported very low jitter which
never exceeded 2ms, even in the presence of congestion. As shown
in Figure 10c, our jitter estimate does not match Zoom’s estimate
but appears more in line with the fluctuation in latency during
the same experiment which was also reported by Zoom, especially
during the two congestion events (Figure 10b) which even caused
Zoom to adjust the video frame rate (Figure 10a). We are surprised
by this result as the significant fluctuation in latency depicted in
Figure 10b should also be reflected in the (resulting) jitter metric in
Figure 10c. We hypothesize that Zoom computes jitter differently,
perhaps taking forward error correction into account, or using a
very long smoothing interval. We use the jitter computation method
recommended for RTP by the corresponding RFC [40].

5.5 Other Metrics

Loss and Retransmissions. While computing the number of lost
packets, retransmissions, and out-of-order deliveries for TCP con-
nections is relatively straightforward using TCP sequence numbers,
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this is ordinarily not possible for UDP traffic. Our ability to parse
RTP headers in Zoom traffic, however, allows us to estimate these
metrics over an RTP stream. In our controlled experiments, we
found that Zoom retransmits lost packets up to 2 times. As a result,
we rarely see entirely lost packets in our trace but rather duplicates.
Since we are unable to find any explicit loss signals in the traffic,
we must rely on analysis of the seen sequence numbers to estimate
reordering, loss, and retransmissions. This method, however, can
be inaccurate as we are not able to differentiate between retrans-
missions and regular packets (apart from observing elevated jitter).
Some observed reorderings might also be due to retransmissions.
In conclusion, Zoom’s use of retransmissions makes it fundamen-
tally difficult to infer loss and packet reordering from in-network
measurements and sequence numbers alone and we require other
metrics (e.g., jitter) to assess network condition.

Frame Delay. Finally, we can measure the time between the
first packet of a frame and the time the frame is fully delivered;
we call this time frame delay. High frame delay (in comparison
to other frames in the stream) indicates that retransmissions took
place to fully deliver the frame. In those cases, we observed that the
frame delay is elevated by at least the current RTT to the SFU plus a
timeout that appears to be 100ms. As retransmissions in Zoom use
the same RTP sequence numbers as the originally lost packet, it is
not straightforward to detect lost packets if the packet was dropped
before the vantage point. Observing a packet with suspiciously
high delay (i.e., 100ms + RTT) delivered out-of-order, however, is
a strong indicator that the respective packet was retransmitted in
response to loss.

Also, we can compare a frame’s packetization time with its delay.
If the delay is larger than the packetization time over the course
of several frames, the jitter buffer gets drained and the video will
eventually stall. We leave the detection and deeper analysis of audio
and video stalls based on this metric for future work.

6 ANALYZING ZOOM CAMPUS TRAFFIC

We now show how our methods can be applied to a large dataset by
first describing our capture system and then discussing performance
metrics computed over a 12-hour trace collected at our campus
network. The trace contains 1.8 billion Zoom packets and 59,020
RTP media streams. More details on the trace are summarized in
Appendix A. Our ethics statement can be found in Section 9.

6.1 Scalable P4-Based Zoom Traffic Capture

To study video-conferencing systems, we must first identify and
capture their traffic. A commonly employed method is capturing
a large volume of on-campus traffic using a tool like tcpdump and
then extracting packets of interest—Zoom packets, in this case—in
a post-processing step. However, this approach does not scale when
the traffic rate ranges from several Gbps to tens of Gbps, as is the
case on our campus. Bottlenecks exist at links from our packet
broker system to our collection server where tcpdump runs, as well
as packet and disk I/O at the server. Storage space also becomes
an issue. Fortunately, our campus traffic capture setup is equipped
with a high-speed programmable switch, namely the Intel Tofino
switch [20]. The switch sits between the packet broker system and
the server where tcpdump operates. This allows us to deploy a
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Figure 13: Zoom Packet Capture Program Implemented in P4 for the Intel Tofino Programmable Switch.

data-plane program (written in the P4 [6] language) that takes all
campus packets as input and only allows Zoom packets to pass
through to tcpdump.

Our campus is connected to the Internet via two separate gate-
ways. At both gateways and in both directions each we have taps
installed that passively capture all packets and forward them to
our packet broker system. To manage overall capture volume, we
do exclude some of our campus’ internal subnets from the capture
at the broker. These excluded subnets mostly belong to research
computing facilities that run large bulk transfers to the Internet but
are unlikely to contain significant amounts of Zoom traffic. Zoom
clients in these unmonitored subnets look to us like external (off-
campus) clients. For these clients, we see outgoing streams only
if they are being forwarded to a client that is within one of the
monitored subnets; we never see the SFU to client leg of incoming
streams to those clients. For all other (monitored) subnets, we do
see every Zoom packet to and from the Internet. As a result, ev-
ery stream that we do see is complete but we may miss a limited
number of streams entirely which can affect the number of meeting
participants that we report.

Figure 13 illustrates the design of our Zoom packet filter system.
For TCP and server-based UDP traffic, it suffices to check in a state-
less manner whether one of the source or destination IP addresses
matches the list of IPs published by Zoom [59]. Detecting P2P traffic,
however, requires a more sophisticated stateful approach. As shown
in the figure, whenever we see a Zoom STUN packet, we write the
campus peer’s address (IP address and port number) to these regis-
ters (cf. Section 4.1). Subsequently, for all future non-server UDP
packets, we extract the campus-side address and look it up against
our hash tables. The P4 program also performs anonymization for
all outgoing packets using an existing system [24].

The resource consumption (by resource type and functional com-
ponent) of our system on the Intel Tofino Programmable Switching
ASIC [20] is shown in Table 5. The percentages in the table refer to
the fraction required of the respective resource type available on
the Tofino. The table shows that the most complex operation we
perform is anonymization, which may be optional in certain produc-
tion environments. We conclude that our program is lightweight
as it uses less than 15% of most of the resource types available
on our switch; it can therefore easily and practically be combined
with other data-plane processing logic. Our capture system, while
designed for Zoom, can be extended to support other applications
with known signatures, e.g., other video-conferencing applications.
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Zoom P2P Anonymi-
Resource Type IP Match Detection zation [24]
Stages 2 7 11
TCAM 0.7% 1.0% 1.4%
SRAM 0.1% 10.9% 1.1%
Instructions 1.3% 3.4% 5.2%
Hash Units 0.0% 16.7% 8.3%

Table 5: Hardware Resource Usage of the Tofino-based Cap-
ture Program (Divided by Functional Component).
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Figure 14: Data Rate per Media Type in Campus Trace

6.2 Zoom Performance Metrics in the Wild

We calculated various performance metrics for each video, screen
share, and audio stream in 1-second bins over our entire trace,
resulting in roughly 33 million data points for each metric.

Media Bit Rate. Figure 14 shows the total media bit rate for all
Zoom streams per media type over local time. Video traffic makes
up the vast majority of data and we can clearly see spikes in bit
rate at each full hour and (to a lesser extent) every 30 minutes
as meetings presumably begin during those times. There is a dip
during lunchtime and significantly less activity after the end of work
day. The distribution of media bit rate per media type is depicted in
Figure 15a. Interestingly, the bit rate distribution of screen sharing
traffic is much closer to that of audio traffic as opposed to video
traffic. This illustrates that it is inaccurate to differentiate different
stream types based on relative bit rates.

Frame Rate. The distribution of frame rates between screen
sharing and video traffic, depicted in Figure 15b, shows that Zoom
uses a very fine-grained encoding scheme for screen-sharing traffic
where no new frames are generated, presumably when the picture
does not change frequently, as is often the case in presentation
slides. In fact, roughly 15% of frame rate samples for screen sharing
showed a frame rate of zero; approximately half of the samples
had a frame rate of five or less with the remainder of the samples
being relatively evenly distributed. In contrast, video frame rates
are under ten frames per second (fps) only in 10% of the data points
with a lot of the probability mass being centered around 11-14 fps.
As mentioned earlier, in controlled experiments we observed that
Zoom usually tries to achieve a frame rate around 28 fps and in cases
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Figure 16: Lack of Correlation between Jitter and other Per-
formance Metrics

of video thumbnails or massive network congestion reduces the rate
abruptly to around 14 fps. Our data reflects this and shows that the
majority of video streams have frame rates in this range, meaning
that a lot of video is transmitted in this “reduced-fps mode”. We
assume that the samples in the range of 20-25 fps (approximately
10-15%) are due to short-term adaptations of frame rate or partially
delivered frames in the presence of network events (cf. Section 5.2).
This data suggest that low frame rates are usually caused by user
interaction rather than network instability as there is a disparity
between the frequency of low frame rate below 20 fps (almost 75%
of cases) and high jitter of more than 20ms (less than 20%).
Frame Size. The frame size distribution in Figure 15¢ also shows
differences between screen sharing and video streams. We see that
over half of screen-sharing frames are smaller than 500 bytes but
the distribution has a long tail. We assume that the character of
the media (need for high resolution but little movement in the
image) causes this distribution. Frames that contain a lot of new
information (e.g., initial frames, changing slides, etc.) take more
data than usual video frames and after that only small, incremental
changes are required. In contrast, the majority of video frames are
smaller than 2000 bytes and only few are larger than 5000 bytes.
Frame-level Jitter. Since we are not certain about the sampling
rate of audio and screen-sharing streams, we only include the re-
sults of our frame-level jitter computation for video traffic, where
we determined the sampling rate to be 90 kHz (cf. Section 5.4).
Overall, most samples have a frame-level jitter below 20ms but the
distribution’s tail is long. Zoom recommends jitter below 40ms [53];
roughly 5% of samples in our trace show jitter greater than this.
Causes of Low Performance Metrics. Lastly, we illustrate
how seemingly poor metrics are not necessarily a result of poor
network performance. We mentioned before that low frame rate
is often caused by user interactions and meeting characteristics.
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As an example, Figure 16 shows 1,500 randomly chosen samples
from our data set of performance metrics in 1s-bins where we
plot video bit rate and frame rate, respectively, on the y-axis and
frame-level jitter on the x-axis. Jitter, here, serves as a metric that
is mostly influenced by the network whereas the other two metrics
are influenced by a variety of factors. We can see that there is no
direct correlation between jitter and bit rate, or between jitter and
frame rate, meaning that bit rate and frame rate adaptations are
in many cases not a result of poor network conditions. Figure 16b
also clearly shows the two aforementioned frame rate modes as
clusters centered around 14 fps and 28 fps, respectively. As a result,
relying on a single metric, like bit rate, alone is not sufficient to
estimate the quality of an ongoing meeting; several fine-grained
performance metrics must be evaluated in conjunction, which is
what our work enables.

7 RELATED WORK

Demystifying Black-box Protocols. Research in reverse engi-
neering of network protocols has a long history, with Skype P2P
audio call analysis as one of the earliest works for real-time net-
work applications [3]. Our methodology and techniques are built
upon this large body work in protocol reverse engineering [5, 13,
26, 34, 45], including inferring protocol structure from network
traces [8, 14, 50]. These works focus on determining boundaries
between header fields but do not use entropy-based analysis to
infer the semantics of those fields. Additionally, we are the first to
use this systematic approach in the context of video conferencing.
Measuring Performance of VCAs. Nistico et al. performed a
controlled experiment on 13 popular Real-Time Communication
(RTC) applications to understand how they operate and consume
bandwidth [35]. MacMillan et al. analyzed Zoom, Google Meet,
and MS Teams to measure their performance and network utiliza-
tion [27]. Both works provide key insights about how VCAs operate
and perform. Yet, they focus on bit rate and link utilization, and
how VCAs compare with each other. Our work focuses on Zoom
and dives deep into its protocol to extract performance metrics
to better understand user experience. Chang et al. measured and
analyzed Zoom, Webex, and Meet based on data from over 700 VCA
sessions [10]. The video QoE metrics are measured at the Zoom
clients, applying Peak Signal to Noise Ratio (PSNR) and structural
similarity index (SSIM) analysis on actual video feeds. Our work is
about inferring the performance and quality of Zoom calls using
passive measurements collected in the network data plane.
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Zoom Traffic Analysis. Several prior works [10, 12, 25, 27]
studied Zoom among other VCAs to uncover implementation de-
tails and characterize its performance using controlled experiments.
Their findings on Zoom characteristics are summarized in Section 3.
Unlike these prior works, we go further by inferring performance
metrics from packet traces that are passively collected from a large
production network. A second line of work on Zoom focuses on
security, instead of performance. Mahr et al. performed a detailed
forensic analysis of Zoom, primarily using disk, network, and mem-
ory forensics [28]. It demonstrates that it is possible to find users’
critical information, such as chat messages, names, email addresses,
and passwords, in plain and/or encrypted text. Similarly, a Citizen-
Lab blog post [29] provides insights into the privacy and general
security properties of Zoom.

8 DISCUSSION

Generalizability. While our work focuses on Zoom, we believe
our header and protocol analysis methods can be used to demystify
other black-box systems. Also, if Zoom changes its protocol in the
future, these techniques can be applied again. Our tools and tech-
niques to study Zoom performance are also largely applicable to
other video-conferencing systems that employ RTP for media trans-
fer. As RTP is used in the vast majority of these systems as reported
in Table 2 in [35], our techniques for estimating (among others)
latency, frame rate, jitter, and bit rate are applicable to a wide range
of applications, including Google Meet, Microsoft Teams, Cisco
Webex, and Apple FaceTime. Of course, other aspects such as P2P
connection detection, mapping of payload types, or other parts of
Zoom’s behavior reported in this paper are specific to Zoom. We,
however, did share our methodology in detail to faciliate future
similar studies on Zoom, if required, or on other proprietary proto-
cols. Consequently, even if Zoom were to make their protocol and
header format public in the future, our performance measurement
techniques will continue to remain relevant and novel.
Limitations. Two of our techniques are fundamentally limited.
First, for quantifying loss and retransmissions, we cannot disam-
biguate with certainty between fresh packets and their retransmit-
ted copies. A heuristic to detect retransmissions could analyze frame
delay (Section 5.5). If the delivery of a frame (normally consisting
of packets sent back-to-back) takes longer than the connection’s
RTT, at least one retransmission likely happened within this frame.
Second, due to our vantage point, we do not see media streams of
off-campus participants that do not send any media (i.e., are com-
pletely passive). This is a problem for quantifying the number of
overall meeting participants as their media streams are transported
entirely outside of our campus and we do not have access to the
respective packets. For this reason we are not able to measure the
performance of the media streams sent to these participants.
In-Network Monitoring and Control. There will be extra
benefits if our performance analysis can run in a high-speed pro-
grammable switch at line rate (e.g., Intel Tofino [1, 20]). In particular,
the switch’s proximity to the client would enable it to take immedi-
ate actions in response to degraded Zoom performance. This would
benefit both the campus network operators and Zoom. We can
already identify and parse Zoom headers in the data plane; the
computations of our performance metrics can be implemented in a
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streaming fashion and are amenable to data-plane implementation.
The space constraints of high-speed programmable switches may
require approximate data structures limiting overall accuracy. Con-
trol actions that may be performed on a switch include selectively
forwarding layers in an SVC stream or annotating packets (e.g., us-
ing DSCP) based on their type, relative importance, or dynamically
in response to congestion. We leave this as future work.

Labeled Datasets for ML-based QoE Inference. While we
report performance metrics that affect meeting quality, we do not
use these to infer the quality-of-experience (QoE). Our metrics can,
however, be used as features in a QoE ML inference model where
labels can be created by collecting opinions from viewers. To this
end, our system can help automatically generate large, feature-rich
data sets from real-world traffic. While applied to on-demand video
streaming as opposed to real-time conferencing, Bronzino et al.
presented a system inferring QoE from network traffic using ML [7];
this approach could be accelerated using our methods.

9 ETHICS

The campus traces used in this study were anonymized with a
one-way hash. All packet traces were inspected and sanitized by
a network operator to remove all personal data before being ac-
cessed by researchers. The media payloads have been removed as
well before researchers gained access to the packet traces. This
study has been conducted with necessary approvals from Princeton
University, including its Institutional Review Board (IRB).

10 CONCLUSION

Zoom is at the forefront of the recent unprecedented surge of video-
conferencing traffic. Zoom’s proprietary header format and en-
crypted traffic, however, make it hard for network operators and
researchers to understand how Zoom actually operates and per-
forms in the wild. To this end, we demystify Zoom far beyond
existing studies by digging deep into its protocol and header format.
We show how to extract metrics that closely relate to the quality
of a Zoom call, such as media bit rates, frame rate, and frame-level
jitter. Our method achieves this by solely inspecting passively col-
lected packet traces, without any coordination from Zoom clients
or servers. We also create open-source software artifacts to ana-
lyze Zoom packet traces, including a Wireshark Zoom plugin [31].
We believe our work paves the way for enabling network opera-
tors and researchers to conduct in-depth measurements of Zoom
performance in production networks.
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A SUMMARY OF CAMPUS TRACE

The campus trace we use to report the frequency of different header
types in Section 4.2 and for the study of performance metrics in
the wild in Section 6.2 was collected at two border routers on our

University campus on May 5th, 2022 over the course of 12 hours.

The key statistics of the trace are summarized in Table 6. We also
instrumented our P4-based capture system to log the total number
of processed packets and the number of filtered (Zoom) packets. The

resulting packet rates from these counters are depicted in Figure 17.

Our Tofino switch processed an average of 626,069 packets per
second, with an average of 43,733 per second being Zoom traffic
and filtered out.

Capture duration 12h

Zoom packets 1,846 M (42,733/s)
Zoom flows 583,777

Zoom data 1,203 GB (222.9 Mbit/s)
RTP media streams 59,020

Table 6: Capture Summary
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Figure 17: Packet Rate in Campus Trace

B ZOOM INFRASTRUCTURE

The two types of Zoom servers that are most relevant for the actual
media transmission are Multi-media routers (MMR) which is Zoom’s
term for an SFU, and Zone controllers (ZC). Apart from serving as a
STUN server, we do not have any deeper insights into what ZCs
exactly do. Zoom, however, provides some information regarding
this in [52].

We analyzed the publicly available list of Zoom IP addresses [59]
and performed a reverse DNS lookup for each of them to see which
addresses resolve to names of the form zoom<location><id><type>
.<location>.zoom.us where location is a two-letter identifier for the
data center site, id is a simple number of the respective server, and
type is either “mmr” or “zc” depending on the type of server. We
furthermore performed a GeolP lookup using ipinfo.io’s [21] free
service for each of these addresses to see where MMRs and ZCs are
located.
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Location # MMRs #ZCs
United States (all) 3,710 167

- California (multiple) 1,410 68

- New York (New York City) 1,280 62

- Colorado (Denver) 758 21

- Virginia (Washington D.C.) 166 4

- Washington (Seattle) 96 12
Netherlands (Amsterdam) 419 21
China (Hongkong) 274 8
Germany (Frankfurt) 214 2
Australia (Sydney, Melbourne) 210 20
India (Mumbai, Hyderabad) 196 10
Japan (Tokyo) 128 2
Brasil (Sao Paulo) 124 6
Canada (Toronto) 93 12
China (Mainland) 84 8
Total 5,452 256

Table 7: Locations of Zoom Servers

At the time of writing, Zoom’s official list of IP addresses [59]
contains 117 IPv4 networks ranging from /16 to /27 in size, totalling
427,168 IP addresses. Out of these addresses, 156,672 (36.7%) belong
to Zoom’s own autonomous system (AS30103) which connects to
15 ISPs (mostly Tier-1) and has 4 peerings. 169,152 (39.6%) addresses
belong to Amazon Web Services and 99,456 (23.2%) addresses belong
to Oracle Cloud. The remaining 0.5% of IP addresses are scattered
across autonomous systems of various Chinese ISPs, Level3, and
Equinix. 5,452 addresses resolve to names consistent with the MMR
naming scheme while 256 resolve to names consistent with Zone
Controllers; these are all part of Zoom’s own AS. Table 7 shows the
countries where MMRs and ZCs are located. It is worth noting that
the servers listed for Frankfurt, Germany are located by our GeoIP
service to this location but the the naming scheme is consistent
with those in Denver, Colorado, USA.
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C ZOOM WIRESHARK PLUGIN

To document our findings, aid the community in future research
on Zoom, and also to simplify our own initial data analysis, we
wrote a plugin for the Wireshark network protocol analyzer [49].
The plugin will automatically treat all UDP traffic to port 8801 as
Zoom server-based traffic and can also be manually applied to a
P2P flow; once activated, it will dissect all Zoom media traffic based
on the findings outlined in Section 4.2. The plugin detects audio,
video, and screen sharing packets, RTCP reports, and integrates
with various Wireshark analysis capabilities, including RTP stream
analysis. Figure 18 shows a screenshot of our plugin in action.

Figure 18: Screenshot of a Zoom video packet in Wireshark’s
Packet Details view using our plugin.
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