

Homework 2

Out: Feb 16

Problems:

§0 The following questions are more of a “concept check”. You don’t have to formally write down your answers (but you are welcome to).

- (a) If you are to run maximum matching algorithms (augmenting path or blossom) on weighted graphs, would you get a matching with maximum “total” weights?
- (b) If you are to add one edge to the graph, how might the MST change? What if you are to delete one edge?
- (c) If we have a promise that the shortest paths from s to any other vertex t use at most $d = O(1)$ edges, how fast can you compute shortest paths from s ?

§1 The component graph (referred to as G' in Lecture 6) is the graph formed by SCCs being the nodes and the inter-SCC edges being the edges.

- (a) Given a directed graph G , design an algorithm to compute its component graph G' . Make sure that G' has no multi-edges (more than one edge between the same pair of vertices). Your algorithm should run in $O(m + n)$ time.
- (b) Given a directed graph $G = (V, E)$, design an algorithm to compute a graph $H = (V, E_H)$ on the same vertex set V such that H has the same strongly connected components and the component graph as G , and $|E_H|$ is minimized. Your algorithm should run in $O(m + n)$ time. Note that H does not need to be a subgraph of G .

§2 Recall one phase of Hopcroft-Karp for bipartite maximum matching on $G = (X \cup Y, E)$: Run BFS from all free vertices in X together, and obtain $d[v]$ for each vertex v , the minimum length of alternating paths from a free vertex to v ; Let k be the length of the shortest augmenting path; Find a maximal set of *vertex disjoint* augmenting paths of length k and augment along all of them together.

- (a) Design an algorithm that executes one phase of Hopcroft-Karp in $O(m)$ time, and prove that it is correct.
- (b) Prove that the length of the shortest augmenting path k must increase after one phase.

§3 Consider a bipartite graph $G = (X \cup Y, E)$. Suppose $|X| = |Y| = n$, a perfect matching is a matching of size n (note the graph has $2n$ vertices).

- (a) (*Hall’s theorem.*) Suppose G satisfies *Hall’s condition*: for every $A \subseteq X$, $|A| \leq |N(A)|$, where $N(A) \subseteq Y$ is the set of neighbors of A , $N(A) = \{y \in Y : \exists x \in A, (x, y) \in E\}$. Prove that any matching of size less than n has an augmenting path. Hence, G must have a perfect matching.

(b) Suppose for some $d \geq 1$, every vertex in G has degree *exactly* d . Prove that the edge set E can be decomposed into d disjoint perfect matchings.

§4 (optional) Given a *directed acyclic graph* G , a path-cover is a set of paths in G such that every vertex of G is included in *exactly* one path. Paths may be of any length, including 0. Design a polynomial time algorithm that computes a path-cover with the fewest possible paths.