

Homework 1

Out: Feb 2

Problems:

§1 Consider a undirected weighted graph G , where the edge weights are NOT necessarily distinct.

- Give an example of such G , of which Minimum Spanning Trees are not unique.
- Prove that for some edge (u, v) if there exists a cut (X, Y) such that (u, v) is the *unique* minimum weight edge (no ties), then (u, v) must be in every MST of G .
- Prove if there exists a cycle that contains (u, v) and has (u, v) as the *unique* maximum weight edge, then (u, v) must not be in any MST of G .
- (Optional) Prove from first principles (without going through MST), that for an edge (u, v) , there exists a cut (X, Y) such that (u, v) is one of the minimum weight edges if and only if for all cycles that contain (u, v) , (u, v) is not the unique maximum weight edge.

§2 Let G be an undirected and weighted graph with distinct edge weights. Consider the *second-best minimum spanning trees* of G .

- Show that while the MST is unique, the second-best MST may not be unique.
- Show that a second-best MST can be obtained by replacing one edge from the MST.
- Design an $O(n^2)$ -time algorithm for computing a second-best MST.
- (Optional) Design an $O(m+n \log n)$ -time algorithm for computing a second-best MST.

§3 Let $G = (V, E)$ be a weighted graph with (possibly negative) edge weights $w(u, v)$.

- Suppose only edges leaving the source s may have negative weights. Prove that Dijkstra's algorithm computes shortest paths from s correctly.
- Let $f : V \rightarrow \mathbb{R}$ be a weight function on the vertices. Let G' be another graph obtained by changing the edge weights of G to $w'(u, v) := w(u, v) + f(u) - f(v)$ for all edges (u, v) . Prove that for any s, t , the shortest paths in G from s to t is the same as the shortest paths in G' from s to t .
- Prove that if one can compute in time $O(T)$, a weight function f such that $w'(u, v) \geq 0$ for all (u, v) , then shortest paths from s in G can be computed in time $O(T + m \log n)$; if one can compute shortest paths from s in G in time $O(T)$, then one can compute a weight function f such that $w'(u, v) \geq 0$ for all (u, v) in time $O(T)$.