
princeton univ. F’25 cos 521: Advanced Algorithm Design

Lecture 11: The Simplex Algorithm

Lecturer: Huacheng Yu

Today we will discuss the simplex algorithm for solving LPs. Interestingly, the simplex
algorithm is known to have worst-case exponential running time, but it is very efficient in
practice. We will work with a maximization LP, i.e.,

max
∑
i∈[n]

cixi

s.t.
∑
i∈[n]

ajixi ≤ bj ∀j ∈ [m]

xi ≥ 0 ∀i ∈ [n]

1 Basic Feasible Solutions

Definition 1 (Basic Feasible Solution). Let x be a feasible solution to an LP in Rn. x is a
basic feasible solution (BFS) if there are n linearly independent constraints in the LP which
are tight (equality holds).

Lemma 1. Every LP with bounded value has an optimal solution which is a BFS.

Proof sketch. If x satisfies fewer than n linearly independent constraints with equality, then
the intersection of these constraints is a subspace of nonzero dimension. Then we can move
inside this subspace until we hit another linearly independent constraint. Such a constraint
is guaranteed to exist because of the n linearly independent constraints xi ≥ 0.

We can think of the constraints of the LP as the faces of a polytope, and a BFS as a
vertex of the polytope. The idea behind the simplex algorithm is to start from a vertex of
the polytope, and locally improve the solution by moving along an edge to a neighboring
vertex. When no more improvements are possible, we output the vertex we ended at.

Finding an initial BFS to start from is actually nontrivial: we need to find n constraints
that can be satisfied with equality while also satisfying every other constraint. It turns out
that we can find a BFS using a different LP, but for this lecture, we will focus on the local
improvement step.

2 Pivoting

We will now discuss the local improvement step of the simplex algorithm, also known
as the pivoting step. The description of a pivot is simple: we start at a BFS, which
satisfies n constraints with equality. We relax one of these constraints, which allows us to
move along a 1-dimensional subspace (an edge). Then we move as much as possible until

1

2

another constraint becomes tight (we hit another vertex). The cleverness comes in doing
this efficiently.

To simplify the analysis, we will introduce slack variables yj ≥ 0, which represent the
difference between the two sides of each LP constraint. Then we can equivalently rewrite
each constraint j as an equality like so:∑

i∈[n]

ajixi ≤ bj −→
∑
i∈[n]

ajixi + yj = bj .

What now becomes nice is that every constraint is an equality constraint, except the non-
negativity constraints on each variable. This “standardization” of the inequality constraints
allows for a much cleaner analysis.

Observe that in this new LP, we have the n original variables xi, plus the m new slack
variables yj , for a total of n+m variables. We also have the m original constraints (which
have been transformed into equalities), as well as the n+m non-negativity constraints, one
for each of our n + m variables. In a BFS, the number of constraints satisfying equality
will be equal to the number of variables. Therefore, in a BFS for the new LP, the n +m
constraints that take equality should include n variables among x1, . . . , xn, y1, . . . , ym taking
value 0.

Recall that we can write the LP in matrix form as max c⊤x subject to Ax = b, where
we abuse notation so that x = (x1, . . . , xm+n) includes the newly introduced slack variables
y1, . . . , ym, and c, A include the appropriate coefficients for the new entries of x.

WLOG assume A has rank m, otherwise, we could simply remove redundant constraints.
We can use row additions to force m independent columns to form the identity matrix. Of
the n + m variables, n of them are 0. We call these non-basic variables, and the other
m variables basic variables. Use row addition and column swapping to force A into the
following (illustrated for n = 3,m = 5)

1 0 0 0 0 ? ? ?
0 1 0 0 0 ? ? ?
0 0 1 0 0 ? ? ?
0 0 0 1 0 ? ? ?
0 0 0 0 1 ? ? ?

 ,

where the first m columns correspond to the basic variables, and the question marks denote
arbitrary values. This corresponds to using Gaussian Elimination to calculate the values
of basic variables, given the values of non-basic variables (which are 0). It is possible to
transform A into this form using elementary row operations, because we assumed in the
definition of BFS that the constraints taking equality are linearly independent, and for each
non-basic variable xi, there is a constraint xi ≥ 0 taking equality.

We can then use row addition to zero out the entries of c corresponding to the basic

3

variables, yielding

c′ =
(
0 0 0 0 0 ? ? ?

)

A′ =


1 0 0 0 0 ? ? ?
0 1 0 0 0 ? ? ?
0 0 1 0 0 ? ? ?
0 0 0 1 0 ? ? ?
0 0 0 0 1 ? ? ?



?
?
?
?
?

 = b′

Also note that since the current BFS is a feasible solution, b′ must be nonnegative in every
coordinate. Then to pivot, we do the following:

Step 1. Choose a non-basic variable x′i such that c′i > 0. Recall that non-basic variables
are 0 in the current BFS, so the condition means that increasing the variable improves the
value of the LP.

Claim 2. If all non-basic c′i ≤ 0, then the current BFS is optimal.

Proof. If all non-basic c′i ≤ 0, then the transformed objective (which is maximized when the
original objective is maximized) satisfies c′⊤x′ =

∑
non-basic x′

i
c′ix

′
i ≤ 0. Since the current

BFS is feasible and sets all non-basic x′i = 0, it attains the optimal value.

Step 2. Choose a basic variable x′k such that a′ki > 0 and minimizes b′k/a
′
ki. Recall

that for the constraint represented by row k, the non-basic variables are set to 0 and the
basic variables have coefficients of 0, except for x′k. Therefore, when we increase the value
of x′i, we need to maintain the equality constraints x′k + a′kix

′
i = b′k for all k ∈ [m] by

increasing/decreasing x′k accordingly, while also ensuring that x′k ≥ 0 for all k ∈ [m]. It
holds that the x′k is the first variable that will hit 0 in this process.

If x′k does not exist (i.e., a′ji ≤ 0 for all j), then the LP is unbounded because we can
indefinitely increase x′i without hitting a non-negativity constraint for another variable.

Step 3. Make x′i basic and x′k non-basic: increase x′i until x
′
k = 0, then maintain the format

of c′, A′ by dividing row k by a′ki, using row addition to zero out the other entries in column
i, and swapping columns i and k.

Analysis. By construction, the value of the BFS never decreases. To avoid revisiting the
same BFS multiple times, we can choose the smallest possible indices in steps 1 and 3 (proof
omitted). Therefore, the simplex algorithm terminates after at most

(
m+n
n

)
(the number

of BFSs) iterations. It turns out that there exist LPs that force roughly this worst-case
behavior, but most LPs in practice take few iterations.

3 Finding an initial BFS

Given a linear program, it is nontrivial to find a BFS to start the above algorithm, since the
unique interesection of the boundary of n constraints may not satisfy the other constraints.
It turns out that this can be done by solving another linear program.

4

Consider an LP with constraints
∑

i ajixi = bj and xi ≥ 0 (the objective is not important
when finding any BFS). We introduce another variable zj for each constraint, and write a
new LP.

max −
∑
j

zj

s.t. ∀j, zj +
∑
i

ajixi = bj , (if bj ≥ 0)

or − zj +
∑
i

ajixi = bj , (if bj < 0)

∀i, xi ≥ 0,

∀j, zj ≥ 0.

Note this new LP has a trivial feasible solution: for all i, xi = 0, and for all j, zj = |bj |.
It is easy to verify that this solution is also basic. Hence, we can repeatedly applying the
above pivoting operations to compute the optimal solution for this LP.

If the optimal value is 0, this can directly be translated to a BFS for the original LP.
The optimal solution must have all zj = 0. Hence, it suffices to drop the new variables
zj , as it will remove m variables and m tight constraints. One may continue the algorithm
from this BFS for the original LP.

If the optimal value is nonzero, the original LP is infeasible. This is because the
optimal value must be negative, while any feasible solution for the original LP yields a
solution with objective value 0 (by setting all zj = 0).

	Basic Feasible Solutions
	Pivoting
	Finding an initial BFS

