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Lecture 21: Decision-making under total uncertainty: the
multiplicative weight algorithm

Lecturer: Huacheng Yu

(Today’s notes below are largely lifted with minor modifications from a survey by Arora,
Hazan, Kale in Theory of Computing journal, Volume 8 (2012), pp. 121—164.)

Today we study decision-making under total uncertainty: there is no a priori distri-
bution on the set of possible outcomes. (This line will cause heads to explode among
devout Bayesians, but it makes sense in many computer science settings. One reason is
computational complexity or general lack of resources: the decision-maker usually lacks the
computational power to construct the tree of all exp(T ) outcomes possible in the next T
steps, and the resources to do enough samples/polls/surveys to figure out their distribution.
Or the algorithm designer may not be a Bayesian.)

Such decision-making (usually done with efficient algorithms) is studied in the field of
online computation, which takes the view that the algorithm is responding to a sequence of
requests that arrive one by one. The algorithm must take an action as each request arrives,
and it may discover later, after seeing more requests, that its past actions were suboptimal.
But past actions cannot be unchanged.

1 Motivating example: weighted majority algorithm

Now we briefly illustrate the general idea in a simple and concrete setting. This is known
as the Prediction from Expert Advice problem.

Imagine the process of picking good times to invest in a stock. For simplicity, assume
that there is a single stock of interest, and its daily price movement is modeled as a sequence
of binary events: up/down. (Below, this will be generalized to allow non-binary events.)
Each morning we try to predict whether the price will go up or down that day; if our
prediction happens to be wrong we lose a dollar that day, and if it’s correct, we lose nothing.

The stock movements can be arbitrary and even adversarial1. To balance out this
pessimistic assumption, we assume that while making our predictions, we are allowed to
watch the predictions of n “experts”. These experts could be arbitrarily correlated, and
they may or may not know what they are talking about.

When there is no expert at all, it is not hard to see that there is nothing nontrivial one
can do: For deterministic algorithms, they can be wrong on every single day; for randomized
algorithms, the best strategy is to simply randomly guess on each day.

What’s the best guarantee you might hope for when there are experts? You could, for
instance, ask for a prediction that is correct at every single round. But OK, this is ridiculous
to ask for. Maybe all the experts are wrong, or maybe they all know nothing. The next
strongest guarantee you might hope for is a prediction that is correct at every round that

1Note that finance experts have studied stock movements for over a century and fitted all kinds of
stochastic models to them. But we are doing computer science here, and we will see that this adversarial
view will help us apply the same idea to a variety of other settings.
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at least one expert is correct. In other words, you want to be as good as the best expert
every single round. But some quick thought shows that this is again a ridiculous guarantee
to hope for: maybe the experts all know nothing and just guess randomly. Then surely one
of them will happen to be correct every round, but you can’t possibly expect to know the
right answer with no information.

Instead, what you can ask for is that on average over T rounds, your average performance
is at least as good as the best expert’s average performance over T rounds. That is, there
may be numerous rounds where some expert is correct and you are wrong. But if there’s a
single expert who’s correct 70% of the time, then you are also correct (almost) 70% of the
time, but the rounds in which you’re correct could be the same or different.

So the algorithm’s goal is to limit its cumulative losses (i.e., bad predictions) to roughly
the same as the best of these experts. At first sight this seems an impossible goal, since it
is not known until the end of the sequence who the best expert was, whereas the algorithm
is required to make predictions all along.

2 Warmup

As a warmup, let us first think about the special case where there is a perfect expert who
gives the correct predication on every single day. Given all the previous record, we know
some experts have made mistakes, and they are certainly not the perfect expert. A strategy
in this case is to focus on the so-far-all-correct experts, and return their majority prediction
for the next day. This strategy gives O(log n) incorrect predictions overall, independent
of the number of days. This is because every time we make a mistake, the majority of
the so-far-all-correct expert is wrong, i.e., the number of experts who have not made any
mistakes reduces by at least a half. It can only happen at most O(log n) times.

3 General best experts

The previous algorithm is too aggressive, in the sense that every time an expert makes a
mistake, we remove them from consideration in the rest of the game. For general inputs, a
more mild variant of this algorithm works. It maintains a weighting of the experts. Initially
all have equal weight. As time goes on, some experts are seen as making better predictions
than others, and the algorithm decreases the weight of an expert every time they make a
mistake. The algorithm’s prediction of up/down for each day is computed by going with
the opinion of the weighted majority of the experts for that day.

Theorem 1. After T steps, let mi
(T ) be the number of mistakes of expert i and M (T ) be the

number of mistakes our algorithm has made. Then we have the following bound for every i:

M (T ) ≤ 2(1 + η)mi
(T ) +

2 lnn

η
.

In particular, this holds for i which is the best expert, i.e. having the least mi
(T ).

Remark: The theorem implies that roughly the algorithm’s performance is not much worse
than that of the best expert, except for the additive term. Unless if the best expert is
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Weighted majority algorithm

Initialization: Fix an η ≤ 1
2 . For each expert i, associate the weight wi

(1) := 1.
For t = 1, 2, . . . , T :

1. Make the prediction that is the weighted majority of the experts’ predictions based
on the weights w1

(t), . . . , wn
(t). That is, predict “up” or “down” depending on which

prediction has a higher total weight of experts advising it (breaking ties arbitrarily).

2. For every expert i who predicts wrongly, decrease his weight for the next round by
multiplying it by a factor of (1− η):

wi
(t+1) = (1− η)wi

(t) (update rule). (1)

superhuman in some way, he/she will make mistakes once in a while, and then the additive
term can be ignored once the number of rounds gets large.

Proof. A simple induction shows that wi
(t+1) = (1 − η)mi

(t)
. Let Φ(t) =

∑
iwi

(t) (“the
potential function”). Thus Φ(1) = n. Each time we make a mistake, the weighted majority
of experts also made a mistake, so at least half the total weight decreases by a factor 1− η.
Thus, the potential function decreases by a factor of at least (1− η/2):

Φ(t+1) ≤ Φ(t)

(
1

2
+

1

2
(1− η)

)
= Φ(t)(1− η/2).

Thus simple induction gives Φ(T+1) ≤ n(1 − η/2)M
(T )

. Finally, since Φ(T+1) ≥ wi
(T+1) for

all i, the claimed bound follows by comparing the above two expressions

(1− η)mi
(t) ≤ n(1− η/2)M

(T )
.

Upon taking logs this becomes

mi
(t) ln(1− η) ≤ M (T ) ln(1− η/2) + lnn,

and we finish by using the fact that η ≤ − ln(1− η) ≤ η + η2 when η < 1
2 .

The beauty of this analysis is that it makes no assumption about the sequence of events:
they could be arbitrarily correlated and could even depend upon our current weighting of
the experts. In this sense, the algorithm delivers more than initially promised, and this lies
at the root of why (after obvious generalization) it can give rise to the diverse algorithms
mentioned earlier. In particular, the scenario where the events are chosen adversarially
resembles a zero-sum game, which we will study in a future lecture.

3.1 Randomized version

The above algorithm is deterministic. When mi
(T ) ≫ 2 lnn

η we see from the statement of
Theorem 1 that the number of mistakes made by the algorithm is bounded from above
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by roughly 2(1 + η)mi
(T ), i.e., approximately twice the number of mistakes made by the

best expert. This is tight for any deterministic algorithm (Exercise: prove this!). However,
the factor of 2 can be removed by substituting the above deterministic algorithm by a
randomized algorithm that predicts according to the majority opinion with probability
proportional to its weight. (In other words, if the total weight of the experts saying “up”
is 3/4 then the algorithm predicts “up” with probability 3/4 and “down” with probability
1/4.) Then the number of mistakes after T steps is a random variable.

Theorem 2. The expected number of mistakes made by the algorithm is the same as in
Theorem 1 but without the factor 2 in both terms.

To prove this, first note that the randomized algorithm can be restated as picking an
expert i with probability proportional to its weight and using that expert’s prediction. Note
that the probability of picking the expert is

pi
(t) def

= wi
(t)∑

j wj
(t) = wi

(t)

Φ(t) .

Now let’s slightly change notation: let mi
(t) be 1 if expert i makes a wrong prediction

at time t and 0 else. (Thus mi
(t) is the cost incurred by this expert at that time.) Then the

probability the algorithm makes a mistake at time t is simply
∑

i pi
(t)mi

(t), which we will
write as the inner product of the m and p vectors: m(t) · p(t). Thus the expected number
of mistakes by our algorithm at the end is

T−1∑
t=0

m(t) · p(t).

Now lets compute the change in potential Φ(t) =
∑

iwi
(t):

Φ(t+1) =
∑
i

wi
(t+1)

=
∑
i

wi
(t)(1− ηmi

(t))

= Φ(t) − ηΦ(t)
∑
i

mi
(t)pi

(t)

= Φ(t)(1− ηm(t) · p(t))

≤ Φ(t) exp(−ηm(t) · p(t)).

Note that this potential drop is not a random variable; it is a deterministic quantity
that depends only on the loss vector m(t) and the current expert weights (which in turn are
determined by the loss vectors of the previous steps).

We conclude by induction that the final potential is at most

T∏
t=0

Φ(0) exp(−ηm(t) · p(t)) = Φ(0) exp(−η
∑
t

m(t) · p(t)).



5

For each i this final potential is at least the final weight of the ith expert, which is∏
t

(1− ηmi
(t)) ≥ (1− η)

∑
t mi

(t)
.

Thus taking logs and using that η ≤ − ln(1−η) ≤ η(1+η) we conclude that
∑T−1

t=0 m(t) ·
p(t) (which is also the expected number of mistakes by our algorithm) is at most (1 + η)
times the number of mistakes by expert i, plus the same old additive factor lnn/η.

4 The Multiplicative Weights algorithm

In the general setting, we have a choice of n decisions in each round, from which we are
required to select one. (The precise details of the decision are not important here: think
of them as just indexed from 1 to n.) In each round, each decision incurs a certain cost,
determined by nature or an adversary. All the costs are revealed after we choose our
decision, and we incur the cost of the decision we chose. For example, in the prediction
from expert advice problem, each decision corresponds to a choice of an expert, and the
cost of an expert is 1 if the expert makes a mistake, and 0 otherwise.

To motivate the Multiplicative Weights (MW) algorithm, consider the näıve strategy
that, in each iteration, simply picks a decision at random. The expected penalty will be
that of the “average” decision. Suppose now that a few decisions are clearly better in the
long run. This is easy to spot as the costs are revealed over time, and so it is sensible to
reward them by increasing their probability of being picked in the next round (hence the
multiplicative weight update rule).

Intuitively, being in complete ignorance about the decisions at the outset, we select them
uniformly at random. This maximum entropy starting rule reflects our ignorance. As we
learn which ones are the good decisions and which ones are bad, we lower the entropy to
reflect our increased knowledge. The multiplicative weight update is our means of skewing
the distribution.

We now set up some notation. Let t = 1, 2, . . . , T denote the current round, and let i
be a generic decision. In each round t, we select a distribution p(t) over the set of decisions,
and select a decision i randomly from it. At this point, the costs of all the decisions are
revealed by nature in the form of the vector m(t) such that decision i incurs cost mi

(t).
We assume that the costs lie in the range [−1, 1]. This is the only assumption we make on
the costs; nature is completely free to choose the cost vector as long as these bounds are
respected, even with full knowledge of the distribution that we choose our decision from.

The expected cost to the algorithm for sampling a decision i from the distribution p(t)

is
Ei∈p(t) [mi

(t)] = m(t) · p(t).

The total expected cost over all rounds is therefore
∑T

t=1m
(t) · p(t). Just as before, our

goal is to design an algorithm which achieves a total expected cost not too much more
than the cost of the best decision in hindsight, viz. mini

∑T
t=1mi

(t). Consider the following
algorithm, which we call the Multiplicative Weights Algorithm. This algorithm has been
studied before as the prod algorithm of Cesa-Bianchi, Mansour, and Stoltz.
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Multiplicative Weights algorithm

Initialization: Fix an η ≤ 1
2 . For each decision i, associate the weight wi

(t) := 1.
For t = 1, 2, . . . , T :

1. Choose decision i with probability proportional to its weight wi
(t). I.e., use the dis-

tribution over decisions p(t) = {w1
(t)/Φ(t), . . . , wn

(t)/Φ(t)} where Φ(t) =
∑

iwi
(t).

2. Observe the costs of the decisions m(t).

3. Penalize the costly decisions by updating their weights as follows: for every decision
i, set

wi
(t+1) = wi

(t)(1− ηmi
(t)) (2)

Figure 1: The Multiplicative Weights algorithm.

The following theorem —completely analogous to Theorem 1— bounds the total ex-
pected cost of the Multiplicative Weights algorithm (given in Figure 1) in terms of the total
cost of the best decision:

Theorem 3. Assume that all costs mi
(t) ∈ [−1, 1] and η ≤ 1/2. Then the Multiplicative

Weights algorithm guarantees that after T rounds, for any decision i, we have

T∑
t=1

m(t) · p(t) ≤
T∑
t=1

mi
(t) + η

T∑
t=1

|mi
(t)|+ lnn

η
.

Note that we have not addressed the optimal choice of η thus far. First, it should
be small enough that all calculations in the analysis hold, say

∣∣η ·mi
(t)
∣∣ ≤ 1/2 for all

i, t. Typically this is done by rescaling the payoffs to lie in [−1, 1], which means that∑T
t=1 |mi

(t)| ≤ T . Then setting η ≈
√

lnn/T gives the tightest upperbound on the right
hand side in Theorem 3, by reducing the additive error to about

√
T lnn. Of course, this

is a safe choice; in practice the best η depends upon the actual sequence of events, but of
course those are not known in advance.
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