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Lecture 12: Oracles, Ellipsoid method and their uses in
convex optimization

Lecturer: Huacheng Yu

Recall that Linear Programming is the following problem:

maximize ¢!

Az <b
x>0

where A is a m x n real constraint matrix and x,c € R™. If the number of bits to represent
the input is L, a polynomial time solution to the problem is allowed to have a running time
of poly(n, m, L).

The Ellipsoid algorithm for linear programming is a specific application of the ellipsoid
method developed by Soviet mathematicians Shor(1970), Yudin and Nemirovskii(1975).
Khachiyan(1979) applied the ellipsoid method to derive the first polynomial time algorithm
for linear programming. Although the algorithm is theoretically better than the Simplex
algorithm, which has an exponential running time in the worst case, it is very slow practically
and not competitive with Simplex. Nevertheless, it is a very important theoretical tool for
developing polynomial time algorithms for a large class of convex optimization problems,
which are much more general than linear programming.

In fact we can use it to solve convex optimization problems that are even too large to
write down.

1 Linear programs too big to write down

Often we want to solve linear programs that are too large to even write down (or for that
matter, too big to fit into all the hard drives of the world).

Example 1. Semidefinite programming (SDP) uses the convex set of PSD matrices in R™.
This set is defined by the following infinite set of constraints: a’ Xa >0 Va € Re™. This
is really a linear constraint on the X;;’s:

Z Xijaiaj 2 0.
(]
Thus this set is defined by infinitely many linear constraints.

Example 2 (Held-Karp relaxation for TSP). In the traveling salesman problem (TSP) we
are given n points and distances d;; between every pair. We have to find a salesman tour
(cycle), which is a sequence of hops among the points such that each point is visited exactly
once and the total distance covered is minimized.



An integer programming formulation of this problem is:

min Zij dinij
X,‘j S {0, 1} Vi,j
S Xij=2 Vi

diesjesXij =22 VSCV, S#£OV (subtour elimination)

The last constraint is needed because without it the solution could be a disjoint union of
subtours, and hence these constraints are called subtour elimination constraints.! The Held-
Karp relaxation relazes the first constraint to 0 < X;; < 1. Now this is a linear program,
but it has 2" +n? constraints! We cannot afford to write them down (for then we might as
well use the trivial exponential time algorithm for TSP).

Example 3 (Dual of Configuration LP). We’ll see the configuration LP in a later lecture.’
Its dual is the following:

minZui—i—ij
i J

u; > vi(S) — ij VS C 2lm
jes

where there are n variables u; and m variables pj, and 2™ constraints. So the number of
variables is again polynomial, but there are exponentially many constraints.

Clearly, we would like to solve such large (or infinite) programs, but we need a different
paradigm than the usual one that examines the entire input.

2 A general formulation of convex programming

A convex set £ in R" is a subset such that for every z,y € K and A € [0, 1] the point
Az + (1 — Ay is in K. (In other words, the line joining x,y lies in K.) If it is compact and
bounded we call it a convex body. It follows that if K1, Ko are both convex bodies then so
is K1 N Ks.

A general formulation of convex programming is

min ¢!z

zek

where IC is a convex body.

!Exercise: come up with an example showing that the subtour elimination constraints are necessary (i.e.
without them, the IP admits non-tour solutions). Another exercise: come up with an example showing
that the previous constraints (3_; Xi; = 2) cannot be relaxed to }>; Xi; > 2 and folded into the subtour
elimination constraints.

2This LP is used in many optimization problems, beyond the ones we’ll see in this class.



Example 4. Linear programming is exactly this problem where K is simply the polytope
defined by the constraints.

Example 5. In the another lecture, we will be interested in semidefinite programming,
where IC = set of PSD matrices. This is convex since if X,Y are psd matrices then so is
(X +Y)/2. The set of PSD matrices is a conver set but extends to co. In most examples of
semidefinite programming of interest, the conver set will be finite since we add a constraint
like Xy =1 for all i, which implies that | X;;| <1 for alli,j. In most settings of interest we
can place some a priori upper bound on the desired solution that ensures K is a finite body.

In fact, since we can use binary search to reduce optimization to decision problem, we
can replace the objective by a constraint ¢!z > ¢y. Then we are looking for a point in
the convex body N {JJ ccle > co}, which is another convex body K'. We conclude that
convex programming boils down to testing a convex body for emptiness (i.e., whether it has
any point in it).

Find a point in IC (if such a point ezists),

where K is a convex body.
Here are other examples of convex sets and bodies.

1. The whole space R is trivially an infinite convex set.

2. Hypercube of length ¢ is the set of all  such that 0 < z; < /4,1 <4 < n.

n
3. Ball of radius r around the origin is the set of all = such that Zx? <r
i=1

2.1 Presenting a convex body: separation oracles and bounding boxes

Since we are talking about solving LPs too large to even write down, we need a way to work
with a convex body I without knowing its full description. The simplest way to present a
body to the algorithm is via a membership oracle: a black-box program that, given a point
x, tells us if x € K. We will work with a stronger version of the oracle, which relies upon
the following fact, which we proved in the LP duality lecture, under the name “Separating
Hyperplan Theorem.”

Farkas’s Lemma: If X C R" is a convex set and p € R" is a point, then one of the
following holds
Hpek
(ii) there is a hyperplane that separates p from K. (Recall that a hyperplane is the set of
points satisfying a linear equation of the form ax = b where a,z,b € R™.)

This prompts the following definition of a polynomial time Separating Oracle.

Definition 1. A polynomial time Separation Oracle for a conver set K is a procedure
which given p, either tells that p € IC or returns a hyperplane that separates p and all of K.
The procedure Tuns in polynomial time.



Figure 1: Farkas’s Lemma: Between every convex body and a point outside it, there’s a
hyperplane

Example 6. Consider the polytope defined by the Held-Karp relazation. We are given a
candidate solution P = (Pij). Suppose Pig = 1.1. Then it violates the constraint X120 < 1,
and thus the hyperplane X102 = 1 separates the polytope from P.

Thus to check that it lies in the polytope defined by all the constraints, we first check
that Zj Pij =2 for all i. This can be done in polynomial time. If the equality is violated
for any i then that is a separating hyperplane.

If all the other constraints are satisfied, we finally turn to the subtour elimination con-
straints. We construct the weighted graph on n nodes where the weight of edge {i,j} is P;j.
We compute the minimum cut in this weighted graph. The subtour elimination constraints
are all satisfied iff the minimum cut S, S has capacity > 2. If the mincut S, S has capacity
less than 2 then the hyperplane

has P on the < 2 side and the Held-Karp polytope on the > 2 side.

Thus you can think of a separation oracle as providing a “letter of rejection” to a point
outside of K explaining why it is not in the body K.

Example 7. For the set of PSD matrices, the separation oracle is given a matriz P. It
computes eigenvalues and eigenvectors to check if P only has nonnegative eigenvalues. If
not, then it takes an eigenvector a corresponding to a negative eigenvalue and returns the
hyperplane Zij Xijaia; = 0. (Note that a;’s are constants here.) Then the PSD matrices
are on the > 0 side and P is on the < 0 side.

Example 8. For the dual of the configuration LP, we can’t necessarily find a separating
hyperplane in poly-time, depending on how we have access to the valuations v;(-). If our
access allows us to compute Maxgc ] v (S) — Zj pj. then we can find whether any of the
constraints are violated or not (u; just needs to be > maxgc ) vi(S)—_;p;). This is called
a demand oracle, and corresponds to thinking of vi(-) as a valuation function over sets of
items, and picking the set that maximizes the buyer’s value minus price.

A separation oracle is not sufficient to allow the algorithm to test the body for nonempti-
ness in finite time. Each time the algorithm questions the oracle about a point x, the oracle
could just answer z ¢ KC, since the convex body could be further from the origin than all



the (finitely many) points that the algorithm has queried about thus far. After all, space is
infinite!

Thus the algorithm needs some very rough idea of where K may lie. It needs K to lie
in some known bounding box. The bounding box could be a cube, sphere etc. For example,
in the TSP case we see that all X;; lie in [0, 1], which means that the polytope lies in the
unit cube.

The Ellipsoid method will use an ellipsoid as a bounding box.

3 Ellipsoid Method

The Ellipsoid algorithm solves the basic problem of finding a point (if one exists) in a convex
body K. The basic idea is binary search in n-dimensions. At each step the algorithm asks
the separation oracle about a particular point p. If p is in I then the algorithm can declare
success. Otherwise the algorithm is able to divide the space into two (using the hyperplane
provided by the separation oracle) and recurse on the correct side. (To quote the classic
GLS text: How do you catch a lion in the Sahara? Fence the Sahara down the middle.
Wait for a passerby and ask which side the lion is on. Then continue on that side of the
fence. Do this until you’ve found the lion, or the fenced area is too small to contain a lion
in which case you know there was no lion to begin with.

The only problem is to make sure that the algorithm makes progress at every step. After
all, space is infinite and the body could be anywhere it. Cutting down an infinite set into
two still leaves infinite sets. To ensure progress we use the notion of the containing Ellipsoid
of a convex body.

An axis aligned ellipsoid is the set of all x such that

znji <1,

i=1 "t

e
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where \;’s are nonzero reals. In 3D this is an egg-like object where a1, as, ag are the radii
along the three axes (see Figure 2). A general ellipsoid in R™ can be represented as

(z—a)"B(x—a) <1,

where B is a positive semidefinite matrix. (Being positive semidefinite means B can be
written as B = AAT for some nxn real matrix A. This is equivalent to saying B = Q' DQ,
where @ is a unitary and D is a diagonal matrix with all positive entries.)

The convex body K is presented by a separation oracle, and we are told that the body lies
somewhere inside some ellipsoid Ey whose description is given to us. At the ith iteration the
algorithm maintains the invariant that the body is inside some ellipsoid E;. The iteration
is very simple.

Let p = central point of E;. Ask the oracle if p € K. If it says “Yes,” declare succes.
Else the oracle returns some halfspace a’x > b that contains IKC, whereas p lies on the other
side. Let E;y1 = minimum containing ellipsoid of the convex body E; N {x calzx > b} .

The running time of each iteration depends on the running time of the separation oracle
and the time required to find E;;q. For linear programming, the separation oracle runs in
O(mmn) time as all we need to do is check whether p satisfies all the constraints, and return
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Figure 2: 3D-Ellipsoid and its axes

-

Figure 3: Couple of runs of the Ellipsoid method showing the tiny convex set in blue and
the containing ellipsoids. The separating hyperplanes do not pass through the centers of
the ellipsoids in this figure.

a violating constraint as the halfspace (if it exists). The time needed to find F;i; is also
polynomial by the following non-trivial lemma from convex geometry.

Lemma 1. The minimum volume ellipsoid surrounding a half ellipsoid (i.e. E;(\H™ where
H™ is a halfspace as above) can be calculated in polynomial time and

Vol(Eit1) < <1 - 21n> Vol(E;)

Thus after ¢ steps the volume of the enclosing ellipsoid has dropped by (1 — 1/2n)! <
exp(—t/2n).

Technically speaking, there are many fine points one has to address. (i) The Ellipsoid
method can never say unequivocally that the convex body was empty; it can only say after
T steps that the volume is less than exp(—7/2n). In many settings we know a priori that
the volume of K if nonempty is at least exp(—n?) or some such number, so this is good
enough. (ii) The convex body may be low-dimensional. Then its n-dimensional volume is
0 and the containing ellipsoid continues to shrink forever. At some point the algorithm has
to take notice of this, and identify the lower dimensional subspace that the convex body
lies in, and continue in that subspace.



As for linear programming, it can be shown that for a linear program which requires
L bits to represent the input, it suffices to have volume of Ey = 2¢?™L (since the solution
can be written in conL bits, it fits inside an ellipsoid of about this size) and to finish when
volume of E; = 274"l for some constants ci,co, which implies ¢ = O(n?L). Therefore,
after O(n?L) iterations, the containing ellipsoid is so small that the algorithm can easily
“round” it to some vertex of the polytope. (This number of iterations can be improved to
O(nL) with some work.) Thus the overall running time is poly(n,m, L). The classic [GLS]
text is a very readable yet authoritative account of everything related (and there’s a lot) to
the Ellipsoid method and its variants.

Summary. To sum up, the importance of the Ellipsoid method is that it allows you to
see at a glance that a convex optimization problem is solvable in polynomial time: (a) Is
there a polynomial-time separation oracle? (b) Can we give a rough idea of where the body
lies: give a bounding ellipsoid whose volume is only exp(poly(n)) times the volume of the
body (assuming the body is nonempty)?

Under these minimal conditions, the problem can be solved in polynomial time!
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