
princeton univ. F’25 cos 521: Advanced Algorithm Design

Lecture 14: Submodular Functions, Lovász Extension and
Minimization

Lecturer: Huacheng Yu

Based on the notes from Ankur Moitra’s class at MIT (see references for a link).
This lecture introduces submodular functions as a generalization of some functions we

have previously seen for e.g. the cut function in graphs. We will see how we can use the
ellipsoid method developed in the previous lecture to minimize an arbitrary submodular
function.

1 Submodular Functions

Definition 1 (Submodular Functions). Let N be a set of n elements. A function f : 2N →
R is said to be submodular, if it satisfies following property of diminishing marginal returns:
for every A ⊆ B ⊆ N and j ̸∈ B, f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B).

One way to understand submodularity is to think of f as a utility functions. Then, the
diminishing marginal returns property says that the marginal utility gained by adding a
new item to a smaller set is no less than the marginal utility gained by adding a new item
to a larger set.

The defining property of diminishing marginal returns is equivalent to the following (see
the notes by Jeff Bilmes, in references, for a proof):

Lemma 1. A function f : 2N → R is submodular if and only if for every X,Y ⊆ N ,
f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y).

2 Examples of Submodular Functions

Submodular functions generalize familiar quantities studied before in this class. For a graph
G(V,E) on n vertices, let f(S) = E(S, S̄), the number of edges that lie in the cut defined
by the vertex set S. It is a short exercise to prove that f is a submodular function.

Another important example is a coverage function: let G(U, V,E) be a bipartite graph
with the bipartition U and V of vertices with |U | = n. For every S ⊆ U , define f(S) to be
the size of the neighborhood of vertices in S. Then f is a submodular function. f is also
monotone — for any S and j ∈ U , f(S ∪ {j}) ≥ f(S). Observe that the cut function is not
necessarily monotone.

Our final example is from information theory — let x1, x2, . . . , xn be discrete random
variables. For any A ⊆ [n], let H(A) be the joint entropy of the {xi}i∈A, i.e., H(A) =
−
∑

a P ({xi}i∈A = a) logP ({xi}i∈A = a). Then, H is a submodular function.

1

2

3 Representation and Optimization

For the special cases above, we are familiar with the algorithmic tasks of optimization.
For example, we know algorithms for finding the minimum size cut in a graph that run in
polynomial time, along with a poly-time 0.878 approximation algorithm for the problem
of finding a maximum size cut in a graph. Incidentally, while the above approximation
factor requires the use of semidefinite programming, there’s a simple algorithm that returns
a random cut which yields a 0.5 approximation ratio. Incidentally, this trivial algorithm
cannot be improved by even a sub-exponential size linear programs (see references) even
though a simple semidefinite program does phenomenally better!

What about optimizing arbitrary submodular functions? This immediately leads to
the question of how the submodular function we are interested in is represented. This is
a tricky issue and in general, there exist submodular functions which do not have (even
in an approximate sense) a small representation (see the paper by Balcan and Harvey in
the references for details of one such construction). In most applications, we do have a
concise representation. However, we would like our algorithms to not be tied to a particular
representation, and we’d like to make minimal assumptions about it. We will see that we
can give non-trivial algorithms by just having a oracle access to the submodular function
— we will only need that given any x, some oracle returns to us the value of the underlying
function at x.

As the case of min-cut might suggest, there’s an efficient algorithm for minimizing an
arbitrary submodular function given just oracle access to it! The maximization problem
is of course NP-hard (Max-Cut is a special case) but it turns out that for a non-negative
submodular function the oracle access is enough to yield a 0.5 approximation guarantee
(this is by no means trivial though — see the paper by Buchbinder, Naor and Schwartz in
references.) The naive algorithm that selects each element independently with probability
half is known to give 0.25 approximation.

Our interest here is going to be in minimizing an arbitrary submodular function.

4 Minimizing Convex Functions over Convex Sets

Our main interest today is to give a polynomial time algorithm for minimizing an arbitrary
submodular function. Even though submodular function is a discrete object, we will be
able to minimize it by reduction to minimizing a continuous convex function over a convex
set. Before describing this reduction, we recall how to use the ellipsoid method in order to
minimize an arbitrary convex function f : Rn → R over a convex set K.

We will need the following assumptions:
1) There’s an efficient evaluation oracle and gradient oracle for f i.e., given a point x,

we can compute f(x) and ∇f(x).
2) There’s a known ellipsoid containing K and there’s an efficient separation oracle for

K.
First note that by doing a binary search over a parameter c, we can reduce minimizing

f to the problem of finding a point (or proving emptiness) in Sc = K ∩{x | f(x) ≤ c} given
a (rough) interval where the minimum must lie. Notice that Sc is convex whenever f is a
convex function.

3

We now want to use the ellipsoid method to find a point in Sc or to prove it is empty.
Recall that we can use the ellipsoid method from previous classes to do this provided we
can satisfy two conditions:

a) There’s an ellipsoid that contains Sc (one usually knows a bound on the diameter of
the set K in which case we can just set this ellipsoid to be the sphere of the same diameter.)
This is satisfied immediately from the assumption on K above.

b) There’s an efficient separation oracle for Sc: We want to show that given a separation
oracle for K, we can build an efficient separation oracle for Sc. Let x ∈ Rn. Then, we first
test if x ∈ K, and if x ̸∈ K then obtain a separating hyperplane using the separation
oracle for K. In case x ∈ K, we test if f(x) ≤ c by using the evaluation oracle for
f . If f(x) > c, then, observe that by convexity of f , for any minimizer of f , say x∗,
f(x)− f(x∗) ≤ ∇f(x)(x− x∗) which is a hyperplane (in x∗ after we put c instead of f(x∗))
that separates x and the convex set of all minimizers of f .

Thus, we have that we can minimize f over K efficiently.

5 Lovász Extension

We want to use the above idea for minimizing a convex function given oracle + gradient
access over a convex set to minimize an arbitrary submodular function. To do this, we
will define an extension f̂ of a given submodular function f ; here, f̂ will be a continuous
function that extends f to all of [0, 1]n. The definition itself makes sense for an arbitrary
set function f : 2N → R. However, f̂ will be convex if and only if f is submodular.

First, we think of f : 2N → R as f : {0, 1}n → R by associating a set S with its 0-1
indicator from {0, 1}n (recall that n = |N |).

Definition 2. Let f : {0, 1}n → R. Define f̂ , the Lovász extension of f , so that for any
x ∈ [0, 1]n, f̂(x) = Eλ∼[0,1][f({i | xi ≥ λ})] where λ ∼ [0, 1] denotes a uniformly random
sample from the interval [0, 1].

Why is f̂ an extension of f? Let x ∈ {0, 1}n. Then notice that for any λ ∈ [0, 1],
{i | xi ≥ λ} = S where S = {i | xi = 1}. Thus, f̂ agrees with f over the hypercube and is
some kind of an average of f at fractional points.

We can in fact explicitly find out this averaging representation of f̂(x). To do this, we
define a “chain” of sets associated with any x ∈ {0, 1}n. For simplicity of notation, assume
that x0 = 1 ≥ x1 ≥ x2 . . . ≥ xn ≥ 0 = xn+1. Let Si for any i ∈ [n] ∪ {0} equal {1, 2, . . . , i}.
Then, S0 = ∅ ⊆ S1 ⊆ S2 . . . ⊆ Sn = [n].

Further notice that if λ ∈ [xi, xi+1) (the probability of which is equal to xi − xi+1) for
any i ∈ [n] ∪ {0}, then {j | xj ≥ λ} = Si. Thus,

f̂(x) =

n∑
i=0

(xi − xi+1)f(Si). (1)

In particular, to evaluate f̂ at any x, we need only n + 1 calls to the evaluation oracle
for f .

4

6 Lovász Extension is Convex iff f is submodular

The key result of today is the following:

Theorem 2. Let f̂ be the Lovász Extension of f : {0, 1}n → R. Then, f̂ is convex iff f is
submodular.

We will only show the “if”part — that is, if f is submodular then f̂ is convex. This is
what is needed for our minimization algorithm.

Let us first consider a generic question about extending a function on a (discrete) set
of points to a convex function. Suppose we have a set P such that every point in P cannot
be represented as a convex combination of the others, and a function f : P → R. How do
we extend f to a convex function g defined on the convex hull of P?

By the definition of a convex function, if a point x can be represented as a convex
combination of points in P , then its value must be at most the same convex combination
of the values of those points. This gives an upper bound on g(x), for each way of writing
x as a convex combination of P . In particular, g(x) must be at most the smallest upper
bound obtained in this way. It turns out that, if for every x, we set g(x) to be equal to this
smallest upper bound, the function we get is convex. This is called the convex closure of f .

Definition 3. For f : P → R, let the convex closure of f be the function g such that

g(x) = min

{∑
z∈P

αzf(z) :
∑
z

αz = 1 ∧
∑
z

αz · z = x ∧ ∀z ∈ P, αz ≥ 0

}
,

for all x in the convex hull of P .

Lemma 3. g is convex.

Proof. We prove by verifying for any x1, x2 in the convex hull, and λ ∈ [0, 1],

λg(x1) + (1− λ)g(x2) ≥ g(λx1 + (1− λ)x2).

Suppose g(x1) =
∑

z∈P αzf(z) and g(x2) =
∑

z∈P α′
zf(z). Then LHS is∑

z∈P
(λαz + (1− λ)α′

z)f(z).

Note that the coefficients (λαz + (1− λ)α′
z) are nonnegative, sum up to one, and satisfy∑

z

(λαz + (1− λ)α′
z)z = λx1 + (1− λ)x2.

Thus, LHS is at least g(λx1 + (1 − λ)x2), as g(λx1 + (1 − λ)x2) is the minimum over all
such convex combinations that are equal to λx1 + (1− λ)x2.

Next, we show that when P = {0, 1}n and f is submodular, f̂ is equal to g. Hence,
the Lovász extension is convex. For simplicity of notations, we may use S to denote a
subset of [n], and simultaneously its indicator vector in {0, 1}n. We do this in two steps:

5

first, we show that in the definition of g, we can always assume that for each x ∈ [0, 1]n, the
minimum is achieved on some set of coefficients {αS}S∈{0,1}n that takes non-zero values only
on a chain of at most n+ 1 sets S0 ⊂ S1 · · · ⊂ Sn; then we show that for every x ∈ [0, 1]n,
there is essentially only a unique way to write x as a convex combination of this form, and
observe that f̂ also has this form.

Lemma 4. When f is submodular, for every x ∈ [0, 1]n, there exists S0 ⊂ · · · ⊂ Sn and
nonnegative αS0 , . . . , αSn summing up to 1 such that

•
∑n

i=0 αSi · Si = x;

• g(x) =
∑n

i=0 αSi · f(Si).

Proof. Fix x ∈ [0, 1]n, and let {αS}S be the minimizer in the definition of g(x), in case of
tie, choose the one that maximizes

∑
S αS |S|2.1 We show that this collection of coefficients

{αS}S has the claimed property.
Suppose there exists A,B ⊆ [n] such that αA, αB > 0 and A ⊊ B,B ⊊ A. Let

∆ = min{αA, αB} > 0, and consider a set of coefficients {α′
S} such that

• α′
S = αS −∆ for S = A,B;

• α′
S = αS +∆ for S = A ∩B,A ∪B;

• α′
S = αS for S ̸= A,B,A ∩B,A ∪B.

{α′
S} gives another convex combination of x, and by submodularity of f , f(A) + f(B) ≥

f(A∪B) + f(A∩B), thus,
∑

αSf(S) ≥
∑

α′
Sf(S). In particular, {α′

S} is also a minmizer
in the definition of g(x). Moreover, we have

∑
S αS |S|2 <

∑
S α′

S |S|2, since

|A ∩B|2 + |A ∪B|2 > |A|2 + |B|2 .

This is a contradiction.
Thus, all sets S that have nonzero αS must form a chain S0 ⊂ · · · ⊂ Sn.

Now fix x ∈ [0, 1]n, for simplicity assume that 1 ≥ x1 ≥ x2 · · · ≥ xn ≥ 0. Otherwise,
we rename the coordinates. Let us first consider the case where 1 > x1 > · · · > xn > 0.
For such x, the only way to write x as a convex combination of a chain of sets is to let
Si = {1, . . . , i}, and αSi = xi − xi+1. This is because for any j ∈ Si+1 \ Si, we have
xj = αSi+1 + · · · + αSn , which is smaller for larger i. That means 1) since all coordinates
are different, no difference Si+1 \ Si can have more than one element; 2) the element in the
difference Si+1 \ Si must be increasing as i gets larger (since xj > xj+1). Thus, Si has to
be {1, . . . , i}, and its coefficient αSi can be determined by taking the difference. Therefore,
g(x) =

∑
i(xi − xi+1)f(Si) = f̂(x).

The case for general x with possibly equal coordinates can be proved similarly, or by
simply using the fact that both g and f̂ are continuous, and are equal on all other x.

This proves that f̂ is convex.

1Such {αS} exists, since we are minimizing / maximizing a continuous function over a compact set.

6

7 Wrapping Up

Now that we know that the Lovász extension of f is convex iff f is submodular, we can
minimize the Lovász extension of f over [0, 1]n whenever f is submodular. At first glance,
it’s not clear what this buys us: what happens if the minimizer isn’t in {0, 1}n? How do we
then turn this into a minimizer for f?

The other magic property of the Lovász extension (which is especially surprising when
it is convex), is that it always achieves its minimum at an extreme point (and moreover, a
minimum on the extreme point can be found given any interior minimum).

To see this, consider any minimizer x⃗. For simplicity of notation, again assume that
1 ≥ x1 ≥ . . . ≥ xn ≥ 0. Then f̂(x) =

∑n
i=0(xi − xi+1)f(Si) as stated previously. Therefore,

f̂(x) is a convex combination of f evaluated at n+ 1 different sets, and f̂(x) ≥ mini f(Si).
In fact, as x⃗ was the minimum, we must have f̂(x) = f(Si) for all i such that xi−xi+1 > 0.
Therefore, once we know the minimizer x⃗ of f̂(·), we can immediately output the minimizer
S of f(·).

The “basic part” is the work immediately above: the minimizer of the Lovász extension is
always an extreme point, and an extreme point minimizer can be deduced from a minimizer
of the extension. Because this point is in fact a minimum even of the extension to [0, 1]n,
it is certainly the minimum over {0, 1}n. Normally, functions which have minima on the
extremes are not convex.

The “magic part” is that the Lovász extension happens to be convex when f is submod-
ular. When f is submodular, we can actually minimize the extension in poly-time, enabling
us to minimize f .

Bibliography

1. Lecture Slides: “Submodular functions, their optimization and applications.” Jeff
Bilmes. Dept. of Elect. Eng., Univ. Washington, Seattle, Apr. 1, 2011 [Online].
Available: http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.
pdf

2. A tight linear time (1/2)-approximation for unconstrained submodular maximization.
Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. In FOCS, 2012.

3. Approximating Rectangles by Juntas and a weakly exponential lower bound on linear
programs for constraint satisfaction Pravesh K. Kothari, Raghu Meka and Prasad
Raghavendra. Available: https://arxiv.org/abs/1610.02704

4. Learning Submodular Functions Maria Florina Balcan and Nick Harvey. In STOC
2011.

5. Lecture Notes: Submodular Functions and Lovász Extension Ankur Moitra. Available
at: http://people.csail.mit.edu/moitra/docs/6854notes13.pdf

http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf
http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf
https://arxiv.org/abs/1610.02704
http://people.csail.mit.edu/moitra/docs/6854notes13.pdf

	Submodular Functions
	Examples of Submodular Functions
	Representation and Optimization
	Minimizing Convex Functions over Convex Sets
	Lovász Extension
	Lovász Extension is Convex iff f is submodular
	Wrapping Up

