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Recall that a set of points K is convex if for every two x, y ∈ K the line joining x, y,
i.e., {λx+ (1− λ)y : λ ∈ [0, 1]} lies entirely inside K. A function f : ℜn → ℜ is convex if
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ ℜn and λ ∈ [0, 1]. It is called concave
if the previous inequality goes the other way. A linear function is both convex and concave.
A convex program consists of a convex function f and a convex body K and the goal is
to minimize f(x) subject to x ∈ K. It is a vast generalization of linear programming and
like LP, can be solved in polynomial time under fairly general conditions on f,K. Today’s
lecture is about a special type of convex program called semidefinite programs.

1 Positive Semidefinite matrices

Recall that a symmetric matrix A ∈ Rn×n is positive semidefinite (PSD) if

xTAx ≥ 0 for all x ∈ Rn.

This property is equivalent to:

1. A has all non-negative eigenvalues.

2. A can be written as A = UTU for some U ∈ Rn×n, i.e., Aij = uTi uj where ui is the
ith column of U .

To denote that a matrix is PSD, we write A ⪰ 0. A ⪰ B indicates that A−B is PSD,
or equivalently that xTAx ≥ xTBx for all x ∈ Rn. The symbols ⪰ and ⪯ can be used to
define an ordering on matrices, which is called the “Loewner ordering”. It’s a partial order:
it’s impossible for both A ⪰ B and B ⪰ A to hold for A ̸= B, it could be that neither does.

Exercise 1. Come up with a simple example where A ⪰̸ B and B ⪰̸ A.

The Loewner ordering has many useful properties. For example, A ⪰ B implies that
A−1 ⪯ B−1. A ⪰ B also implies, that for all i, σi(A) ≥ σi(B), where σi denotes the ith

singular values (which is the same as the ith eigenvalue for PSD matrices).1

You have to be careful though. For example, A ⪰ B ⇏ A2 ⪰ B2.
PSD matrices appear all the time in algorithmic applications, including some that we

have already seen. Graph Laplacians, Hessians of convex functions, covariance matrices,
and many other natural matrices are always PSD. As we will see today, PSD matrices are
also very useful in formulating optimization problems.

1The opposite statement is not true – it can be that σi(A) ≥ σi(B) for all i, but A ⪰̸ B.
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2 Semidefinite programming

The goal of semidefinite programming is to solve optimization problems where the input is
a matrix that is constrained to be PSD. I.e. we optimize over X ∈ Rn×n where X ∈ K and:

K = {M | M ⪰ 0}.

K is a convex set: if X ⪰ 0 and Y ⪰ 0 are PSD then for all λ ∈ [0, 1], it’s easy to see that
λX + (1− λ)Y ⪰ 0 with the right definition:

Lemma 1. The set of all n× n PSD matrices is a convex set in ℜn2
.

Proof. The property that uTAu ≥ 0 for all u is the easiest to verify:2 Note that uT (λM1 +
(1− λ)M2)u = λuTM1u+ (1− λ)uTM2u ≥ 0 + 0 = 0. Therefore, λM1 + (1− λ)M2 is PSD
as well.

This realization leads to the following convex optimization problem:

Problem 2 (Semidefinite program – SDP). Let f be a convex function and let ⟨M,N⟩
denote

∑
i,j MijNij. We seek to find X ∈ Rn×n which solves:

min f(X) such that:

X ⪰ 0,

for i = 1, . . . , k, ⟨Ai, X⟩ ≥ bi.

Here A1, . . . , Ak and b1, . . . , bk are input constraints. It is very common to have:

f(X) = ⟨C,X⟩

for some C. I.e. to have our objective be a linear function in X.

Problem 2 is optimizing over a convex set, since the convex PSD constraint intersected
with k linear constraints forms a convex set. It can be viewed as a Linear Program with an
infinite number of constraints. Specifically, our constraints are equivalent to:

min f(X) such that:

∀v ∈ Rn
〈
vvT , X

〉
≥ 0,

for i = 1, . . . , k, ⟨Ai, X⟩ ≥ bi.

Note that the convex objective can be replaced by minT subject to f(X) ≤ T and other
constraints. It is not hard to verify by definition that the constraint f(X)− T ≤ 0 induces
a convex set for convex f . Thus, this is still a convex program.

The PSD constraint gives a compact way of encoding these infinite linear constraints.
in this sense, SDPs are strictly stronger than linear programs.

2This is also a good instance of why characterization theorems are helpful: one definition happened to
be trivial for this proof, whereas the others take more work.
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Exercise 2. Show that every LP can be written as an SDP. The idea is that a diagonal
matrix, i.e., with off-diagonal entries are 0, is PSD if and only if its entries are non-negative.

Semidefinite programs can be solved (relatively) efficiently with a variety of methods,
including the ellipsoid method and specially designed interior point methods. They model a
wide range of natural problems, several examples of which are outlined in [1]. One example
problem is as follows:

Example 1 (Minimum Volume Ellipsoid via an SDP). Suppose we have points v1, . . . , vk ∈
Rn and we want to find the smallest (specifically, minimum volume) ellipsoid E centered at
0 that contains these points. This problem can be formulated as a semidefinite program.

Recall from our lecture on the Ellipsoid Method that any ellipsoid E centered at 0 can
be parameterized by a PSD matrix X ∈ Rn×n, where a point y lies inside E if and only if:

y⊤Xy ≤ 1.

Also note that E’s volume is proportional to
√

det(X−1) =
√∏n

i=1 1/σi(X). With some
work, it’s possible to verify that log(det(X−1))) = − log(det(X)) is a convex function in X.
So to solve the minimum volume ellipsoid problem we can solve:

min
X

− log(det(X)) such that:

X ⪰ 0,

for i = 1, . . . , k, yTXy ≤ 1.

Note that all constraints yTXy ≤ 1 are linear constraints on X.

2.1 Alternative View of SDP

Since any PSD matrix X can be written as V TV where V = [v1, . . . , vn] is a matrix in
Rn×n, we can equivalently formulate the SDP problem as solving:

min f(V TV ) subject to
〈
Ai, V

TV
〉
≥ bi. (1)

This is sometimes a more useful view as one can think of the column vectors {vi}i of
V as the “actual variables”. In this case, each entry Xij = ⟨vi, vj⟩ is an inner product,
and the objective is simply some convex function on the pairwise inner products, and the
constraints are all linear constraints on them.

3 Maximum Cut

Just as we saw for linear programs, SDPs can be very useful in obtaining approximation
algorithms for combinatorial optimization problems. In fact, it’s possible to use the same
“relax-and-round” framework that we saw for linear programs. Semidefinite programs allow
for a richer variety of relaxation and rounding techniques.

One classic example of a combinatorial problem that can be approximated using a
algorithm based on semidefinite programming is the maximum cut problem:
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Problem 3 (Maximum cut). Give an undirected, unweighted graph G = (V,E) with |V | =
n, find S ⊂ V such that |E(S, V \ S)| is maximized. |E(S, V \ S)| denotes the number of
edges between nodes in S and nodes not in S – i.e. the size of the cut between S and V \S.

Denote the optimal value for this problem by OPTMC = maxS |E(S, V \ S)|.

This problem can be formulated as an integer optimization problem:

max
u1,...,un∈{−1,1}

∑
(i,j)∈E

1

4
|ui − uj |2. (2)

If we set ui = 1 for all i ∈ S and −1 otherwise, then this objective function exactly captures
the size of the cut between S and V \ S: |ui − uj |2 = 0 if i, j are on the same side of the
cut and |ui − uj |2 = 4 if they’re on different sides.

Unfortunately solving (2) is NP-hard. It’s possible to solve approximately using a greedy
algorithm or LP relaxation, but both obtain objective values of just 1

2OPTMC .
Our main result today is that the maximum cut problem can be approximated to much

better accuracy using an algorithm based on semidefinite program:

Theorem 4 (Goemans, Williamson ‘94 [2]). There is a randomized SDP rounding scheme
that finds a cut with expected size ≥ .878 ·OPTMC .

3.1 SDP Relaxation

The Goemans and Williamson approach relaxes binary variables to continuous vectors:

ui ∈ {−1, 1} =⇒ vi ∈ Rn with ∥vi∥2 = 1, ∀i

Specifically, they solve:

Problem 5 (Relaxed Maximum Cut).

max
v1,...,vn, ∥vi∥2=1 ∀i

∑
(i,j)∈E

1

4
∥vi − vj∥22. (3)

This problem can be solved as a semidefinite program and we denote its optimal value by
OPTSDP .

To check that Problem 5 can be solved as an SDP, we refer to the formulation of
(1). The constraint that ∥vi∥2 = 1 is simply a constraint that all diagonal entries of
X = V TV are 1, which can be encoded as a linear constraint. Additionally, since ∥vi−vj∥22 =
vTi vi + vTj vj − 2vTi vj , our objective function (3) can be written as ⟨C,X⟩ for some C.

To repeat the above reasoning, recall that Xij , for i, j ∈ [n] denote our n2 variables.
We have (infinitely many) linear constraints on X that ensures X is PSD, and therefore
X = V TV . Moreover, observe that Xij = vTi vj . Therefore, our objective function is∑

(i,j)∈E(Xii +Xjj − 2Xij)/4, and this is a convex program.
Intuitively, Problem 5 seeks to arrange vectors on the unit circle in such away that

vectors corresponding to connected nodes i, j are placed as far as possible from each other.
Problem 5 is a valid relaxation of Problem 3. In particular, we have:
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Figure 1: SDP solutions are unit vectors which are arranged so that vectors vi and vj are
far apart when nodes i and j are connected with an edge in G.

Claim 6.

OPTMC ≤ OPTSDP .

Proof. Given a solution u1, . . . , un to Problem 3 we simply set vi = ui · e1, where e1 =
[1, 0, . . . , 0]T is a standard basis vector. Then (3) exactly equals (2).

3.2 Random Hyperplane Rounding

To obtain a solution to Problem 3 from an optimal solution to Problem 5 we employ the
following rounding strategy:

1. Solve the semidefinite program in Problem 5 to obtain vectors v1, . . . , vn.

2. Choose a random vector c ∈ Rn by choosing each entry to be an independent standard
Gaussian random variable.

3. Set ũi = sign
(
cT vi

)
.

Claim 7.

E

 ∑
(i,j)∈E

1

4
|ũi − ũj |2

 ≥ .878 ·
∑

(i,j)∈E

1

4
∥vi − vj∥22

It follows that our rounded solution obtains an expected cut value ≥ .878 ·OPTSDP , which
is ≥ .878 ·OPTMC by Claim 6. Applying Markov’s inequality, a few repeated trials ensures
that we obtain a good approximate max cut with high probability.

Proof. Since c is spherically symmetric our rounding strategy corresponds to choosing a
random n dimensional hyperplane through the origin. For all vectors vi placed on one side
of the hyperplane, node i belongs to S. The nodes corresponding to all vectors on the other
side of the hyperplace belong to V \ S. This approach is known as random hyperplane
rounding. It is visualized in Figure 2.
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Figure 2: Our SDP solution is rounded by choosing a random hyperplane through the
origin and assigning nodes to each side of the cut based on what side of the hyperplane
their corresponding vector lies on. In this case, nodes i and j are placed on one side of the
cut, with node k placed on the other side. In other words, ũi = ũj = −ũk.

Intuitively, since vectors corresponding to connected nodes are in general placed as far
apart as possible by the SDP, it is more likely that the a random hyperplane separates
connected nodes, and thus that we obtain a large cut value.

Formally, we bound the expected number of edges cut in our solution ũ1, . . . , ũn. Let
θij denote the angle (in radians) between vectors vi and vj . What is the probability that
nodes i and j end up on different sides of the cut after random hyperplane rounding? This
may seem a difficult n-dimensional calculation, until we realize that there is a 2-dimensional
subspace defined by vi, vj , and all that matters is the intercept of the random hyperplane
with this 2-dimensional subspace, which is a random line in this subspace.

In particular, observe that there is a two-dimensional space spanned by vi, vj . Observe
also that picking a uniformly random hyperplane through the origin corresponds to picking
a uniformly random vector in the unit sphere, and taking the hyperplane orthogonal to
it. When we project a uniformly random vector in the unit sphere to this two-dimensional
space, we also get a uniformly random directly in this two-dimensional space, and there-
fore projecting the uniformly random hyperplane into this two-dimensional space is also
uniformly random. So, we just get a uniformly random line through the origin in this
space, and the probability that it lies between vi and vj is exactly

θij
π . Thus by linearity of

expectations,

E[Number of edges in cut defined by ũ1, . . . , ũn ] =
∑

{i,j}∈E

θij
π
. (4)

How do we relate this to OPTSDP ? We use the fact that ⟨vi, vj⟩ = cos θij to rewrite the
SDP objective as:

OPTSDP =
∑

{i,j}∈E

1

4
∥vi − vj∥2 =

∑
{i,j}∈E

1

4
(∥vi∥2 + ∥vj∥2 − 2⟨vi, vj⟩) =

∑
{i,j}∈E

1

2
(1− cos θij).

(5)
To compare this objective function to (4) Goemans and Williamson observed that:

θ/π
1
2(1− cos θ)

=
2θ

π(1− cos θ)
≥ 0.87856 . . . ∀θ ∈ [0, π].
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This is easy to verify by plotting e.g. in MATLAB.
It follows that the expected size of our cut ≥ 0.878 ·OPTSDP ≥ 0.878 ·OPTMC .

The saga of 0.878... The GW paper came on the heels of the PCP Theorem (1992)
which established that there is a constant ϵ > 0 such that (1− ϵ)-approximation to MAX-
CUT is NP-hard. In the ensuing few years this constant was improved. Meanwhile, most
researchers hoped that the GW algorithm could not be optimal. The most trivial relaxation,
the most trivial rounding, and an approximation ratio derived by MATLAB calculation: it
all just didn’t smell right. However, in 2005 Khot et al. showed that Khot’s unique games
conjecture implies that the GW algorithm cannot be improved by any polynomial-time
algorithm. (Aside: not all experts believe the unique games conjecture.)
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