
Princeton Univ Fall ’25 COS 521:Advanced Algorithms

Homework 4

Out: Oct 29 Due: Nov 11

Instructions:

• Upload your non-extra solutions to Gradescope in a single PDF file, and mark your
solution to each problem. Please make sure you are uploading the correct PDF! Please
anonymize your submission (i.e., do not list your name in the PDF), but if you forget,
it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1



2

Problems:

§1 In class, we showed that by doing a binary search on the optimal value of an LP,
optimizing the objective value can be reduced to deciding feasibility, which is then
solvable by the Ellipsoid algorithm. Show how to modify Ellipsoid so that it solves
the optimization problem directly, i.e., this reduction is in fact not necessary.

Hint: Maintain the invariant that the optimal solution is contained in the current
ellipsoid.

Note: For this problem, you do not need to worry about bounding boxes, bit com-
plexity, precision, etc. For example, it suffices that the algorithm finds some x that is
2−Θ(n)-close to the true optimum in distance. Also, you do not need to worry about
the feasible region having dimension less than n, and you may assume the volume of
the feasible region is at least 2−Θ(n). You also don’t need to reprove the lemmas used
in Ellipsoid.

§2 The Ellipsoid algorithm we saw in the lecture solves convex programs assuming a
separation oracle. Here, we want to show the opposite. To be more specific, consider
the following two tasks regarding a convex body K:

• OPTIMIZEK: given a vector c ∈ Rn, output argmaxx∈K c⊤x;

• SEPARATEK: given a point x ∈ Rn, output either x ∈ K, or a separating hyper-
plane.

We are going to show that if for a specific convex body K, there is a polynomial time
algorithm for OPTIMIZEK, then there is a polynomial time algorithm for SEPARATEK.

(a) Suppose for a given x, we can solve the following LP with infinitely many con-
straints (finding the optimal w and T ). Show that then we can solve SEPARATEK.

Variables: w ∈ Rn, T ∈ R
Maximize: w⊤x− T

Subject to: ∀y ∈ K, w⊤y ≤ T

− 1 ≤ T ≤ 1

(b) Design a polynomial time separation oracle for the above LP using OPTIMIZEK,
and conclude.

§3 Given black-box access to a poly-time algorithm AP that optimizes linear functions
over the convex, compact region P , and poly-time AQ that optimizes linear functions
over the convex, compact region Q, design a poly-time algorithm that optimizes linear
functions over the convex, compact region P ∩Q.

Note: For this problem, you may assume that both P and Q are bounded (otherwise,
there are some directions in which it is not possible to optimize linear functions because
the optimum is ±∞). But, you should not assume that you know the bounding box
containing them (if you want to access this, you should describe how to find it).



3

Aside from this, you do not need to worry about any other “technical” aspects of
running the Ellipsoid algorithm. That is, you may assume for the sake of this problem
that if you have a bounding box B containing a region R, and a separation oracle for
the region R, that you can optimize linear functions over R in poly-time.

§4 Let N be a set of size n, and f : 2N → R be a function on all subsets of N . Show
that if f is not submodular, then its Lovász extension f̂ is not convex.

§5 In the submodular welfare problem, there are n bidders and m items. The value of
bidder i ∈ {1, . . . n} for a subset of items S ⊆ {1, . . . ,m} is given by a monotone
submodular function fi(S) where fi(∅) = 0. We want to allocate the m items to the
n bidders, i.e., find an item partition where bidder i gets subset Si ⊆ {1, . . . ,m} and
Si ∩ Sj = ∅ for i ̸= j, and the goal is to maximize the welfare

∑
i∈{1,...,n} fi(Si). Show

that the following simple greedy algorithm gives a 2-approximation:

(a) Initialize Si = ∅, for all bidders i.
(b) For item j = 1 to m:

i. Let ij := argmaxi{fi(Si ∪ {j}) − fi(Si)}. That is, let ij be the bidder who
gets greatest marginal value for adding item j to their current set Si. Break
ties arbitrarily (but pick exactly one argmax).

ii. Add item j to Sij , leave all other Sij unchanged.

(c) Output S1, . . . , Sn.

Hint: Note that a submodular function remains submodular even if you “contract”
a set, i.e., fS(A) := f(S ∪ A) − f(S) is also a submodular function on elements
{1, . . . ,m} \ S. You may use this fact without proof.

Extra Credit:

§1 Consider the following variant of online set cover. Offline, we are given a universe
U := {1, . . . , n} of n elements and a family S := {S1, . . . , Sm} of m sets where⋃

i Si = U . The algorithm starts with A = ∅ which denotes the collection of selected
sets.

In each time step t ∈ {1, . . . , T}, an adversary reveals an element et ∈ U , and the
online algorithm has to immediately ensure that et ∈

⋃
S∈A S, i.e., if et is already cov-

ered then the algorithm doesn’t need to select a new set, and otherwise the algorithm
has to select a set into A that contains et. The goal of the algorithm is to minimize
the size of A.

To be clear: it may be that not all elements of U are eventually revealed.

Show that for n ≤ m, every (possibly randomized) algorithm achieves an expected
competitive ratio of at best Ω(log(n)).


