
Princeton Univ Fall ’25 COS 521:Advanced Algorithms

Homework 3

Out: Oct 7 Due: Oct 26

Instructions:

• Upload your non-extra solutions to Gradescope in a single PDF file, and mark your
solution to each problem. Please make sure you are uploading the correct PDF! Please
anonymize your submission (i.e., do not list your name in the PDF), but if you forget,
it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1

2

Problems:

§1 A k-sparse vector is any vector with at most k nonzero entries. Let Sk be the set of
all k-sparse vectors in Rd. Show that, if Π is chosen to be a Johnson-Lindenstrauss
embedding matrix (e.g. a scaled random Gaussian matrix) with s = O(k log d

ϵ2
) rows

then, with high probability,

(1− ϵ)∥Πx∥2 ≤ ∥x∥2 ≤ (1 + ϵ)∥Πx∥2

for all x ∈ Sk, simultaneously.

Hint: You will want to use some result from the JL lecture as a black-box.

§2 (a) Let m ≥ 1 be an integer, prove that there can be at most 2O(m) points in Rm such
that the distance between every pair of points is between 1 and 3.

(b) For any n ≥ 1, construct a set of n points in Rn such that the distance between
every pair of points is equal to 2.

(c) Prove that the new dimension in the JL lemma is optimal up to a constant factor
when ε = 0.1, i.e., in general, we cannot hope to map an arbitrary set of n points
in a high dimensional space to Rc logn while the pairwise distances are preserved
up to a 1± 0.1 factor, when c > 0 is a sufficiently small constant.

§3 Given a data matrix X ∈ Rn×d with n rows (data points) x1, . . . , xn ∈ Rd, the k-
means clustering problem asks us to find a partition of our points into k disjoint sets
(clusters) C1, . . . Ck ⊆ {1, . . . , n} with

⋃k
j=1 Cj = {1, . . . , n}.

Let cj =
1

|Cj |
∑

i∈Cj xi be the centroid of cluster j. We want to choose our clusters to

minimize the sum of squared distances from every point to its cluster centroid. I.e.
we want to choose C1, . . . Ck to minimize:

fX(C1, . . . Ck) =
k∑

j=1

∑
i∈Cj

∥cj − xi∥22.

There are a number of algorithms for solving the k-means clustering problem. They
typically run more slowly for higher dimensional data points, i.e. when d is larger.
In this problem we consider what sort of approximation we can achieve if we instead
solve the problem using dimensionality reduced vectors in place of x1, . . . , xn.

Let OPTX = minC1,...Ck fX(C1, . . . Ck).
Suppose that Π is a Johnson-Lindenstrauss map into s = O(log n/ϵ2) dimensions
and that we select the optimal set of clusters for Πx1, . . . ,Πxn. Call these clusters
C̃1, . . . C̃k. Show that they obtain objective value fX(C̃1, . . . C̃k) ≤ (1 + ϵ)OPTX , with
high probability.

Hint: reformulate the objective function to only involve ℓ2 distances between data
points.

3

§4 Recall the max-flow problem from undergraduate algorithms: for a directed graph
G(V,E) with non-negative capacities ce for every e ∈ E and two special vertices s
(source, with no incoming edges) and t (sink, with no outgoing edges), a flow in G is
an assignment f : E → R≥0 such that f(e) ≤ ce for every edge and for every vertex
v ∈ V \ {s, t}, the total incoming flow

∑
(u,v)∈E f((u, v)) equals the total outgoing

flow
∑

(v,w)∈E f((v, w)). The task is to find a maximum flow f i.e., a flow f such that∑
(s,u)∈E f((s, u)) is maximized.

(a) Show that the following LP is a valid formulation for computing the value of the
maximum flow in G. There is a variable f((u, v)) for all (u, v) ∈ E.

max
∑
u

f((u, t))

∀e = (u, v) ∈ E, f((u, v)) ≤ ce

∀v /∈ {s, t},
∑

(u,v)∈E

f((u, v)) =
∑

(v,w)∈E

f((v, w))

∀e ∈ E, f(e) ≥ 0 (1)

(b) Write the dual for the LP (1). Show that this dual LP computes the minimum
fractional s-t cut in G. A fractional cut places each node v at some point yv on
the unit interval [0, 1], with s placed at 0 and t placed at 1. The value of the
fractional cut is

∑
(u,v)∈E(G) ce ·max{0, yv − yu} (where ce is the weight of edge

e). Observe that if instead each yv ∈ {0, 1}, that this is simply an s-t cut. Use
strong LP duality to conclude the fractional max-flow min-cut theorem. That is,
if the max-flow is C, there exists a fractional s-t cut of value C, and no fractional
s-t cut of value < C.

(c) Devise a rounding scheme that takes as input a fractional min-cut of value C
and outputs a true (deterministic) min-cut of value C. (Hint: there is a simple
rounding scheme that works, but it is not a rounding scheme we have already seen
in class. You might want to first construct a randomized min-cut.) Conclude the
max-flow min-cut theorem.

§5 (Firehouse location) Suppose we model a city as an m-point finite metric space with
d(x, y) denoting the distance between points x, y. These

(
m
2

)
distances (which satisfy

triangle inequality) are given as part of the input. The city has n houses located at
points v1, v2, . . . , vn in this metric space. The city wishes to build k firehouses and asks
you to help find the best locations c1, c2, . . . , ck for them, which can be located at any
of the m points in the city. The happiness of a town resident with the final locations
depends upon his distance from the closest firehouse. So you decide to minimize the
cost function

∑n
i=1 d(vi, ui) where ui ∈ {c1, c2, . . . , ck} is the firehouse closest to vi.

Describe an LP-rounding-based algorithm that runs in poly(m) time and solves this
problem approximately. If OPT is the optimum cost of a solution with k firehouses,
your solution is allowed to use O(k log n) firehouses and have cost at most OPT.1

1The term for an approximation guarantee like this is resource augmentation — the solution is as good
as the optimum, but it requires additional firehouses.

4

Specifically, you should design an algorithm which runs in polynomial time, and uses
O(k log n) firehouses in expectation, and also has cost at most OPT in expectation.2

Hint: “Oversample” to preserve the cost of the solution, while increasing the expected
number of firehouses

Extra Credit:

§1 (Extra credit) Prove that n vectors in Rm cannot always be mapped to a cϵ−2-
dimensional space for a sufficiently small constant c, while preserving the pairwise
distances within 1± ϵ factors.

2You may want to briefly think about how to modify your solution to run in expected polynomial time
and use O(k logn) firehouses with probability one, or how to run in expected polynomial time and guarantee
a solution with cost (1 + ε)OPT with probability one (or both). But you do not need to write this for full
credit.

