
Princeton Univ Fall ’25 COS 521:Advanced Algorithms

Homework 2

Out: Sep 23 Due: Oct 5

Instructions:

• Upload your non-extra solutions to Gradescope in a single PDF file, and mark your
solution to each problem. Please make sure you are uploading the correct PDF! Please
anonymize your submission (i.e., do not list your name in the PDF), but if you forget,
it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1

2

Problems:

§1 Recall that the collection of functions h(x) = xi for i ∈ [d] is a good LSH family
for the Hamming distance (x ∈ {0, 1}d), and when r1 = r, r2 = cr, we have γ :=
log(1/p1)/ log(1/p2) ≈ 1/c. This family can then be used to solve (r, cr)-PLEB, and
by “guessing” the closest distance and constructing O(log(dmax/dmin)) instances of
(r, cr)-PLEB, this solves c-ANN.

Note that this is the same LSH family that is used in all (r, cr)-PLEB instances. Why
didn’t we directly use this LSH family to solve c-ANN at once? Specifically, what
is different in these PLEB data structures and why do we need to guess the closest
distance?

Hint: The answer is supposed to be simple, in one or two lines.

§2 Recall that the basic version of approximate counter covered in the lecture maintains
X such that X is incremented with probability 2−X each time we increment n, and
at query time, the algorithm returns 2X − 1 as the estimator of n.

Suppose we make n increments for n = 2k. Show that for any constant c > 0, the final
X is at most k − c with Ω(1) probability. Hence, the basic version of the algorithm
may indeed incur a constant factor error with constant probability.

Remark: It is also true that with Ω(1) probability, X is at least k+ c. You don’t have
to prove this.

§3 We say a random variable Z is subgamma with parameters (σ2, B), if

E
[
eλ(Z−E[Z])

]
≤ eλ

2σ2/2,

for all |λ| ≤ B.

(a) Let Z1, . . . , Zm be independent subgamma random variables with parameters
(σ2

i , Bi) respectively for i ∈ [m]. Prove that
∑

i∈[m] Zi is subgamma with param-

eters (
∑

i∈[m] σ
2
i ,mini∈[m]Bi).

(b) Show that if Z is subgamma with parameters (σ2, B), then for any t > 0, both

Pr[Z − E[Z] > t] and Pr[Z − E[Z] < −t] are at most max

{
e−

t2

2σ2 , e−
tB
2

}
.

(c) Let Z be a geometric random variable such that Pr[Z = k] = p · (1 − p)k−1 for
all integers k ≥ 1. Prove that Z is subgamma with parameters (2/p2, p/2).

Hint: The following two inequalities may be useful: ex ≥ 1+x for all x ∈ R and
1/(1− x) ≤ ex+x2

for |x| ≤ 1/2.

§4 In this problem, we will analyze the Morris counter mentioned in the lecture, and
prove that it solves approximate counting using O(log logN + log(1/ε)+ log log(1/δ))
bits of space.

Recall that the approximate counting problem asks us to maintain a counter n (ini-
tialized to 0) up to N , supporting

3

• inc(): n← n+ 1;

• query(): output ñ such that Pr[|ñ− n| > εn] < δ.

A Morris counter has a parameter α > 0. It maintains a variable X, initialized to 0.
Each time inc() is called, X is incremented to X + 1 with probability (1 + α)−X .
When query() is called, it returns ñ(X) = ((1 + α)X − 1)/α.

(a) Let Yk be the random variable denoting the number of inc() calls needed to
increment X from k− 1 to k. Derive the probability distribution of each Yk, and
prove that it is subgamma for some parameters (σ2

k, Bk).

(b) When αn > C for a sufficiently large constant C and α < ε2, prove that after n
inc() calls, ñ(X) < (1− ε)n with probability at most e−Ω(ε2/α).

We can prove a similar upper bound on the probability that ñ(X) > (1 + ε)n,
and you may use this bound without a proof in (c).

(c) Given N, ε, δ, choose the right parameters T and α, and prove that the Morris
counter, together with an exact counter when n ≤ T using O(log T) bits, solves
approximate counting with O(log logN + log(1/ε) + log log(1/δ)) bits.

§5 Fix a constant c > 0. Consider a stream of updates to a vector X of dimension n,
where each update is of the form xi := xi+∆ for some i ∈ [n] and (possibly negative)
integer ∆. Each |∆| is at most nc, and the stream length is also at most nc. Design an
O(log n)-bit space streaming algorithm that tests with high probability if all updates
cancel out, i.e., suppose X = 0⃗ initially, test if X = 0⃗ after all updates. The algorithm
must output the correct answer with probability at least 1− 1/nc.

Hint: Let P be a non-zero degree-n polynomial, then P has at most n different roots.
The same also holds modulo a prime q, i.e., at most n different integers x ∈ [0, q − 1]
can have P (x) = 0 mod q, if not every coefficient of P is a multiple of q. You may
use this fact without a proof.

