
Princeton Univ Fall ’25 COS 521:Advanced Algorithms

Homework 1

Out: Sep 8 Due: Sep 21

Instructions:

• Upload your non-extra solutions to Gradescope in a single PDF file, and mark your
solution to each problem. Please make sure you are uploading the correct PDF! Please
anonymize your submission (i.e., do not list your name in the PDF), but if you forget,
it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1



2

Problems:

§1 Prove that (the natural variant of) Karger’s algorithm does not work for finding the
minimum s-t cut in unweighted, undirected graphs. Specifically, design an unweighted,
undirected graph G (with no parallel edges), with two nodes s, t, such that repeat-
edly contracting a random edge that does not contract s and t to the same
supernode outputs a minimum s-t cut with probability 2−Ω(n).1

Hint: try to prove that the algorithm works, and see which step fails. Use this to
guide your example.

§2 A cut is said to be a B-approximate min cut if the number of edges in it is at most B
times that of the minimum cut. Show that all undirected graphs have at most (2n)2B

cuts that are B-approximate for integers B ≥ 1.

Hint: Run Karger’s algorithm until it has 2B supernodes. What is the chance that
a particular B-approximate cut is still available? How many possible cuts does this
collapsed graph have?

§3 (a) Consider the following random process: there are n coupons {1, . . . , n}. Each
step, you draw a uniformly random coupon independently with replacement, and
you repeat this until you have drawn all coupons in {1, . . . , n}. Prove that with
probability at least 1− 1/n, the process takes O(n log n) steps.

(b) Consider the following process for matching n jobs to n processors. In each step,
every job picks a processor at random. The jobs that have no contention on the
processors they picked get executed, and all the other jobs back off and then
try again. Jobs only take one round of time to execute, so in every round all
the processors are available. Show that all the jobs finish executing w.h.p. after
O(log log n) steps.

Hint: Try to argue that if there are currently ϵn unmatched jobs, then in the
next round roughly ϵ2n jobs remain unmatched.

§4 Suppose that there are n items whose sizes X1, X2, . . . , Xn are drawn independently
from Unif[0, 1]. In the (NP-Hard) bin packing problem, the goal is to find the min-
imum number f(X1, X2, . . . , Xn) ∈ N of bins such that it’s possible to pack these
items into f unit-sized bins (i.e., each item is assigned to a bin and the sum of sizes
of items assigned to each bin is at most 1).

(i) Show that µ := E[f ] is Ω(n).
(ii) Show that for any i ∈ {1, . . . , n}, if the size of i-th item changes then the value of
f changes by at most 1. That is, prove that

|f(X1, . . . , Xi . . . , Xn)− f(X1, . . . , X
′
i, . . . Xn)| ≤ 1,

where each X1, X2, . . . Xi, X
′
i, Xi+1 . . . , Xn is chosen arbitrarily in [0, 1].

Remark: The above condition (ii) on f is known as Bounded-Difference condition.
McDiarmid’s concentration inequality is that if f satisfies (ii) then PrX1,...,Xn [f >

1To be clear: the algorithm is guaranteed to output an s-t cut, it just might not be the minimum.



3

(1 + ϵ)µ] ≤ exp
(
− ϵ2µ

10n

)
. Thus, even though computing f is NP-Hard for adversarial

inputs, for random inputs it’s w.h.p. only ±O(
√
n) around its mean.

§5 Linear probing is another popular way to resolve hash collisions. Imagine that we
are inserting n items to a hash table of size m ≥ n using a uniformly random hash
function h that maps the items to the m slots. The items are inserted one at a time,
and assume there are no deletions. To insert the next item x into the hash table A,
we first check if A[h(x)] is already occupied, if not, we store x in A[h(x)]. Otherwise,
we check if A[h(x) + 1] is occupied, if not, we store x in A[h(x) + 1], etc. Item x is
stored in the first empty slot A[h(x) + i] for some i ≥ 0. Let us further assume the
algorithm is able to find an empty slot before reaching h(x) + i > m.

Suppose m = 2n, and we have inserted n− 1 items in this way. Consider the process
of inserting the last item x. Show that for any sufficiently large R, the probability
that x is stored in A[h(x) +R] is at most exp(−Ω(R)).

Hint: For some L ≥ 0, bound the probability that A[h(x)− L], . . . , A[h(x) + R − 1]
are all occupied, and A[h(x) − L − 1] is empty. What is the possible range of hash
values of the items stored in these slots?

Extra Credit:

§1 Show that for linear probing, when m = (1+ ϵ)n, the expected time to insert the last
item is Θ(ϵ−2).


