
Princeton Univ. F’24 COS 597b: Recent Advances in Graph Algorithms

Lecture 5: (α, ϕ)-Boundary Linked Expander Decomposition

Lecturer: Huacheng Yu Scribe: Baris Onat

Notation

Let’s first go over the notation used in this lecture note. Given graph G = (V,E), let n = |V |
and m = |E|. For vertex sets A,B ⊆ V (G), let E(A,B) denote the edges in between the
vertices of A and B, formally E(A,B) := {(u, v) ∈ E(G) | u ∈ A, v ∈ B}. Define the
volume of a subset as the sum of degrees of each vertex in the subset. For A ⊆ V (G),
vol(A) :=

∑
a∈A deg(a). The O-Tilde notation Õ(n) represents O(polylog(n)).

Recap of Last Lecture

In the last lecture, we defined the (α, ϕ)-boundary linked expander decomposition ((α, ϕ)-
ED) as a vertex partition U = {Ui}ni=1 with corresponding ϕi ≥ ϕ such that the following
holds:

•
∑

i |E(Ui, V \ Ui)| ≤ Õ(ϕ ·m).

• ∀i, G[Ui]
α/ϕ is a ϕi-expander. Remember that G[Ui]

α/ϕ refers to the induced graph
on the vertex set Ui plus some self-loops. More accurately, for edges going out of Ui,
we add α/ϕ many self-loops to the endpoint in Ui. Observe that the addition of these
self-loops increases the volume of Ui.

• ∀i, |E(Ui, V (G) \ Ui)| ≤ Õ(ϕi · volG[Ui]).

Think of the constants as α = 1
polylog(n) and ϕ = 1

no(1) ≪ α. Remember that ”recourse”
refers to the number of edge updates to GU , denoted by ρ. Last time, we considered the
simpler case of batch updates, where we showed that this can be done in Õ(1/α) recourse
per update. In this lecture, we drop this assumption but work with sequential updates.

This Lecture

In this lecture, we will show that the expander decomposition ED can be maintained in
no(1) time per edge insertion/deletion. The following is the main idea of the algorithm:

• If there are many updates to a set U , rebuild it.

• Otherwise, find small set P such that after removing P , U \ P is a relatively good
expander. Then, remove from P from U and build an (α, ϕ)-ED for P .

We will show that identifying P and maintaining it under edge insertions/deletions is doable
with existing techniques. We will use the theorem below which we will give a sketch of its
proof at the end of the lecture:

1

2

Theorem 1. Let w = α/ϕ. Suppose G[U]w is a ϕ-expander. Then, for a sequence of online
updates, a set P of ”pruned” vertices can be maintained. Let Pi be the set P after the i-th
update. Then, the following holds:

• P0 = ∅ and Pi ⊆ Pi+1.

• volG[U]w(Pi) ≤ O(i/ϕ) and |EG(Pi,∪Pi)| ≤ O(i).

• |EG(Pi, V \ U)| ≤ O(i/α).

• Gi[U \ Pi]
w is a ϕ/38-expander.

• The total running time for k updates is Õ(k/ϕ2).

The proof of the above theorem will be done later. Now let’s outline how the algorithm
will work and use the pruned sets. Given k updates, we will have to periodically compute
the ED(P) from scratch. At all such points, we are guaranteed to have G[U \ P]w as a
ϕ/38-expander. Between all states in between the recomputations, we will use the pruning
algorithm to prune G[U \ P]w. Therefore, we will keep levels in which we will prune the
pruned set and so on. The intuition for this subroutine is that as we go down the levels,
the sets we have to maintain will get smaller and get recomputed more often.

Now let’s describe the level structure in more detail. We will keep h levels for h ≤ O(logB n)
and some constant B. At each level, we will maintain a pruned set P recursively. We will
in fact show that G[U \ ∪h

i=1Pi]
w is a ϕ/(38h)-expander. To be more clear here, Pi is a

prune set for U \
(⋃i−1

n=1 Pn

)
. At the sublevels, we work with U \P , then do a subroutine of

pruning from scratch. The goal is to maintain a (α/(38)h, ϕ/(38)h)-ED (taking into account
the self loops from w into account) at the last level.

Now we can explain the algorithm:

• The main goal is to maintain the (α, ϕ)-ED, which we will recompute every Õ(ϕ ·
vol(G)) many updates. This gives us a vertex partition Ui, where each is a ϕi expander.
This corresponds to the top level.

• Per Ui, we will maintain a pruned set P . We will recompute the (α, ϕi)-ED of Ui

every Õ(ϕi · volG(Ui)) relevant updates.

• To maintain P efficiently, we will maintain a (α, ϕi)-ED on P , which will be recom-
puted for every Õ(1

Bϕi · volG(Ui)) many relevant updates.

• Remember that G[Ui\P] is a ϕ/38-expander. When necessary, we will remove P from
U . In this case, we will need to maintain the prune set P ′ ⊆ Ui \ P , which we will do
by similarly maintaining an ED of P ′, recomputed periodically.

• We will maintain h many such levels. At the h-th level, we have a ϕ/38h expander to
maintain.

The runtime and recourse calculation of the algorithm is quite technical. We will instead
focus on the amortized time analysis.

3

Amortized Time Analysis

Let’s outline the time and recourse per operation for each level of the algorithm:

• In the top level where we maintain a (α, ϕ)-ED, we spend 1/ϕo(1) time per operation
and Õ(1) recourse per operation.

• In the second level, where we maintain P ⊆ Ui, we will similarly have 1/ϕo(1) time
per operation and Õ(1) recourse per operation.

• In the next level where we maintain P ′ ⊆ (Ui \P), we will spend B(1/ϕ)o(1) time per
operation and Õ(B/α) recourse per operation.

• In the last level, we will have B(1/ϕ)o(1)38o(h) time per operation and Õ((B/α)·38o(h))
recourse per operation.

This analysis shows that the last level is the bottleneck of the algorithm because it is
recomputed the most often. As we go down the levels of the algorithm, we will recompute
the ED more frequently. This outlines a method for maintaining the (α, ϕ)-ED by dividing
the task into subroutines.

Maintaining the Pruned Set P

Initially, ∀S ⊆ U , volG[U]w(S) ≤ 1
2volG[U]w(U) and |E(S,U \ S)| ≥ ϕ · vol(S). We want

to mainly a slightly lower expansion throughout the edge updates, mainly |E(S,U \ S)| ≥
(ϕ/38)·vol(S). Observe that this bound breaks if |E(S,U \S)| decreases by Ω(1), a constant
factor, or vol(S) increases by a constant factor. The following are bad conditions that could
break the inequality:

• Delete a cut edge: the LHS goes down by 1.

• Insert an edge inside S: the RHS goes up by O(ϕ).

• Insert an outgoing edge from S, the RHS goes up by O(α).

We will solve this issue by solving the following max-flow problem:

• Each edge of G has capacity 1/ϕ, each vertex v connects to the sink with an edge
with capacity equal to volG[U]w(v).

• Whenever there is an update to the edge (u, v) ∈ E(G), send 10/ϕ flow to u and v.

It might be the case that the max flow is equal to the total capacity from S. Then, we will
have for all S, (number of updates relevant to S)10ϕ ≤ vol(S)+ |E(S,U \S)| 1ϕ . This implies
that G is still a Ω(ϕ)-expander.

However, it might be the case that the max flow is no longer equal to the total ca-
pacity from S. Then, we can use the push relabel algorithm to find some S such that
(number of updates relevant to S)10ϕ ≥ Ω(vol(S))+1. Therefore, we can identify and main-
tain the prune set P by solving the appropriate max-flow problem.

4

References

1. Gramoz Goranci et al. “The expander hierarchy and its applications to dynamic graph
algorithms”. In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’21. Virtual Event, Virginia: Society for Industrial and
Applied Mathematics, 2021, pp. 2212–2228. isbn: 9781611976465.

