
Princeton Univ Fall ’22 COS 521:Advanced Algorithms

Homework 3

Out: Oct 11 Due: Oct 31

Instructions:

• Upload your solutions (to the non-extra-credit) to each problem as a single PDF
file (one PDF total) to Gradescope. Please make sure you are uploading the correct
PDF! Please anonymize your submission (i.e., do not list your name in the PDF), but
if you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1



2

Problems:

§1 We say a random variable Z is subgamma with parameters (σ2, B), if

E
[
eλ(Z−E[Z])

]
≤ eλ

2σ2/2,

for all |λ| ≤ B.

(a) Let Z1, . . . , Zm be independent subgamma random variables with parameters
(σ2

i , Bi) respectively for i ∈ [m]. Prove that
∑

i∈[m] Zi is subgamma with param-

eters (
∑

i∈[m] σ
2
i ,mini∈[m]Bi).

(b) Show that if Z is subgamma with parameters (σ2, B), then for any t > 0, both

Pr[Z − E[Z] > t] and Pr[Z − E[Z] < −t] are at most max

{
e−

t2

2σ2 , e−
tB
2

}
.

(c) Let Z be a geometric random variable such that Pr[Z = k] = p · (1 − p)k−1 for
all integers k ≥ 1. Prove that Z is subgamma with parameters (2/p2, p/2).

Hint: The following two inequalities may be useful: ex ≥ 1+x for all x ∈ R and
1/(1− x) ≤ ex+x2

for |x| ≤ 1/2.

§2 In this problem, we will analyze the Morris counter briefly mentioned in the lec-
ture, and prove that it solves approximate counting using O(log logN + log(1/ε) +
log log(1/δ)) bits of space.

Recall that the approximate counting problem asks us to maintain a counter n (ini-
tialized to 0) up to N , supporting

• inc(): n← n+ 1;

• query(): output ñ such that Pr[|ñ− n| > εn] < δ.

A Morris counter has a parameter α > 0. It maintains a variable X, initialized to 0.
Each time inc() is called, X is incremented to X + 1 with probability (1 + α)−X .
When query() is called, it returns ñ(X) = ((1 + α)X − 1)/α.

(a) Let Yk be the random variable denoting the number of inc() calls needed to
increment X from k− 1 to k. Derive the probability distribution of each Yk, and
prove that it is subgamma for some parameters (σ2

k, Bk).

(b) When αn > C for a sufficiently large constant C, prove that after n inc() calls,
ñ(X) < (1− ε)n with probability at most e−Ω(ε2/α).

We can prove a similar upper bound on the probability that ñ(X) > (1 + ε)n,
and you may use this bound without a proof in (c).

(c) Given N, ε, δ, choose the right parameters T and α, and prove that the Morris
counter, together with an exact counter when n ≤ T using O(log T ) bits, solves
approximate counting with O(log logN + log(1/ε) + log log(1/δ)) bits.



3

§3 The ℓ1 distance between vectors x, y ∈ Rd is defined as ∥x − y∥1 =
∑d

i=1 |xi − yi|.
Consider the Johnson-Lindenstrauss dimensionality reduction method described in
lecture: x→ Πx where each entry in Π ∈ Rm×d equals

Πij = c · gij ,

for some fixed scaling factor c and gij ∼ N (0, 1). Describe an example (i.e., a set of
points in Rd) which shows that, for any choice of c, this method does not preserve ℓ1
distances, even within a factor of 2. You may pick a single d for your example.

Hint: You may want to use the fact that this choice of Π preserves ℓ2 distances.

§4 Given a data matrix X ∈ Rn×d with n rows (data points) x1, . . . , xn ∈ Rd, the k-
means clustering problem asks us to find a partition of our points into k disjoint sets
(clusters) C1, . . . Ck ⊆ {1, . . . , n} with

⋃k
j=1 Cj = {1, . . . , n}.

Let cj =
1

|Cj |
∑

i∈Cj xi be the centroid of cluster j. We want to choose our clusters to

minimize the sum of squared distances from every point to its cluster centroid. I.e.
we want to choose C1, . . . Ck to minimize:

fX(C1, . . . Ck) =
k∑

j=1

∑
i∈Cj

∥cj − xi∥22.

There are a number of algorithms for solving the k-means clustering problem. They
typically run more slowly for higher dimensional data points, i.e. when d is larger.
In this problem we consider what sort of approximation we can achieve if we instead
solve the problem using dimensionality reduced vectors in place of x1, . . . , xn.

Let OPTX = minC1,...Ck fX(C1, . . . Ck).
Suppose that Π is a Johnson-Lindenstrauss map into s = O(log n/ϵ2) dimensions and
that we select the optimal set of clusters for Πx1, . . . ,Πxn. Call these clusters them
C̃1, . . . C̃k. Show that they obtain objective value fX(C̃1, . . . C̃k) ≤ (1 + ϵ)OPTX , with
high probability.

Hint: reformulate the objective function to only involve ℓ2 distances between data
points.

§5 In class, we saw that for any graph on n vertices, there exists a (2k − 1)-spanner
with O(n1+1/k) edges. Prove that there exists some graph G, for which there is no
(k − 1)-spanner with O(n1+1/k) edges.

Hint: Consider a random graphG where every pair (u, v) has an edge with probability
p ≈ 1/n1−1/k independently.

Extra Credit:

§1 (Extra credit) Let Π ∈ Rd×m be a sparse random matrix such that every column has
exactly s random non-zero entries, and every non-zero entry is a random ±1/

√
s. In



4

class, we stated (without a proof) that by setting d = O(ε−2 log(1/δ)) and s = O(εd),
we have that ∀x ∈ Rm,

Pr
Π
[∥Π∥22 = (1± ε)∥x∥22] > 1− δ.

Prove that if we put a random Guassian N (0, 1/s) in every non-zero entry instead of
±1/
√
s, we will not have the same guarantee.


