
Princeton Univ Fall ’22 COS 521:Advanced Algorithms

Homework 1

Out: Sep 12 Due: Sep 26

Instructions:

� Upload your solutions (to the non-extra-credit) to each problem as a single PDF
file (one PDF total) to Gradescope. Please make sure you are uploading the correct
PDF! Please anonymize your submission (i.e., do not list your name in the PDF), but
if you forget, it’s OK.

� If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

� You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

� For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

� A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

� You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

� Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1



2

Problems:

§1 Prove that (the natural variant of) Karger’s algorithm does not work for finding the
minimum s-t cut in unweighted, undirected graphs. Specifically, design an unweighted,
undirected graph G (with no parallel edges), with two nodes s, t, such that repeat-
edly contracting a random edge that does not contract s and t to the same
supernode outputs a minimum s-t cut with probability 2−Ω(n).1

Hint: try to prove that the algorithm works, and see which step fails. Use this to
guide your example.

§2 A cut is said to be a B-approximate min cut if the number of edges in it is at most B
times that of the minimum cut. Show that all undirected graphs have at most (2n)2B

cuts that are B-approximate.

Hint: Run Karger’s algorithm until it has 2B supernodes. What is the chance that
a particular B-approximate cut is still available? How many possible cuts does this
collapsed graph have?

§3 Recall the max-flow problem from undergraduate algorithms: for a directed graph
G(V,E) with non-negative capacities ce for every e ∈ E and two special vertices s
(source, with no incoming edges) and t (sink, with no outgoing edges), a flow in G is
an assignment f : E → R≥0 such that f(e) ≤ ce for every edge and for every vertex
v ∈ V \ {s, t}, the total incoming flow

∑
(u,v)∈E f((u, v)) equals the total outgoing

flow
∑

(v,w)∈E f((v, w)). The task is to find a maximum flow f i.e., a flow f such that∑
(s,u)∈E f((s, u)) is maximized.

(a) Show that the following LP is a valid formulation for computing the value of
the maximum flow in G. There is a variable f((u, v)) for all (u, v) ∈ E. (Hint:
below, the inequality between the flows is not a typo. You should show that it
is w.l.o.g. to replace the equality with inequality, as this will make it easier to
reason about later parts.)

max
∑
u

f((u, t))

∀e = (u, v) ∈ E, f((u, v)) ≤ ce

∀v /∈ {s, t},
∑

(u,v)∈E

f((u, v)) ≥
∑

(v,w)∈E

f((v, w))

∀e ∈ E, f(e) ≥ 0 (1)

(b) Write the dual for the LP (1). Show that this dual LP computes the minimum
fractional s-t cut in G. A fractional cut places each node v at some point yv
on the unit interval [0, 1]. The value of the fractional cut is

∑
(u,v)∈E(G) ce ·

max{0, yv − yu} (where ce is the weight of edge e). Use strong LP duality to
conclude the fractional max-flow min-cut theorem. That is, if the max-flow is
C, there exists a fractional s-t cut of value C, and no fractional s-t cut of value
< C.

1To be clear: the algorithm is guaranteed to output an s-t cut, it just might not be the minimum.



3

(c) Devise a rounding scheme that takes as input a fractional min-cut of value C
and outputs a true (deterministic) min-cut of value C. (Hint: there is a simple
rounding scheme that works, but it is not a rounding scheme we have already seen
in class. You might want to first construct a randomized min-cut.) Conclude the
max-flow min-cut theorem.

§4 In class we designed a 3/4-approximation for MAX-2SAT using LP rounding. The
MAX-SAT problem is similar except for the fact that the clauses can contain any
number of literals. Formally, the input consists of n boolean variables x1, x2, . . . , xn
(each may be either 0 (false) or 1 (true)), m clauses C1, C2, . . . , Cm (each of which
consists of disjunction (an “or”) of some number variables or their negations) and a
non-negative weight wi for each clause. The objective is to find an assignment of 1 or
0 to xis that maximize the total weight of satisfied clauses. As we saw in the class, a
clause is satisfied if one of its non-negated variable is set to 1, or one of the negated
variable is set to 0. You can assume that no literal is repeated in a clause and at most
one of xi or ¬xi appears in any clause.

(a) Generalize the LP relaxation for MAX-2SAT seen in the class to obtain a LP
relaxation of the MAX-SAT problem.

(b) Use the standard randomized rounding algorithm (the same one we used in class
for MAX-2SAT) on the LP-relaxation you designed in part (1) to give a (1−1/e)
approximation algorithm for MAX-SAT. Recall that clauses can be of any length.
(Hint: there is a clean way to resolve “the math” without excessive calculations).

(c) A naive algorithm for MAX-SAT problem is to set each variable to true with
probability 1/2 (without writing any LP). It is easy to see that this unbiased
randomized algorithm of MAX-SAT achieves 1/2-approximation in expectation.
Show the algorithm that returns the best of two solutions given by the ran-
domized rounding of the LP and the simple unbiased randomized algorithm is
a 3/4-approximation algorithm of MAX-SAT. (Hint: it may help to realize that
in fact randomly selecting one of these two algorithms to run also gives a 3/4-
approximation in expectation).

(d) Using the previous part (and in particular, the hint) for intuition, design a direct
rounding scheme of your LP relaxation to get a 3/4-approximation (that is,
design a function f(·) which assigns a literal xi to be true independently with
probability f(z) when the corresponding variable zi in your LP relaxation is
equal to z). (Hint: here, it may get messy to fully resolve the calculations. You
will get full credit if you state the correct rounding scheme and clearly state the
necessary inequalities for the proof. You should also attempt to show that the
inequalities hold for your own benefit, but not for full credit).

§5 (Firehouse location) Suppose we model a city as an m-point finite metric space with
d(x, y) denoting the distance between points x, y. These

(
m
2

)
distances (which satisfy

triangle inequality) are given as part of the input. The city has n houses located at
points v1, v2, . . . , vn in this metric space. The city wishes to build k firehouses and asks
you to help find the best locations c1, c2, . . . , ck for them, which can be located at any



4

of the m points in the city. The happiness of a town resident with the final locations
depends upon his distance from the closest firehouse. So you decide to minimize the
cost function

∑n
i=1 d(vi, ui) where ui ∈ {c1, c2, . . . , ck} is the firehouse closest to vi.

Describe an LP-rounding-based algorithm that runs in poly(m) time and solves this
problem approximately. If OPT is the optimum cost of a solution with k firehouses,
your solution is allowed to use O(k log n) firehouses and have cost at most OPT.2

Specifically, you should design an algorithm which runs in polynomial time, and uses
O(k log n) firehouses in expectation, and also has cost at most OPT in expectation.3

Extra Credit:

§1 (extra credit) In a combinatorial auction there are n bidders and m items. Bidder i
has a monotone valuation function vi(·) where vi(S) denotes their value for set S of
items (and vi(S∪T ) ≥ vi(S) for all S, T ). A Walrasian Equilibrium is a price for each
item ~p such that:

� Each buyer i selects to purchase a set Bi ∈ arg maxS{vi(S)−
∑

j∈S pj}.
� The sets Bi are disjoint, and ∪iBi = [m].

Prove that a Walrasian equilibrium exists for v1, . . . , vn if and only if the optimum of
the LP relaxation below (called the configuration LP) is achieved at an integral point
(i.e. where each xi,S ∈ {0, 1}). Hint: use strong duality!

max
∑
i

∑
S

vi(S) · xi,S

∀i,
∑
S

xi,S = 1

∀j,
∑
S3j

∑
i

xi,S ≤ 1

Also, come up with an example of two valuation functions v1, v2 over two items where
a Walrasian equilibrium doesn’t exist.

2The term for an approximation guarantee like this is resource augmentation — the solution is as good
as the optimum, but it requires additional firehouses.

3You may want to briefly think about how to modify your solution to run in expected polynomial time
and use O(k logn) firehouses with probability one, or how to run in expected polynomial time and guarantee
a solution with cost (1 + ε)OPT with probability one (or both). But you do not need to write this for full
credit.


