
COS 597J Streaming and Sketching Algorithms (Fall 2021)

Problem Set

Things to note before you start:

• Problems will be added to this pset as the course progresses. You are expected to work on (12 ±
1
4)-

fraction of the problems in total. You will submit all your solutions in one single PDF, by 23:59
November 30, 2021 EST. Please make it clear which problem each solution corresponds to.

• We will prove one single result in each problem, with the main steps outlined as subproblems. Some-
times the subproblems are stated informally on purpose. You will have to figure out the exact statement
that you can prove and is useful towards the final goal (the final goal will always be precisely stated).
However, if you have a different proof that does not follow the predesigned route, feel free to use it.

• The solutions to most problems are likely to exist somewhere on the Internet. Looking up for the
solutions is strongly discouraged, but allowed. In any case, you must phrase your solutions in your
own words. If you read any articles (e.g., paper, blog post, stackexchange, ...) that eventually help you
in solving the problems, please list them in the reference. Please also acknowledge anyone with whom
you had discussions.

This version contains all problems!

1

Problem 1. In this problem, we will analyze the Morris counter mentioned in the lecture, and prove that
it solves approximate counting using O(log logN + log(1/ε) + log log(1/δ)) bits of space.

Recall that the approximate counting problem asks us to maintain a counter n up to N , supporting

• inc(): n← n+ 1;

• query(): output an estimate ñ such that Pr[|ñ− n| > εn] < δ.

A Morris counter has a parameter α > 0. It maintains a variable X, initialized to 0. Each time inc() is
called, X is incremented to X+1 with probability (1+α)−X . To answer query(), it returns ((1+α)X−1)/α.

1. Let Yk be the random variable denoting the number of inc() calls needed to increment X from k − 1
to k. Derive the probability distribution of each Yk.

2. We say a random variable Z is subgamma with parameters σ,B, if

E
[
eλ(Z−E[Z])

]
≤ eλ

2σ2/2,

for all |λ| < B. Show that each Yk is subgamma for some σk, Bk.

3. Show that the sum of independent subgamma random variables is also subgamma.

4. Show that if Z is subgamma with parameters σ,B, then for any t > 0, both Pr[Z − E[Z] > t] and

Pr[Z − E[Z] < −t] are at most max
{
e−

t2

2σ2 , e−
tB
2

}
.

5. Fix n greater than some threshold T . Show that the probability that after n inc() calls, X is still too
small is low, and that the probability that after n inc() calls, X is already too large is low.

6. Choose the right parameters T and α for N, ε, δ. Conclude that by also maintaining the exact count up
to n = T , the Morris counter solves approximate counting using O(log logN + log(1/ε) + log log(1/δ))
bits.

2

Problem 2. In this problem, we will show how to improve the space usage of the FM sketch toO(ε−2 log(1/δ)+
log log n) bits, still assuming free access to random functions.

Recall that one FM sketch uses a random h : [n] → N, where Pr [h(x) = i] = 2−(i+1) for all x ∈ [n]
and i ≥ 0, and maintains R, the maximum h-value it sees. We maintain a total of t = O(ε−2 log(1/δ))
independent FM sketches, and apply median-of-means at the end of the stream. Let Ri be R in the i-th
sketch (i = 1, . . . , t). In the following, we will show that there is a space-efficient way to store all Ri.

1. At any given point, let F be the number of distinct elements in the stream so far. Let ∆i := Ri−⌊logF ⌋.
Show that with probability at least 1− 2−t/ log n, ∆1, . . . ,∆t can be stored using c · (t+ log log n) bits
for some absolute constant c > 0:

(a) Upper bound the tail probabilities Pr[log |∆i| ≥ D] for D ≥ 1 (shown in the lecture).

(b) Let S > 0. Show that if
∑t

i=1 log |∆i| > S, then there must exist some k ≥ 1 such that at least
2−kt ∆i have log |∆i| ≥ S · 2k/2/(4t).

(c) Upper bound the probability that
∑t

i=1 log |∆i| ≥ S.

2. Show that suppose we know the value of ⌊logF ⌋ at every point of the stream, then all Ri can be
maintained with probability ≥ 1− δ using space O(t+ log log n).

3. Show that even if we don’t know ⌊logF ⌋, all Ri can still be maintained with probability ≥ 1− δ using
space O(t+ log log n), and conclude.

3

Problem 3. In this problem, we will show that any algorithm that can approximate the number of distinct
elements F up to 1± ε relative error with constant probability must use Ω(ε−2) bits of space.

To prove this space lower bound, we will make a reduction from a (one-way) communication problem,
called Gap-Hamming. Recall the Hamming distance between two binary strings, ∆(x, y) := |{i : xi ̸= yi}|,
is the number of bits where they differ. In this communication problem, two players Alice and Bob receive,
as inputs, d-bit binary strings x and y respectively. It is promised that either ∆(x, y) ≤ d/2 −

√
d, or

∆(x, y) ≥ d/2+
√
d. Then Alice sends one message M to Bob, and Bob needs to decide which case they are

in. We will show later that the (one-way) randomized communication complexity with public randomness
of Gap-Hamming is at least Ω(d).

1. Assuming this Gap-Hamming communication lower bound, prove the claimed distinct elements lower
bound.

2. Let a ∈ {−1, 1}d′
be fixed, and u ∈ {−1, 1}d′

be uniformly random, for some odd d′ ≥ 1. Also
fix i ∈ [d′], let ei be the unit vector (0, . . . , 1, . . . , 0) with the only 1 in coordinate i. Compute the
probability that ⟨a, u⟩ and ⟨ei, u⟩ have the same sign. Note that since d′ is odd, the inner products
must be nonzero.

3. (Probabilistically) reduce the INDEX problem on d′ bits to Gap-Hamming on d bits for d = O(d′),
assuming public randomness.

4. Conclude by applying the INDEX lower bound.

4

In the next three problems, we will prove that ℓp-norm estimation for constant p requires Ω(n1−3/p)
bits of space, even in the insertion-only setting. Note that in class, we mentioned that the best known lower
bound is Ω(n1−2/p). The proof uses information theory.

• In Problem 4, we will prove basic facts in information theory;

• In Problem 5 and 6, we will use them to prove the space lower bound.

If you are familiar with information theory, you may also skip this problem. Solving Problem 5 and 6
automatically gives you credit on Problem 4.

Problem 4. All logarithms in this problem are with respect to base 2.

1. (Entropy) Let X be a random variable taking values in [n]. Then the entropy of X is

H(X) :=
∑

X∈[n]

Pr[X = x] log(1/Pr[X = x]).

It measures “how random X is”.

(a) Show that 0 ≤ H(X) ≤ log n. When do we have the equalities?

(b) Let (X,X) ∈ [n]2, how does H(X,X) compare to H(X)?

(c) Let (X,Y) ∈ [n]2 be jointly distributed, show that H(X,Y) ≤ H(X) +H(Y).

2. (Conditional entropy) Let X be a random variable, and let W be an event. The entropy of X condi-
tioned on W is

H(X |W) :=
∑
x

Pr[X = x |W] log(1/Pr[X = x |W]).

Let Y be another random variable. The entropy of X conditioned on Y is

H(X | Y) :=
∑
y

Pr[Y = y] ·H(X | Y = y).

(Note that Y = y is an event.)

(a) Show that H(X | Y) ≤ H(X). When do we have the equality? Is H(X |W) also always at most
H(X)?

(b) Show that H(X | Y) = H(X,Y)−H(Y).

3. (Mutual information) Let X,Y be two random variables. Their mutual information is

I(X;Y) := H(X)−H(X | Y).

It measures “how much information Y reveals about X”, i.e., “how much less random X becomes
after seeing Y .” Similarly, let Z be a random variable, the mutual information between X and Y
conditioned on Z is

I(X;Y | Z) := H(X | Z)−H(X | Y,Z).

(a) Show that I(X;Y) = I(Y ;X), and I(X;Y) ≤ H(Y).

(b) When is I(X;Y) zero?

4. (Chain rule) Let X,Y1, Y2, . . . , Yn be random variables. Show that

I(X;Y1, Y2, . . . , Yn) = I(X;Y1) + I(X;Y2 | Y1) + · · ·+ I(X;Yn | Y1, . . . , Yn−1).

When Y1, Y2, . . . , Yn are independent, show that

I(X;Y1, Y2, . . . , Yn) ≥ I(X;Y1) + I(X;Y2) + · · ·+ I(X;Yn).

5

5. (KL divergence) Let P,Q be two distributions over [n]. Then the KL divergence from Q to P is

DKL(P ∥Q) :=
∑
x∈[n]

P (x) log
P (x)

Q(x)
.

When Q is the prior distribution of some random variable X and P is the posterior distribution after
an observation, the KL divergence can measure how “surprised” you are about the observation (in
terms of X), e.g., you are infinitely surprised if P has non-zero mass outside the support of Q, you are
not surprised if P = Q.

(a) Show that DKL(P ∥Q) ≥ 0.

(b) Show that I(X;Y) =
∑

y Pr[Y = y] ·DKL(dist(X | Y = y) ∥ dist(X)), where dist(X) denotes the
distribution of X, and dist(X | Y = y) denotes the distribution of X conditioned on Y = y.

(c) (Pinsker’s inequality) Show that

DTV(P,Q) ≤
√
2DKL(P ∥Q),

where DTV(P,Q) :=
∑

x |P (x)−Q(x)| is the total variation distance.

6

The proof is a reduction from a communication problem, which we call RandomVsOne. RandomV-
sOne has t players, P1, . . . , Pt. Each player Pi receives one bit Xi ∈ {0, 1}. Moreover, it is guaranteed that
(X1, . . . , Xt) are jointly sampled from either

• Drand: Pr[Xi = 1] = t−1 independently, or

• Done: X1 = X2 = · · · = Xt = 1 (not random).

In the RandomVsOne problem, P1 first sends a message M1 to P2, then P2 sends a message M2 to P3, and
so forth. The goal of the players is to decide which case they are in. Finally, Pt will output Mt, which must
be either rand or one. If the inputs are sampled from Drand [resp. Done], Pt must output rand [resp. one]
with probability at least 0.9. We allow each player to be random, but will assume that there is no public
randomness.

Instead of considering the number of bits in M1, . . . ,Mt, we will study its information cost on Drand. Fix
such a (randomized) protocol, and consider the joint distribution (X1, . . . , Xt,M1, . . . ,Mt) where (X1, . . . , Xt) ∼
Drand. The information cost of the protocol is defined as

IC := I(X1, . . . , Xt;M1, . . . ,Mt),

i.e., the amount information the messages reveal about the inputs. The messages may be arbitrarily long,
and we only consider if they have low mutual information with the inputs.

The streaming lower bound proof will consist of two steps:

(I) prove that if there is a streaming algorithm for ℓp-norm estimation with ε · n1−3/p bits of space, then
there is a protocol for RandomVsOne with information cost O(ε/t2);

(II) prove that any protocol for RandomVsOne must have information cost Ω(1/t2).

The two steps together imply the desired Ω(n1−3/p) lower bound.

Problem 5. In this problem, we will complete step (I) above. To this end, consider the n-fold RandomV-

sOne problem, which we denote by RandomVsOnen. For i = 1, . . . , t, player Pi gets X
(1)
i , . . . , X

(n)
i ∈

{0, 1}. For each j = 1, . . . , n, let X(j) = (X
(j)
1 , . . . , X

(j)
t). It is guaranteed that (X(1), . . . , X(n)) is sampled

from either

• Dn
rand: all X

(j) ∼ Drand independently, or

• Dn
one: for one uniformly random j∗ ∈ {1, . . . , n}, X(j∗) ∼ Done, and all other X(j) ∼ Drand indepen-

dently conditioned on j∗.

Similarly to RandomVsOne, the goal is to decide which distribution their inputs are sampled from, by
sending one message to the next player in order.

1. Prove that if there is a streaming algorithm that approximates the ℓp-norm of the frequency vector x
within a factor of 2 with probability 0.95 using S bits of space, then there is a protocol that solves
RandomVsOnen with probability 0.9 where each player sends a message of at most S bits (for
appropriate value of t).

2. Fix a protocol for RandomVsOnen, where each player Pi sends a message Mi of at most S bits to
the next player (and Mt is the output). When (X(1), . . . , X(n)) ∼ Dn

rand, show that

E
j

[
I(X

(j)
1 , . . . , X

(j)
t ;M1, . . . ,Mt)

]
≤ St/n,

where j is a uniformly random index in {1, . . . , n}.

3. Show that given a protocol for RandomVsOnen where each player sends few bits, one can design a
protocol for RandomVsOne with low information cost.

4. Conclude step (I) and state what you prove as a lemma.

7

Problem 6. In this problem, we will complete step (II) above. Fix a protocol for RandomVsOne. Consider
the joint distribution of (X1, . . . , Xt,M1, . . . ,Mt), where (X1, . . . , Xt) ∼ Drand and (M1, . . . ,Mt) is generated
by the protocol given (X1, . . . , Xt).

1. Denote (M1, . . . ,Mi−1) by M<i. Show that the information cost is equal to

IC =

t∑
i=1

I(Xi;Mi |M<i).

2. For i = 1, . . . , t, let ϵi = I(Xi;Mi |M<i). Let P (M<i) be the distribution of Mi conditioned on M<i,
and Q(M<i) be the distribution of Mi conditioned on M<i and Xi = 1. Show that

E
M<i

[DTV(P (M<i), Q(M<i))] ≤ O(
√
tϵi),

where DTV(·, ·) is the total variation distance.

3. Show that if IC < ε/t2 for a sufficiently small constant ε > 0, then the protocol cannot distinguish
between Drand and Done with probability 0.9. (If you also solved Problem 5, combine the lemmas you
proved and conclude.)

8

Problem 7. In this problem, we will prove that the number of distinct elements can be approximated within
a factor of 1±ε using O(ε−2 log2 n) bits with 0.9 probability in turnstile streaming, assuming the coordinates
of the final vector x are at most M for M ≤ poly n. Recall that in turnstile streaming, the number of distinct
elements is the number of nonzero coordinates in x, which is the frequency vector.

1. Let P be a degree n polynomial over Fp for prime p≫ n. Upper bound the probability that P (y) = 0
for a uniformly random y ∈ Fp.

2. Show that there is a linear sketch using space O(log n) that can test if the final vector x ∈ Zn is 0 with
error probability 1/poly n, assuming the coordinates of x are at most M .

3. Show that there is an algorithm for counting distinct elements in turnstile streaming with the claimed
space usage.

9

Problem 8. In this problem, we prove a lower bound for the SupportFinding problem. We will show that
any streaming algorithm that finds an index i ∈ [n] with xi ̸= 0 with 0.9 probability in turnstile streaming
must use Ω(log2 n) bits.

Consider the following communication problem with two players, called universal relation (UR⊂). Alice
gets a set S ⊆ [n], and Bob gets T ⊊ S. Assume that they have shared public randomness. Alice sends one
message M to Bob, and the goal is for Bob to output some element in S \ T with probability 0.9. We will
show that the length of M must be at least Ω(log2 n) bits.

1. Assuming the above communication lower bound for UR⊂, prove the claimed streaming space lower
bound.

2. Show that for UR⊂, we may assume without loss of generality, that conditioned on the output a ∈ S\T ,
a is a uniformly random element in S \ T .

3. Imagine that S = S1∪S2∪· · · such that |Si| = Θ(
√
n ·8−i), and all Si are disjoint. We further assume

that T is the union of S1 ∪ S2 ∪ · · · ∪ Si for some i that Alice does not know. Analyze the behavior of
a correct protocol on such instances, and reduce UR⊂ from Augmented-Index.
(Recall that in Augmented-Index, Alice gets a vector x ∈ Cd for some set C, and Bob gets t ∈ [d],
and x1, . . . , xt−1. The problem asks Alice to send one message to Bob so that Bob can recover xt with
constant probability.)

4. Conclude by applying the Augmented-Index lower bound mentioned in Lecture 7 (you don’t need
to (re)prove it).

10

Problem 9. In this problem, we show that ℓ2-norm estimation can be solved in the sliding window streaming
model. In sliding window streaming, we receive a stream of elements, and maintain some function of the
substream of the latest T elements. For ℓ2-norm estimation, the stream consists of a1, a2, . . . , am ∈ [n].
For every k ≥ T , let x(k) ∈ Zn be the frequency vector of the substream ak−T+1, . . . , ak. We will show
that there is an algorithm using poly(ε−1, log n) bits such that with probability 1 − 1/nΩ(1), it outputs an
(1± ε)-approximation to ∥x(k)∥22 after seeing ak for all k ≥ T .

In this problem, we assume that T is known to the algorithm from the beginning, and m ≤ poly n.

1. Let x, y, z ∈ Zn such that yi ≥ xi ≥ 0 and zi ≥ 0 for all i ∈ [n]. Show that for δ ∈ (0, 1/2), if
∥y∥22 ≤ (1 + δ)∥x∥22, then

∥y + z∥22 ≤ (1 +O(
√
δ))∥x+ z∥22.

2. Let k be the length of stream we have processed so far. Show that we can maintain a list k = k0 >
k1 > k2 > · · · and approximations to ℓ2-norms of the substreams aki , . . . , ak for every i, such that
∥x(k)∥22 can be approximated from the list, and conclude.

3. (Optional) Show that if the stream consists of turnstile updates (i,∆), then ℓ2-norm estimation in
sliding window cannot be solved using o(n) space.

11

Problem 10. In this problem, we are going to prove that one can track the ℓ2-norm of an insertion-only
stream using O(log n log log n) bits with multiplicative error 1±0.1 and probability 0.9. That is, the algorithm
must output the current ℓ2-norm after seeing every element with multiplicative error 1 ± 0.1 (all outputs
must be simultaneously accurate with 0.9 probability). Recall that the AMS sketch solves ℓ2-estimation with
error 1 ± ε and probability 1 − δ using space O(ε−2 log n log(1/δ)). Thus, by setting δ = 1/poly n, ε = 0.1
and applying a union bound, the ℓ2-norm of the stream can be tracked using O(log2 n) bits. We will show
that we only need an extra factor of log log n.1

In this problem, we assume that the length of the stream m is at most poly n. For t = 0, . . . ,m, let x(t)

be the frequency vector at time t. For simplicity, we are going to assume that the algorithm has free access
to random bits.

1. Let σ1, . . . , σn ∈ {−1, 1} be independently random signs, σ = (σ1, . . . , σn), and let x(0), x(1), x(2), . . . , x(t) ∈
Rn be fixed vectors such that 0 = x(0) ≤ x(1) ≤ x(2) ≤ · · · ≤ x(t) coordinate-wisely. Show that there
exists a constant C > 0 such that

Pr
σ

[
sup

1≤j≤t

∣∣∣〈σ, x(j)
〉∣∣∣ > C ·

√
log(1/δ)∥x(t)∥2

]
< δ,

for all δ ∈ (0, 1/2), as follows.

(a) Fix an integer constant c ≤ t. Show that there exist integers t0 < t1 < t2 < · · · < tc such that
t0 = 0, tc = t and ∥x(ti−1) − x(ti−1)∥22 ≤ 1

c · ∥x
(t)∥22 for i = 1, . . . , c. Show that

Pr
σ

[
sup

j∈{t0,...,tc}

∣∣∣〈σ, x(j)
〉∣∣∣ > C/2 ·

√
log(1/δ)∥x(t)∥2

]
< δ/2,

by Hoeffding’s inequality and union bound.

(b) Fix an integer c′, which depends on c. For i = 0, . . . , c − 1, suppose c′ ≤ ti+1 − ti, show that
there exist integers ti,0 < · · · < ti,c′ such that ti,0 = ti, ti,c′ = ti+1 and ∥x(ti,i′−1) − x(ti,i′−1)∥22 ≤
1
c′ ∥x

(ti+1−1) − x(ti)∥22 for i′ = 1, . . . , c′. Show that

Pr
σ

[
∃i ∈ [c], sup

j∈{ti,0,...,ti,c′}

∣∣∣〈σ, x(j) − x(ti)
〉∣∣∣ > C/4 ·

√
log(1/δ)∥x(t)∥2

]
< δ/4.

(c) Prove the claim by repeatedly refining the intervals.

2. Let mi be the first time such that ∥x(mi)∥22 ≥ (1 + ε)i for ε = Θ(1/ log n). Show that the AMS sketch
with space O(log n log log n) reports accurate estimates at all times mi with high probability. Use the
first step to show that it is also accurate between all mi and mi+1 with high probability.

1In fact, there is an algorithm that does not even lose the log logn factor.

12

Problem 11. In this problem, we show that the CountSketch sketching matrix gives a version of distri-
butional Johnson-Lindenstrauss with a (very fast) multiplication time of O(∥x∥0) and output dimension
O(1/ε2δ), where ∥x∥0 is the number of nonzero entries of x. It also gives an oblivious subspace embedding
with multiplication time O(∥x∥0) and output dimension O(d2/ε2). Recall that CountSketch solves ℓ2-point
query and heavy hitters. It samples a random hash function h : [n] → [k], and a random sign function
σ : [n]→ {−1, 1}, and maintains k counters:

Sj =
∑

i∈[n]:h(i)=j

σ(i) · xi.

Denote (S1, . . . , Sk) ∈ Rk by S.

1. Given h and σ, we have S = Πx for some matrix Π ∈ Rk×n. Express Π in terms of h and σ.

2. Show that assuming random access to h and σ, given a sparse x encoded as a list of nonzero entries,
Πx can be computed in O(∥x∥0) time, encoded also as a list of nonzero entries.

3. Given x ∈ Rn, show that E[∥Πx∥22] = ∥x∥22, and bound Var[∥Πx∥22].

4. Show that for any x ∈ Rn, we have

Pr
h,σ

[
∥Πx∥22 = (1± ε)∥x∥22

]
> 1− δ,

by setting k = c/ε2δ for some constant c > 0. Show that it suffices to have constant-wise independent
h and σ.

5. Let E ⊂ Rn be a linear subspace of dimension d. Show that by setting k = c · d2/ε2 for some constant
c > 0, Π is a subspace embedding of E with probability 0.9 (constant-wise h and σ suffice), as follows.

(a) Let x, y ∈ Rn such that ⟨x, y⟩ = 0 and ∥x∥2 = ∥y∥2 = 1. Show that E
[
⟨Πx,Πy⟩2

]
≤ O(1/k).

(b) Fix an orthonormal basis {u1, . . . , ud} for E, and let U ∈ Rn×d be the matrix with columns
u1, . . . , ud. Show that

E
[
tr
(
(Id − (ΠU)⊤(ΠU))2

)]
≤ O(d2/k),

where Id is the d× d identity matrix.

(c) Show that Pr[∥Id − (ΠU)⊤(ΠU)∥op > ε] < 0.1, and conclude.

13

Problem 12. In this problem, we show that given a matrix A ∈ Rn×d encoded as a list of nonzero entries,
there is an algorithm that runs in time O(nnz(A) log n + poly d) that approximates the leverage scores of
the column space of A within a factor of 1 ± ε for constant ε > 0, where nnz(A) is the number of nonzero
entries of A (which we assume is at least n). Denote the column vectors of A by a1, . . . , ad. For simplicity,
we assume that a1, . . . , ad are linearly independent.

Let u1, . . . , ud be an orthonormal basis for the column space of A, let U = (u1, . . . , ud) ∈ Rn×d. Recall
that the i-th leverage score pi = ∥e⊤i U∥22, where ei = (0, . . . , 0, 1, 0, . . . , 0)⊤ is the i-th coordinate (column)
vector.

By Problem 11, there is an oblivious subspace embedding Π ∈ Rn×m for m = O(d2/ε2) such that given
x ∈ Rn, Πx can be computed in O(∥x∥0) time, where ∥x∥0 is the number of nonzero entries of x.2

The main idea is to first apply the oblivious subspace embedding on a1, . . . , ad to reduce the dimension to
m = O(d2/ε2), then run Gram-Schmidt orthogonalization on Πa1, . . . ,Πad to obtain an orthonormal basis.
We then show that the same process of orthogonalization on a1, . . . , ad gives a set of vectors that is almost
orthonormal, and projecting e1, . . . , en to this set gives approximations of the leverage scores.

1. The algorithm first computes Q ∈ Rm×d, R ∈ Rd×d such that

• ΠA = QR;

• Q has orthonormal columns;

• R is upper-triangular (and invertible since A has rank d).

Hence, ΠAR−1 = Q. Bound the computational time.

2. Show that ∥AR−1x∥22 = (1±O(ε))∥x∥22 for all x ∈ Rd (columns of AR−1 are almost orthonormal).

3. Since U and AR−1 have the same columns space, let T ∈ Rd×d be the matrix such that UT = AR−1.
Show that ∥Tx∥22 = (1±O(ε))∥x∥22.

4. Show that ∥e⊤i AR−1∥22 = (1±O(ε))pi (recall that T and T⊤ have the same set of singular values).

5. SinceAR−1 cannot be computed efficiently, the algorithm applies a distributional Johnson-Lindenstrauss
on the row vectors of AR−1 to reduce its dimension. Let G ∈ Rm×d such that Gi,j ∼ 1√

m
{−1, 1}. Show

that ∥e⊤i AR−1G⊤∥22 = (1±O(ε))pi for all i ∈ [n] (for a suitable value of m). Bound the computational
time.

2See also subproblem 11.1 and 11.2.

14

