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Abstract

Given an n-bit array A, the succinct rank data structure problem asks to construct a data structure
using space n + r bits for r � n, supporting rank queries of form rank(u) =

∑u−1
i=0 A[i]. In this

paper, we design a new succinct rank data structure with r = n/(log n)Ω(t) + n1−c and query time
O(t) for some constant c > 0, improving the previous best-known by Pǎtraşcu [Pǎt08], which has
r = n/( log n

t )Ω(t) + Õ(n3/4) bits of redundancy. For r > n1−c, our space-time tradeoff matches the
cell-probe lower bound by Pǎtraşcu and Viola [PV10], which asserts that r must be at least n/(log n)O(t).
Moreover, one can avoid an n1−c-bit lookup table when the data structure is implemented in the cell-
probe model, achieving r = dn/(log n)Ω(t)e. It matches the lower bound for the full range of parameters.

En route to our new data structure design, we establish an interesting connection between succinct
data structures and approximate nonnegative tensor decomposition. Our connection shows that for spe-
cific problems, to construct a space-efficient data structure, it suffices to approximate a particular tensor
by a sum of (few) nonnegative rank-1 tensors. For the rank problem, we explicitly construct such an
approximation, which yields an explicit construction of the data structure.
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Award and NSF Award CCF 1715187.



1 Introduction

Given an array A[0..n − 1] of bits, the partial sums problem (a.k.a, the rank problem) asks to preprocess
A into a data structure using as little space as possible, supporting queries of form rank(u) =

∑u−1
i=0 A[i]

efficiently. One trivial solution is to explicitly write down all prefix sums, which uses n words of space
and constant query time. In succinct data structures, one seeks data structures using space close to the
information theoretical limit, n bits for partial sums, with an efficient query time.

Succinct rank data structures are central building blocks in many succinct data structure problems with
a rich history [Jac89, CM96, Mun96, Cla97, MRR98, RRR02, GMR06, Gol07b, Pǎt08]. Jacobson [Jac89],
Clark and Munro [CM96] gave the first succinct rank data structures using n + o(n) space with constant
query time. After a series of improvements [Mun96, MRR98, RRR02], Golynski et al. [GGG+07] achieved
space n + O(n log logn

log2 n
) for constant query time. Later, the seminal paper “Succincter” by Pǎtraşcu [Pǎt08]

proposed a data structure using space n + n/( logn
t )t + Õ(n3/4) and query time O(t), showing that the

redundant bits can be any n/poly log n when query time is constant.
Lower bounds for this problem also have received attention from researchers in the area [Mil05, GM07,

Gol07a, PV10]. Most lower bounds are for “systematic encodings.” In systematic encoding, we are given an
input that is stored explicitly in the raw form, and we may then build a (sublinear) auxiliary data structure,
which will be stored on the side. The query algorithm has access to both the raw input and the auxiliary
data structure. Golyski [Gol07a] showed a space lower bound of n + (n log t)/t for query time t, for any
systematic encoding of the rank problem. For general data structures, Pǎtraşcu and Viola [PV10] proved a
space lower bound of n+ n/wO(t) for query time t in the cell-probe model with word-size w (implying the
same RAM lower bound). In the standard regime where w = Θ(log n), this space lower bound matches the
“Succincter” upper bound for constant query times.

However, if one insists on, say c0 log n/ log logn query time, for sufficiently large constant c0, then the
best-known data structure occupies at least n + n1−o(1) bits of space on a worst-case n-bit input, whereas
the state-of-the-art lower bound does not even rule out an (n + 1)-bit data structure! Closing this gap is
referred to as “a difficult problem” in [PV10].

Interestingly, we show such an (n+ 1)-bit data structure does exist, if we allow arbitrary O(w)-bit word
operations.

Theorem 1 (informal). Given an n-bit array, one can construct a data structure using

n+ d n

wΩ(t)
e

bits of memory supporting rank queries in O(t) time, where w ≥ Ω(log n) is the word-size, assuming the
data structure can perform arbitrary O(w)-bit word operations.

By applying a standard trick for self-reducible problems and storing lookup tables for the necessary
O(w)-bit word operations, this data structure can also be implemented in word RAM with an n1−c space
overhead.

Theorem 2 (informal). Given an n-bit array, one can construct a data structure using

n+
n

(log n)Ω(t)
+ n1−c

bits of memory supporting rank queries in O(t) time, in a word RAM with word-size Θ(log n), for some
universal constant c > 0.
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In particular, for query time t = c0 log n/ log logn for sufficiently large c0, Theorem 1 gives us a
data structure using only n + 1 bits of memory. Moreover, our new cell-probe data structure matches the
Pǎtraşcu-Viola lower bound for any bits of redundancy, up to a constant factor in query time. It settles the
space-time tradeoff for succinct rank in the cell-probe model. One may also observe if only exactly n bits of
memory are allowed, then there is nothing one can do beyond storing A explicitly. It is because in this case,
the data structure has to be a bijection between A and the memory contents. In particular, even to verify
whether rank(n) = 0, one has to check if the memory content corresponds to the exact all-zero input,
which requires a linear scan. However, when n+1 bits are allowed, half of the 2n+1 memory configurations
may be unused, which could potentially facilitate the query algorithm.

En route to our new succinct rank data structure construction, we establish an interesting connection
between succinct data structures and approximate nonnegative tensor decomposition. Tensors are general-
izations of matrices. An order-B tensor can be viewed as a B-dimensional array. Analogous to the rank of
a matrix, a tensor T has rank 1 if its entries can be written as

Tx1,...,xB = a(1)
x1 · a

(2)
x2 · · · a

(B)
xB
,

for vectors a(1), . . . , a(B). The rank of a tensor T is the minimum number of rank-1 tensors, of which T
can be expressed as a sum. The nonnegative rank of a nonnegative tensor further requires each rank-1 tensor
(or equivalently, each a(i)) to be nonnegative, hence is at least as large as the rank. Given a nonnegative
tensor T and parameters r, ε, the problem of approximate nonnegative tensor decomposition asks to find r
nonnegative rank-1 tensors T1, . . . ,Tr such that ‖T− (T1 + · · ·+ Tr)‖ ≤ ε under certain norm, if exists.

Connections to tensor decomposition. As we mentioned in the beginning, explicitly storing all prefix
sums takes too much space. One inherent reason is that the prefix sums are very correlated. Denote by Ti
the number of ones in the first i bits. One may verify that for uniformly random inputs (which maximizes the
input entropy) and i < j, I(Ti;Tj) ≈ 1

2 log j
j−i . Even just storing T100 and T110 in separate memory words

would already introduce a redundancy of 1
2 log 11 > 1.5 bits, because the “same 1.5 bits of information”

is stored in two different locations. Hence, in order to achieve low redundancy, only mutually (almost)
independent variables could be stored separately.

The key observation used in our new data structure is the following. Suppose we were to store B
(correlated) numbers y1, . . . , yB ∈ [n], if we could find another variable η such that conditioned on η,
y1, . . . , yB become (almost) mutually independent, then one could hope to first store η, then store these B
numbers conditioned on η. To retrieve one yi, one always first reads η, which reveals the representation of
yi, then reads yi. This strategy is only possible if the support size of η is not too large, and can be encoded
using few bits, since its value needs to be retrieved prior to reading any yi. If we are aiming at constant
retrieval time, then the support size of η must be at most 2O(w).

The joint distribution of (y1, . . . , yB) ∈ [n]B can be described by an order-B tensor T of size nB , where
the entries describe the probability masses. Any nonnegative rank-1 tensor of this size would correspond to
an independent distribution. Suppose we could find r nonnegative rank-1 tensors T1, . . . ,Tr such that

‖T− (T1 + · · ·+ Tr)‖1 ≤ ε.

This would imply that T can approximately be viewed as a convex combination of r independent distri-
butions. Let η indicate which independent distribution we are sampling from, then y1, . . . , yB become
conditionally independent conditioned on η (except for a small probability of ε). More importantly, the
support size of η is equal to r. If such decomposition is possible for r = 2O(w) and ε = 1/poly n, then we
will have hope to store (y1, . . . , yB) with constant retrieval time and (negligible) redundancy of 1/poly n.
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Computing tensor decomposition. In general, nonnegative tensor decomposition is computationally dif-
ficult. Even for tensor order B = 2 (i.e., nonnegative matrix factorization), any algorithm with running time
subexponential in r would yield a subexponential time algorithm for 3-SAT [AGKM16, Moi16], breaking
Exponential Time Hypothesis. Fortunately, the tensors that we obtain from the data structure problem are
not arbitrary. For the rank problem, the values Tx1,...,xB are relatively smooth as a function of (x1, . . . , xB).
Given such a tensor, we may partition it into small cubes, and approximate the values within each cube by
a low degree polynomial P (x1, . . . , xB). The key observation here is that the tensor corresponding to a
monomial xe11 · · ·x

eB
B has rank 1. If P has low degree, thus has a small number of monomials, then the

tensor restricted to the cube must have low approximate rank. To make this approximation nonnegative, we
apply the following transformation to a negative monomial −xayb (plus a large constant):

Ma+b − xayb ≡ 1

2
(Ma − xa)(M b + yb) +

1

2
(Ma + xa)(M b − yb). (1)

When x, y ∈ [0,M ], both terms on the RHS become nonnegative. One may also generalize this equation
to monomials with more than two variables. The polynomial obtained from each small cube has a suffi-
ciently large constant term so that all negative monomials can be transformed simultaneously via the above
equation. Finally, by summing up the approximations within each cube, we obtain a low rank nonnegative
approximation for the whole tensor.

1.1 Organization of the paper

In Section 2, we give preliminary and define notations. In Section 3, we give an overview of the new succinct
rank data structure, as well as a summary of [Pǎt08]. In Section 4, we present our data structure construction.
Finally, we conclude with discussions and open questions in Section 5.

2 Preliminary and Notations

2.1 Notations

Let a, b ∈ R and b ≥ 0, denote by a ± b the set [a − b, a + b]. Similarly, denote by c(a ± b) the set
[c(a− b), c(a+ b)]. Throughout the paper, log x = log2 x is the binary logarithm.

2.2 Spillover representation

One important technique in succinct data structures is the spillover representation, formally introduced by
Pǎtraşcu [Pǎt08]. Similar ideas also appeared in Munro et al. [MRRR03] and Golyski et al. [GGG+07]. It
allows one to use “fractional bits” of memory in each component of the data structure construction so that
the fractions can be added up before rounding.

A data structure is said to use m bits of memory with spillover size K, if it can be represented by a pair
consisting of m bits and a number (called the spillover) in [K] (usually K ≤ 2O(w)). We may also say that
the data structure uses space [K] × {0, 1}m. At the query time, we assume that the spillover k ∈ [K] is
given for free, and any consecutive w bits of the representation can be accessed in constant time. These m
bits are usually stored explicitly in the memory. Hence, any consecutive w bits can be retrieved by reading
one or two consecutive words.

Intuitively, such representations use “m + logK bits” of space. It avoids the problem of “rounding to
the next integer bit” in designing a subroutine, as now we can round up the spillover, which wastes much
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less space: log(K + 1) and logK only differ by log(1 + 1/K) ≈ 1/K bit. Setting K = Ω(n2) makes it
negligible.

2.3 The cell-probe model

The cell-probe model proposed by Yao [Yao78] is a powerful non-uniform computational model, primarily
used in data structure lower bound proofs. In the cell-probe model, we only measure the number of memory
accesses. The memory is divided into cells of w bits. The data structure may read or write the content of
a memory cell by probing this cell. In each step of the query algorithm, it may probe one memory cell (or
in the last step, it returns the answer to the query), based on all information it has obtained so far, including
the query and all previous contents the algorithm has seen. The running time is defined to be the number of
memory cells probed. We assume computation is free.

3 A Streamlined Overview

In this section, we overview our new succinct rank data structure. To avoid heavy technical details, we are
going to present the data structure in a stronger model, where each word may store “O(w) bits of information
about the data”, rather than an exact w-bit string. We refer to this model of computation as the information
cell-probe model. The data structure for standard word RAM can be found in Section 4.

Let us first assume that the input n-bit arrayA is uniformly random.1 The information that each memory
word (content) Ci reveals about the input I(Ci;A) is measured under this input distribution. This mutual
information, in some sense, measures “the space usage of word Ci.” We will focus on the case where
w = Θ(log n), and the goal is to design a data structure that

• stores no more than w bits of information in every memory cell Ci: I(Ci;A) ≤ w,

• uses no more than “n+ 1 bits” of space:
∑

i I(Ci;A) ≤ n+ 1, and

• supports rank queries rank(u) in O(logw n) = O(log n/ log log n) time.

The top-level of the data structure is similar to [Pǎt08], which is a standard range tree with branching
factor B, here for B = w1/3. For simplicity, we assume n is a power of B (and n = Bt). Given an input
array A[0, . . . , n − 1], we construct a tree with branching factor B and depth t by recursion. Each node v
at level i in the tree is associated with a subarray Av of length Bt−i. For j ∈ [B], the j-th child of v is
associated with the subarray containing ((j − 1)Bt−i−1 + 1)-th to (jBt−i−1)-th element of Av. Figure 1
presents the top-level structure (a standard range tree).

Suppose both retrieve prefix sum and retrieve take constant time, then rank queries can be answered
in O(t) = O(logw n) time. Hence, the task boils down to implementing aggregate sums efficiently, which
constitutes our main technical contribution.

Let Ti = s1 + · · ·+ si. There are two natural implementations.
1Uniform distribution maximizes the input entropy, making the same space bound more difficult to achieve (at least in expec-

tation). The data structure in Section 4 for standard word RAM does not rely on this assumption, and the space bound there is for
worst-case input.
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Constructing the data structure:

initialization(A)
1. store the sum in a word s :=

∑n−1
i=0 A[i]

2. store DS(A) := preprocess(A, s)

preprocess(A, s) // preprocess A, provided that its sum s =
∑n−1
i=0 A[i] has already been stored

1. if |A| = 1, return NULL // nothing else to store
2. divide A evenly into A1, . . . , AB , let si be the sum of Ai
3. sums(A) := aggregate sums(A, s1, s2, . . . , sB) // preprocess the sums
4. for each i = 1, . . . , B, DS(Ai) := preprocess(Ai, si) // recurse on each subarray
5. return (sums(A), DS(A1), . . . , DS(AB))

aggregate sums(A, s1, s2, . . . , sB): preprocess B numbers, such that in constant time, one may retrieve si using retrieve(s, i),
and retrieve s1 + · · ·+ si using retrieve prefix sum(s, i), provided that s = s1 + · · ·+ sB . (implemented in Section 3.2)

Query algorithm:

rank(u)
1. read s
2. DS(A).query(s, u)

DS(A).query(s, u) // output A[0] + · · ·+A[u− 1] provided that the sum of A is s
1. if u = 0, return 0
2. if u = |A|, return s // must have returned by now, if |A| = 1
3. compute (i, u′) for integer i and 0 ≤ u′ < |A|/B such that u = i(|A|/B) + u′ // u is in the (i+ 1)-th block
4. let si+1 = sums(A).retrieve(s, i+ 1)
5. return sums(A).retrieve prefix sum(s, i) // s1 + · · ·+ si

+ DS(Ai+1).query(si+1, u′) // recurse on Ai+1

Figure 1: Succinct rank data structure

• We may store the prefix sums T1, T2, T3, . . ., which allows one to retrieve prefix sum and each si in
constant time. However, under uniform input distribution, we have

I(Tk−1;Tk) ≈
1

2
log k.

“The same 1
2 log k bits of information” will be stored in different locations. Since the goal is to use

no more than one extra bit, we fail as soon as the first 5 prefix sums are written down.

• Or we may store the numbers s1, s2, s3, . . . The same issue may still exist. Moreover, storing the
numbers explicitly would not let us retrieve prefix sums efficiently.

It is worth noting that if we set B = 2 instead of w1/3, one could jointly store the pair (s1, s2) condi-
tioned on s1 + s2 in one memory word, which introduces no redundancy and allows one to retrieve both
sums in constant time. However, the depth of the tree becomes log n instead of logw n, so does the query
time. It is essentially what the previous data structure [Pǎt08] does, after “projected” into the information
cell-probe model. The major effort of [Pǎt08] is spent on transforming this “standard” solution in informa-
tion cell-probe model to word RAM, which we will briefly discuss in Section 3.3. Hence, the subroutine
aggregate sums is where our solution deviates from the previous one.
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3.1 Aggregating sums

To implement these subroutines, the main idea is to store correlated variables {Ti} as we discussed in the
introduction: Find a random variable η such that conditioned on η (and the sum of all numbers TB = s), the
prefix sums {Ti} are approximately independent; we will first store η, then store the prefix sums conditioned
on η. To retrieve a Ti, we first read η, then read Ti, which is stored according to conditional distribution.
Each number si can be retrieved by simply taking the difference of Ti and Ti−1.

To find such η, we analyze the joint distribution of (T1, . . . , TB), which can be described by an order-
B tensor T of size (n + 1)B . Each entry (x1, . . . , xB) describes the probability that s1 = x1, s2 =
x2, . . . , sB = xB . As we mentioned in the introduction, finding such a random variable η is (approxi-
mately) equivalent to decomposing T into a sum of few nonnegative rank-1 tensors, since a nonnegative
rank-1 tensor describes an independent distribution. Then the joint distribution can be viewed as a convex
combination of these independent distributions, where η decides which independent distribution to sample
from. The number of such rank-1 tensors corresponds to the support size of η, hence provides an upper
bound on its entropy. Since η needs to be stored in one word, the goal is to decompose T into 2w = nO(1)

rank-1 nonnegative tensors. In the next subsection, we elaborate this idea, and show how to find this η for
our problem.

3.2 Tensor decomposition

The tensor corresponding to the joint distribution of (T1, . . . , TB) can be written in an explicit form as
follows. Suppose each subarray A1, . . . , AB has size l, we have

Tx1,...,xB := Pr[T1 = x1 ∧ T2 = x2 ∧ · · · ∧ TB = xB] = 2−lB ·
B∏
i=1

(
l

xi − xi−1

)
, (2)

where we assumed x0 = 0.
We first show that the binomial coefficients

(
l

xi−xi−1

)
appeared in Equation (2) can be piecewise-

approximated by a low degree polynomial in xi and xi−1 (multiplied by an exponential function) (see
Lemma 9 in Section 4.2). After handling the negative terms via Equation (1) and putting together the piece-
wise approximation, Lemma 10 in Section 4.2 implies that the binomial coefficients can be expressed as2(

l

xi − xi−1

)
· 2−l = E(xi, xi−1) +

r0∑
j=1

Qj(xi−1) ·Rj(xi),

where E,Qj , Rj are all nonnegative, Exi−1 [
∑

xi
E(xi, xi−1)] ≤ ε (the error term is small) and r0 =

(log 1/ε)O(1) (the number of terms is small). By multiplying the above approximation over all i = 1, . . . , B,
we obtain an approximation for T:

Tx1,...,xB = Ẽ(x1, . . . , xB) +

r0∑
j1,...,jB=1

Qj1(0)Rj1(x1)Qj2(x1)Rj2(x2) · · ·QjB (xB−1)RjB (xB).

One may verify that the overall error term Ẽ is small,
∑

x1,...,xB
Ẽ(x1, . . . , xB) ≤ Bε, and the total number

of terms r is at most rB0 = (log 1/ε)O(B). Note that each termQj1(0)Rj1(x1)Qj2(x1)Rj2(x2) · · ·QjB (xB−1)RjB (xB)

2The lemma provides a few extra guarantees on the approximation that is needed for the word RAM data structure, and is
omitted here.
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corresponds to a rank-1 tensor (i.e., an independent distribution). By normalizing each rank-1 tensor, we
obtain the following lemma on nonnegative approximate tensor decomposition of T.

Lemma 1. One can find r ≤ (log 1/ε)O(B) rank-1 tensors T1, . . . ,Tr such that the above tensor T can be
expressed as

T = pE ·E +
r∑
j=1

pj ·Tj ,

where E, pE , Tj and pj are all nonnegative, ‖E‖1 = 1, ‖Tj‖1 = 1 and pE ≤ Bε for all j = 1, . . . , r.

Note that for technical reasons, the final data structure for word RAM requires extra guarantees on the
decomposition, and the above lemma is not directly used in Section 4. Hence, we only state it here without
a formal proof.

By setting ε = 1/n2, we have r = 2O((logn)1/3 log logn) = no(1). Thus, one can view the joint distribution
T of (T1, . . . , TB) as a convex combination of E, whose probability is tiny, and r mutually independent
distributions T1, . . . ,Tr.3 Now let η be the random variable indicating the distribution we are currently
sampling from, we have H(η) ≤ o(log n), and the prefix sums are almost independent conditioned on η.

To generate η given input array A, we first partition the sample space {0, 1}lB , such that each part
corresponds to one distribution in the convex combination. More specifically, we fix a partition of {0, 1}lB ,
the domain of A, into KE ,K1, . . . ,Kr, such that |KE | ≈ pE · 2lB and |Kj | ≈ pj · 2lB for j = 1, . . . , r.
Moreover, this partition guarantees that for every j = 1, . . . , r, the prefix sums (T1, . . . , TB) of an array
A that is sampled uniformly from Kj , is approximately distributed according to Tj . Also, the distribution
of (T1, . . . , TB) when A is sampled uniformly from KE is roughly E. Given such a partition, it suffices to
set η to the part that contains input A. See Figure 2 for the detailed implementations of aggregate sums,
retrieve and retrieve prefix sum.

Intuitively, storing a random variable µ takes H(µ) bits of space, and storing µ conditioned ν should
take H(µ | ν) bits of space. We will briefly discuss how to store a variable conditioned on another in the
next subsection, and the details are deferred to the final construction in Section 4.

One may verify that η generated by this algorithm satisfies

B∑
i=1

H(Ti | η) ≤ H(T1, . . . , TB | η) + o(n−1).

Hence, the total space usage of aggregate sums is at most

H(η | TB) +
B−1∑
i=1

H(Ti | η) ≤ H(η | TB) +H(T1, . . . , TB | η)−H(TB | η) + o(n−1)

= H(T1, . . . , TB−1, η | TB) + o(n−1).

Note that the above implementation does not give the right space bound, since the correct space bench-
mark is H(T1, . . . , TB−1 | TB) rather than H(T1, . . . , TB−1, η | TB). In fact, here η encodes extra infor-
mation about the input, which is going to be encoded one more time in the recursion. This issue is resolved
in the final data structure for word RAM by “adding η to the recursion.” That is, instead of recursing on
a subarray provided that its sum has been stored (as what we do here), we will recurse provided that both

3We abuse the notation of a tensor for the corresponding joint distribution.
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Fix a partition KE ,K1, . . . ,Kr of {0, 1}lB with the above guarantees.

Aggregating the sums:

aggregate sums(A, s1, . . . , sB)
1. for i = 1, . . . , B, compute Ti = s1 + · · ·+ si
2. η := the index of the set among {KE ,K1, . . . ,Kr} that A belongs to
3. store η conditioned on TB // TB , the sum of the entire subarray, is assumed to be stored outside this subroutine

4. for i = 1, . . . , B − 1, store Ti conditioned on η
5. return the B stored variables ( “η | TB” , “T1 | η” , . . . , “TB−1 | η” )

Query algorithms:

retrieve prefix sum(s, i) // output Ti provided that s1 + · · ·+ sB = s

1. if i = 0, return 0
2. if i = B, return s
3. read η conditioned s // TB = s
4. read Ti conditioned on η
5. return Ti

retrieve(s, i) // output si provided that s1 + · · ·+ sB = s

1. return retrieve prefix sums(s, i) − retrieve prefix sums(s, i− 1)

Figure 2: aggregate sums “implementation”

the sum and “this extra information encoded by η” have already been stored. Hence, the data structure can
avoid storing duplicated information during the recursion. See Section 3.3 and Section 4 for more details.
When no information is stored both in η and in the recursion, this subroutine introduces only o(n−1) bit of
redundancy. Since it is invoked no more than O(n) times in total, the overall space usage is at most n + 1
bits.

3.3 Previous data structure and transforming into RAM

As mentioned earlier, the main effort in the previous best-known construction is to transform a “standard” in-
formation cell-probe data structure into word RAM. To this end, the spillover representation was introduced
(see Section 2 for its definition), and it is also heavily used in our data structure.

Spillover representation. One simple example of the spillover representation is to represent the sum of a
0-1 string. Given a 0-1 string of length n, one can design a data structure using space [K] × {0, 1}m, such
that K = nO(1), the spillover k ∈ [K] encodes the sum of all n bits, and m + logK ≤ n + O(n−2), i.e.,
it has O(n−2) bit of redundancy. To do this, we first permute the representation of all n-bit binary strings.
That is, instead of storing the n-bit string as is, we are going to sort all n-bit strings based on their sums, and
store the index in the sorted order as an n-bit integer. The idea is that for most inputs, the top O(log n) bits
of the index already reveals the sum. Only when the top bits correspond to a boundary between two adjacent
sums, the lower bits will need to be read, in order to determine the actual sum. Let v = d3 log ne. This
problem can be resolved by assigning an integer multiple of 2n−v many indices to each sum. In the other
word, all strings with sum equal to 0 are encoded to the interval [0, 2n−v − 1], all strings with sum equal to
1 are encoded to [2n−v, 2n−v+1 − 1], etc. For each sum x, all strings with sum equal to x are encoded to an
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interval of length ⌈(
n

x

)
· 2v−n

⌉
· 2n−v,

aligned to integer multiples of 2n−v. Therefore, the sum can be retrieved without accessing the lower n− v
bits of the encoding. There are n+1 different values for the sum, the largest number needed for this encoding
is at most

2n + 2n−v · (n+ 1).

Now, we set m = n− v and use the m bits of the memory to store the lower n− v bits, and set the spillover
to

K = (2n + 2n−v · (n+ 1))/2n−v = 2v + n+ 1,

which stores the top bits of the encoding. The size of the spillover is bounded by nO(1), and the space usage
is m+ logK = log(2n + 2n−v · (n+ 1)) ≤ n+ O(n−2). This trick is also used later in the formal proof,
e.g., see Lemma 3.

Pǎtraşcu’s rank data structure. The high-level structure of the previous best-known word RAM data
structure is similar to the one stated earlier in this section (e.g., see Figure 1): a range tree with branching
factor B = 2. To construct a rank data structure on an array of length n, one first recurses on the two halves,
and obtains two data structures with spillover. It is guaranteed that the two spillover sets are both bounded
by O(n3), and the sum of each half can be decoded from solely the corresponding spillover. To combine the
two data structures, the memory bits obtained from the two recursions are concatenated directly. The two
spillovers can be combined using the above trick for representing the sum, by sorting all pairs of spillovers
by the sum of the whole array (this is possible, since each spillover determines the sum of each half). As we
argued above, this step introduces redundancy ofO(n−2) bit, and the new spillover size is again bounded by
O(n3). By writing down the final spillover in its binary representation, the overall redundancy is no more
than one bit.

Adapt our new data structure to RAM. Compared to the previous data structure, our new data structure
will use a different algorithm to combine the spillovers (corresponding to aggregate sums), and can afford
to set the branching factor B to (log n)1/3. The preprocessing algorithm still recursively constructs a data
structure with spillover for each subarray, and provides the same guarantees as in the previous solution: the
spillover size is bounded by poly n and the spillover determines the sum. Then the algorithm combines
these B spillovers k1, . . . , kB , such that one can retrieve each spillover ki and compute the sum of first i
subarrays in constant time. Observe that when the space usage is very close to the information theoretical
lower bound, for each subarray, the distribution of the sum encoded by a random spillover is close to that
of the sum of a random input (Fact 1). That is, for a subarray of length l, roughly

(
l
x

)
· 2−l fraction of

the spillovers encode the sum equal to x. Therefore, the tensor decomposition argument in the previous
subsection also applies when encoding these B spillovers.

More specifically, to compute η given the input, we will partition the set of all possible B-tuples of
spillovers, instead of the set of all inputs, according the tensor decomposition. We first store η, and
T1, . . . , TB conditioned on η. Then, each spillover ki is stored conditioned on η and two adjacent prefix
sums Ti−1 and Ti. We will carefully choose the partition {Ki} such that all Ti are almost independent con-
ditioned on η, and moreover, each ki is almost independent of all other spillovers conditioned on η, Ti−1
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and Ti. Hence, for a random input, the space usage is

H(η) +
B∑
i=1

H(Ti | η) +
B∑
i=1

H(ki | η, Ti−1, Ti)

≈H(η) +H(T1, . . . , TB | η) +
B∑
i=1

H(ki | η, Ti−1, Ti)

≈H(T1, . . . , TB, η) +

B∑
i=1

H(ki | η, k1, . . . , ki−1, Ti−1, Ti, ki+1, . . . , kB)

≤H(T1, . . . , TB, η) +
B∑
i=1

H(ki | η, k1, . . . , ki−1, T1, . . . , TB)

=H(T1, . . . , TB, η) +H(k1, . . . , kB | η, T1, . . . , TB)

=H(k1, . . . , kB),

which approximately matches the information theoretical lower bound of storing B spillovers.
This solution also handles worst-case input. We will design the partition carefully such that all entropies

appeared in the above analysis can be replace by the logarithms of the support sizes. To encode a variable
directly (e.g., η), we encode the index within its support, which takes logarithm of the support size many
bits. To encode a variable conditioned on another (e.g., Ti | η), the encoding varies based on the value of
the conditioning variable. For instance, to encode Ti given η, we examine the value of η, and encode the
index of Ti within its support given the value of η, i.e., all values of Ti that are not compatible with the
current value of η are removed. When a support size is a perfect power of two, the corresponding variable
can be stored using an integer bits of memory. Otherwise, Lemma 6 is applied to produce a data structure
with spillover, which introduces no more than n−2 bit of redundancy each time. Finally, Lemma 3 ensures
that the sum of the whole subarray TB is encoded in the spillover, to provide the claimed guarantee of the
recursion. See the proof of Lemma 5 for more details.

As we can see from the calculation above, it also resolves the issue mentioned in the end of Section 3.2,
since after we have encoded the prefix sums, the “remaining information” about each spillover is encoded
conditioned on both η and si. Each spillover ki is the only parameter that goes into (or comes back from)
the next level of recursion, and ki contains all relevant information about η and si. Hence, no information
revealed by η is stored again in the recursion.

Avoid arbitrary word operations. The above construction assumes that the query algorithm can perform
arbitrary O(log n)-bit word operations. In Pǎtraşcu’s rank data structure, decoding the two spillovers in
constant time also requires non-standard operations. One way to avoid arbitrary word operations is to store
a look-up table in the memory. However, the look-up table itself may take poly n space. Here, we apply
a standard trick for self-reducible problems (also applied in the previous data structure) to avoid this issue:
divide the input array into blocks of length nδ, construct the above data structure and look-up table for each
block, and store the sum of first i blocks for all i. To answer a prefix sum query in the i-th block, we retrieve
the sum of first i− 1 blocks and make a query in the i-th block. Since all blocks use the same data structure,
the corresponding look-up table is also the same, and only one copy needs to be stored. By setting δ to be
the right constant, both the size of the look-up table and the total redundancy from all blocks are bounded
by n1−c for some constant c > 0. See Section 4.3 for details.
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4 Succinct Rank Data Structure

Guided by the construction in Section 3, in this section, we present a succinct rank data structure that works
in the standard word RAM model. As a starting point, we first present a data structure in the cell-probe
model, assuming arbitrary word operations are allowed. In Section 4.3, we show how to implement this
solution in word RAM.

Theorem 1 (restated). Given a 0-1 array of length n for sufficiently large n, for any t ≥ 1, one can
construct a succinct data structure using

n+ d n

wΩ(t)
e

bits of memory in the cell-probe model with word-size w ≥ 7 log n, such that every rank query can be
answered in O(t) time.

Proof. The top-level of the data structure is a sequence of range trees, each with branching factor B = w1/3

and depth t. In the proof, we assume for simplicity that w is an even perfect cube, and n is a multiple of
Btw. General n and w can be handled via similar approaches. Each range tree takes care of a subarray of
length Btw = wt/3+1, using Btw+ 1 bits of memory, i.e., one bit of redundancy. We also store the number
of ones in the first i subarrays for every i using dlog(n+ 1)e bits. Hence, for every Btw bits of input, there
will be O(log n) bits of redundancy, which will give us the claimed space bound.

More specifically, consider a subarray of Btw bits, and a range tree built from it with branching factor
B and depth t. Each leaf corresponds to a subarray of length w. Every node at level t − i is the root of
a subtree of size Biw and depth i (assuming root has level 0). We are going to inductively construct data
structures for all subtrees. The inductive hypothesis is stated below in the claim.

Claim 1. For each subtree of size Biw for i ≥ 0, one can construct a data structure with spillover, using
space [Ki]× {0, 1}mi , supporting rank queries in O(i) time, where

mi = Biw − w

and
Ki = 2w + (34B)i · n2w/2.

Moreover, the sum of all Biw bits in the subtree can be computed by only reading the spillover ki ∈ [Ki].

Before proving the claim, let us first show that it implies the theorem. When i = t,

Kt = 2w + (34B)tn2w/2 ≤ 2w + n2+o(1)2w/2 ≤ 2w+1.

Hence, Kt takes w + 1 bits to store. The space usage will be Btw + 1 bits.
Finally, we divide the input into n′ = n/(Btw) subarraysA1, A2, . . . , An′ of lengthBtw. For each sub-

array, we construct a data structure using Claim 1. We also store the total number of ones inA1 ∪A2 ∪ · · · ∪Ai
for all i ∈ {1, . . . , n′ − 1}, each taking dlog(n + 1)e bits. Note that the sum of all n′ subarrays is not nec-
essary to store. When n′ = 1, the redundacy is one bit, otherwise, it is at most O(n′ log n). Hence, the total
space usage is at most

n

Btw
· (Btw + 1) +

( n

Btw
− 1
)
dlog(n+ 1)e ≤ n+ d n

wΩ(t)
e

as claimed.
To answer a rank query rank(u), we first compute the subarrayAi that u is in. By retrieving the number

of ones in first i − 1 subarrays and querying the rank of u within Ai, we obtain the answer in O(t) time.
Hence, it remains to prove the claim (by induction).
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Base case. The statement is trivial when i = 0: store the entire subtree, which has only w bits, in the
spillover.

Induction step. First construct a data structure for each child of the root, which corresponds to a subtree
of size l = Bi−1w, using space [Ki−1]×{0, 1}mi−1 each. The key technical part of the induction step is the
following lemma that combinesB spillovers into one data structure, and allows one to decode each spillover
and the sum of first i subtrees in constant time.

Lemma 2. GivenB such spillovers k1, k2, . . . , kB ∈ [2w+σ] for 2w/2n ≤ σ ≤ 2w/n, let SUM : [2w+σ]→
[0, l] be the function that decodes the sum from a spillover. For i = 0, . . . , B, denote by Ti the sum of first
i subtrees, i.e., Ti :=

∑
j≤i SUM(kj). One can construct a data structure using space [K] × {0, 1}m for

K = [2w + 34Bσ] and m = (B − 1)w, such that for i = 1, . . . , B, decoding each ki and Ti takes constant
time, and the spillover determines the sum of the entire subtree TB .

Its proof is deferred to the next subsection. By induction hypothesis, we have

n2w/2 ≤ Ki−1 − 2w ≤ (34B)tn2w/2 ≤ n2+o(1)2w/2 < 2w/n,

i.e., n2w/2 < σ < 2w/n. Lemma 2 lets us combine theB spillovers, and obtain a [Ki]×{0, 1}(B−1)w-space
data structure for

Ki = 2w + (34B)(Ki−1 − 2w) = 2w + (34B)i · n2w/2.

Hence, in total the data structure uses Bmi−1 + (B − 1)w = Biw − w bits and a spillover of size 2w +
(34B)i · n2w/2, and the spillover determines the sum.

To answer a rank query rank(x), we first compute i, the index of the subtree that x is in. Then we
retrieve Ti−1 and ki in constant time by Lemma 2. Given the spillover ki, we may recursively query the
rank of x inside the i-th subtree. The query output can be computed by adding its rank inside the i-th
subtree to Ti−1. The total query time is proportional to the depth of the tree, which is O(i). This proves the
theorem.

4.1 Combining the spillovers

The goal of this subsection is to prove Lemma 2. We first observe that if there is a data structure (with
spillover) that allows one to decode the sum of the entire subarray (or subtree) in constant time, then one may
assume without loss of generality that the sum is encoded in the spillover, which we state in the following
lemma.

Lemma 3. Given input data Z, suppose there is a data structureD using space [K]×{0, 1}m, which allows
one to answer each query fi(Z) for i ≥ 0 in time tq, assuming the word-size isw. ThenD can be turned into
another data structure using space [K + r]× {0, 1}m, which allows one to answer each query in time 2tq,
moreover, f0(Z) can be answered by reading only the spillover, where r is the number of different values
that f0(Z) can take.

Proof. To construct a data structure that stores f0(Z) in the spillover, we first simulate D on Z, which
generates m bits of memory s ∈ {0, 1}m and a spillover k ∈ [K]. Then we simulate the query algorithm for
query f0(Z), which reads tq words (or tqw bits) of s. We move those tqw bits to the spillover, by increasing
the spillover size toK2tqw and removing them from s. The relative order of all other bits in s are unchanged.
This generates a new spillover k′ ∈ [K2tqw] and a memory s′ ofm−tqw bits. Note that the query algorithm
can be adaptive, hence the bits removed from s could vary for different inputs.
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Now k′ does encode f0(Z), but its size is much larger than claimed. To decrease the spillover size
back to approximately K, observe that we are free to choose any bijection between its domain [K2tqw] and
the pair of original spillover k and the tqw bits. Hence, we will pick a representation of k′, such that all
its values that encode the same value of f0(Z) are consecutive in [K2tqw]. For example, we may use a
representation such that f0(Z) is monotone. Intuitively, if each value of f0(Z) corresponds to an interval in
[K2tqw], reading the “top bits” of k′ should likely tell us f0(Z). However, if k′ lies close to the boundary
between two consecutive f0(Z) values, reading the entire k′ may still be required to distinguish between the
two.

This issue can be resolved by rounding up the boundaries to integer multiples of 2tqw. That is, we adjust
the representation, so that each interval corresponding to a value of f0(Z) always starts at a multiple of
2tqw. Thus, f0(Z) can be computed without reading the lowest tqw bits of k′. Since f0(Z) can take r
different values, this could only increase the spillover set size to at most (K + r)2tqw, which can be viewed
as [K + r] × {0, 1}tqw By moving these tqw bits back to (the beginning of) the memory, we obtain a data
structure using space [K + r]× {0, 1}m, such that f0(Z) can be answered by reading only the spillover.

To answer a generic query fi(Z) for i ≥ 1, one first reads the spillover and first tq words of the memory.
This determines k′, and hence the initial spillover k generated from D as well as all words read by the query
algorithm of D when f0(Z) is queried, which are the words removed from s. In particular, this determines
the mapping between words in s′ and s. Thus, fi(Z) can be computed by simulating the query algorithm of
D. The total query time is 2tq.

In particular, when Z is a subarray of size Bl, and f0(Z) is the number of ones in it, we have r =
Bl+1 ≤ n+1. Note that this lemma is applied once at each level of the recursion, thus the total query time
would at most increase by a factor of two. To prove Lemma 2, we will use different constructions based
on the value of l, the length of each subarray. The two cases are stated below in Lemma 4 and Lemma 5
respectively. Since n+ 1 ≤ Bσ, Lemma 2 is an immediate corollary of Lemma 3, 4 and 5.

Lemma 4. If B log(l+ 1) ≤ w/2, given k1, . . . , kB ∈ [2w + σ] for n2w/2 ≤ σ ≤ 2w/n, one can construct
a data structure using space [K]× {0, 1}m for m = (B − 1)w and K ≤ 2w + 2Bσ, such that each ki and
Ti can be decoded in constant time.

Lemma 5. If B log(l+ 1) > w/2, given k1, . . . , kB ∈ [2w + σ] for n2w/2 ≤ σ ≤ 2w/n, one can construct
a data structure using space [K]×{0, 1}m for m = (B− 1)w and K ≤ 2w + 33Bσ, such that each ki and
Ti can be decoded in constant time.

Recall that each spillover ki ∈ [2w+σ] together with l−w additional bits encodes a subarray of length l,
and ki encodes the number of ones in this subarray, which is decoded by the function SUM. Since the space
usage is close to the information theoretical limit, if we sample a random ki, the distribution of SUM(ki)
should be close to the distribution of the sum of the subarray, i.e., the binomial distribution B(l, 1/2). In
particular, we have the following facts by counting.

Fact 1. For every x ∈ [0, l], we have

|SUM−1(x)| ≥
(
l

x

)
· 2−l+w.

For any subset X ⊆ [0, l],

|SUM−1(X)| ≤ σ +
∑
x∈X

(
l

x

)
· 2−l+w.
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Proof. The encoding supports rank(u) operations for all 0 ≤ u ≤ l, and the answers to all queries recover
the entire subarray. Hence, all 2l different subarrays of length l must have different encodings. On the other
hand, for every x ∈ [0, l], the number of subarrays with sum equal to x is

(
l
x

)
, and each ki corresponds to

only 2l−w different encodings. Therefore, at least
(
l
x

)
·2−l+w different ki should encode arrays with the sum

equal to x, i.e.,

|SUM−1(x)| ≥
(
l

x

)
· 2−l+w.

By subtracting the complement of X from the universe, we have

|SUM−1(X)| = 2w + σ −
∑
x/∈X

|SUM−1(x)|

≤ 2w + σ −
∑
x/∈X

(
l

x

)
· 2−l+w

= σ +
∑
x∈X

(
l

x

)
· 2−l+w.

One crucial subroutine used in several parts of our construction is a succinct data structure storing “uni-
form and independent” elements with nearly no redundancy from [DPT10], which we state in the following
lemma.

Lemma 6. Suppose we are given a B-tuple (x1, x2, . . . , xB) ∈ [M1] × [M2] × · · · × [MB], such that
B � 2w/2 and Mi ≤ 2w for every i ∈ [B]. Then for every integer m ≥

∑B
i=1 logMi − w, there is a data

structure that uses space [K]× {0, 1}m for K =
⌈
2−m ·

∏B
i=1Mi

⌉
+ 1, and allows one to decode each xi

in constant time.

The original theorem in [DPT10] is stated only for numbers from the same domain, i.e., M1 = · · · =
MB . However, the same idea also applies when the domains are different. The proof of Lemma 6 can be
found in Appendix A.

We first present the construction for small l, which is similar to [Pǎt08].

Proof of Lemma 4. When B log(l + 1) ≤ w/2, the sums of B subarrays can all fit in one spillover. We use
the spillover to store the sums, then encode the subarrays conditioned on the sums.

More specifically, let m = (B − 1)w. For every B-tuple of sums s = (s1, . . . , sB) ∈ [0, l]B , by Fact 1,
we have

B∑
i=1

log
∣∣SUM−1(si)

∣∣− w ≤ B∑
i=1

log

(
σ +

(
l

si

)
· 2−l+w

)
− w

≤
B∑
i=1

log
(

2w−1 + 2w/
√
l
)
− w

≤ Bw − w
≤ m.
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By Lemma 6, for every s, there is a data structure encoding a tuple (k1, . . . , kB) such that SUM(ki) = si,
using space [Ks]× {0, 1}m, where

Ks ≤ 2−Bw+w ·
B∏
i=1

|SUM−1(si)|+ 2.

We then “glue together” these (l+1)B data structures for different tuples of sums by taking the union of
the spillover sets. That is, letK =

∑
sKs, we can view [K] as the set of pairs {(s, k) : s ∈ [0, l]B, k ∈ [Ks]}

(via a fixed bijection hard-wired in the data structure). Given an input (k1, . . . , kB), we first compute the
sums s = (s1, . . . , sB), and encode the input using the above data structure for s, which generatesm bits and
a spillover k ∈ [Ks]. The final data structure will consist of these m bits and the spillover (s, k), encoded in
[K]. The size of the spillover set is at most

K =
∑

s∈[0,l]B

Ks

≤
∑

s∈[0,l]B

(2−Bw+w ·
B∏
i=1

|SUM−1(si)|+ 2)

= 2−Bw+w ·
B∏
i=1

l∑
si=0

|SUM−1(si)|+ 2(l + 1)B

≤ 2−Bw+w · (2w + σ)B + 2w/2+1

= 2w · (1 + σ2−w)B + 2w/2+1,

which by the bounds on σ that n2w/2 < σ < 2w/n, is at most

≤ 2w + 2Bσ.

Decoding Ti or ki can be done in constant time by a straightforward algorithm: First decode the pair
(s, k), which already determines the value of Ti(= s1 + · · ·+si), ki can then be decoded using the decoding
algorithm for tuple s from Lemma 6.

When l is large, the key step is to find a random variable η such that all Ti are uniform and independent
conditioned on (most values of) η. This allows us to first encode η, then encode the prefix sums {Ti} nearly
optimally using Lemma 6. Finally, we encode the spillovers {ki} conditioned on the prefix sums.

In the following lemma, we first present a “not-so-efficient” solution, which will be used as a subroutine
in our final construction.

Lemma 7. For any B′ ≤ B, given a sequence (k1, . . . , kB′), one can construct a data structure using
B′(w + logw) bits of space, such that each ki and Ti can be retrieved in constant time.

Proof. We first partition [2w+σ], the domain of each ki, into two sets based on the sum it encodes: Khigh :=

SUM−1(l/2 ±
√
lw) and Klow := SUM−1([0, l] \ (l/2 ±

√
lw)). The idea is that if several consecutive

spillovers are in Khigh, then it takes few bits to encode their sum; if a spillover is in Klow, then it takes few
bits to encode the spillover itself. By Fact 1,

|Klow| = |SUM−1([0, l] \ (l/2±
√
lw))|
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≤ σ +
∑

x/∈l/2±
√
lw

(
l

x

)
2−l+w

≤ σ + 2w+1−2w

≤ σ + 1.

The first B′ bits encode for each i ∈ [B′], if ki is in Khigh or in Klow. Then we allocate w+ blogwc − 1
consecutive bits to each ki, where we store extra information about each ki as follows.

If ki ∈ Klow, we spend dlog(Bl + 1)e bits to write down Ti, the sum of first i blocks, and dlog(σ + 1)e
bits to encode ki within Klow. The space usage is at most

logBl + log σ + 2 ≤ w + 2 < w + blogwc − 1

bits, since σ < 2w/n and Bl ≤ n.
If ki ∈ Khigh, denote by ipred the closest block preceding i that is not in Khigh, i.e.,

ipred := max{j : j < i, kj ∈ Klow or j = 0}.

We first spend dlog(2Bb
√
lwc+1)e bits to encode Ti−Tipred . This is possible since all subarrays in-between

have their sums in a consecutive range of length 2b
√
lwc. Then we spend another dlog(σ+ 2w/

√
l)e bits to

encode ki conditioned on SUM(ki). Again such encoding is possible, since for any x, by Fact 1,∣∣SUM−1(x)
∣∣ ≤ σ +

(
l

x

)
· 2−l+w

≤ σ +

(
l

bl/2c

)
· 2−l+w

≤ σ + 2w/
√
l.

In this case, the space usage is at most

log(2B
√
lw) + log(σ + 2w/

√
l) + 2 = log(2B

√
lwσ + 2w+1B

√
w) + 2

≤ log(2w+1
√
w/l + 2w+1B

√
w) + 2

= w + 1 + logB +
1

2
logw + log((B

√
l)−1 + 1) + 2

≤ w + logw − 1.

where the first inequality uses σ < 2w/n and Bl ≤ n, and the last inequality uses B = w1/3.
The total space usage is at most B′(w + logw). To decode Ti, one reads the first B′ bits in constant

time (as B′ < w) to retrieve for every j, whether kj ∈ Khigh or Klow. If ki ∈ Klow, we have explicitly stored
the value of Ti. Retrieving its value thus takes constant time. If ki ∈ Khigh, one first computes ipred using
the B′ bits retrieved earlier, and reads Ti − Tipred . It reduces the problem to decoding Tipred . If ipred = 0, the
problem is solved. Otherwise, kipred ∈ Klow, and one may apply the above query algorithm. In all cases, Ti
can be decoded in constant time.

To decode ki, if ki ∈ Klow, ki is also explicitly encoded. Otherwise, ki ∈ Khigh, and one applies the
above query algorithm to retrieve both Ti and Ti−1, thus determines the value of SUM(ki) by taking their
difference. The value of ki conditioned on SUM(ki) is encoded in the data structure, and can therefore be
retrieved in constant time.

See Figure 3 for the construction pictorially.
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for each i, if ki ∈ Khigh or Klow

B′ bits

(k1 ∈ Klow)

k1 T1

w + blogwc − 1 bits

(k2 ∈ Khigh)

k2 T2 − T1

w + blogwc − 1 bits

(k3 ∈ Khigh)

k3 T3 − T1

w + blogwc − 1 bits

Figure 3: memory content for B′ = 3

To prove Lemma 5, we will need the following lemma for approximating binomial coefficients, whose
proof is presented in the next subsection.

Lemma 8. For any large even integer l, positive numbers Mx,My and ε, such that l > 8Mx, l > 8My and
ε > 2−C

√
l/2+8, we have(

l

l/2 + x+ y

)
· 2−l+w = E(x, y) +

r∑
i=1

2ei1Xi(x)1Yi(y)

for all integers x ∈ [−Mx,Mx] and y ∈ [−My,My], such that

a) E(x, y) ≥ 0 and for every x ∈ [−Mx,Mx],
∑My

y=−My
E(x, y) ≤ ε2w + 4rMy2

w/2;

b) for every i ∈ [r], ei ≥ 0 is an integer, Xi ⊆ [−Mx,Mx], Yi ⊆ [−My,My] are sets of integers;

c) r ≤ O((MxMy/l)w
2 log4(1/ε)).

Using the above two lemmas, we are ready to prove Lemma 5.

Proof of Lemma 5. By Fact 1, for each i ∈ [B], SUM(ki) = Ti+1 − Ti is distributed approximately ac-
cording to the binomial distribution B(l, 1/2) for a random ki. We first apply Lemma 8 to approximate
the probability masses of B(l, 1/2), which are binomial coefficients, hence approximating |SUM−1(x)| for
x ∈ [0, n].

For each i ∈ [B], let ε = σ · 2−w−2, Mx = (i− 1)
√
l log 1/ε, My = i

√
l log 1/ε. Since B = w1/3 and

B log(l + 1) ≥ w/2, we have

l/My ≥
√
l/(B2 log 1/ε) ≥

√
l/w > 8,

similarly l > 8Mx, and

ε = 2−w−2+log σ ≥ 2−w−2 ≥ 2−O(log2 l) ≥ 2−o(
√
l).

Hence, by Lemma 8 (setting x = (i − 1)l/2 − Ti−1 and y = Ti − il/2), there exists Ei, Xi,j and Yi,j
such that for all Ti−1 ∈ (i− 1)(l/2±

√
l log 1/ε) and Ti ∈ i(l/2±

√
l log 1/ε),(

l

Ti − Ti−1

)
· 2−l+w = Ei(Ti−1, Ti) +

ri∑
j=1

2ei,j1Xi,j (Ti−1)1Yi,j (Ti) (3)

for integers ei,j ≥ 0 and

ri ≤ O((MxMy/l)w
2 log4(1/ε)) ≤ O(B2w2 log5 1/ε) ≤ wO(1).

Since SUM(ki) approximately follows a binomial distribution, we can partition its domain according to
Equation (3), as follows.
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Claim 2. For every i ∈ [B] and Ti−1 ∈ (i − 1)(l/2 ±
√
l log 1/ε), there exists a partition of [2w + σ]

(domain of ki) into {K(Ti−1)
i,j }0≤j≤ri , such that

(a) |K(Ti−1)
i,0 | ≤ 2σ and for all ki ∈ [2w +σ] such that SUM(ki) /∈ l/2±

√
l log 1/ε, we have ki ∈ K(Ti−1)

i,0 ;

(b) for j = 1, . . . , ri and Ti ∈ Ti−1 + l/2±
√
l log 1/ε,∣∣∣K(Ti−1)

i,j ∩ SUM−1(Ti − Ti−1)
∣∣∣ = 2ei,j1Xi,j (Ti−1)1Yi,j (Ti).

To focus on the construction of our data structure, we deferred its proof to the end of the subsection.
Now let us fix one such partition {K(Ti−1)

i,j }0≤j≤ri for every i ∈ [B] and Ti−1 ∈ (i− 1)(l/2±
√
l log 1/ε).

Definition 1. For B′ ≤ B, a sequence of B′ spillovers (k1, . . . , kB′) is good, if for every i ∈ [B′], ki /∈
K(Ti−1)
i,0 , where Ti =

∑
j≤i SUM(kj).

Note that K(Ti−1)
i,0 is only defined when Ti−1 ∈ (i− 1)(l/2±

√
l log 1/ε). However, if ki−1 /∈ K(Ti−2)

i−1,0 ,
then by Item (a) above, SUM(ki−1) ∈ l/2 ±

√
l log 1/ε. Hence, if Ti−2 ∈ (i − 2)(l/2 ±

√
l log 1/ε), we

must also have Ti−1 ∈ (i− 1)(l/2±
√
l log 1/ε), and thus “good sequences” are well-defined.

Now we are ready to describe our construction for large l. We first handle good sequences.

Input sequence (k1, . . . , kB) is good. Given a good sequence (k1, . . . , kB), one can compute (T0, . . . , TB),
and for each i, the index of set ji which ki is in according to the partition, i.e., ji ∈ {1, . . . , ri} such that
ki ∈ K(Ti−1)

i,ji
. We first construct a data structure given the sequence of indices j = (j1, . . . , jB).

Claim 3. For every j = (j1, . . . , jB) such that ji ∈ {1, . . . , ri} for all i ∈ [B], given a sequence of spillovers
(k1, . . . , kB) such that ki ∈ K(Ti−1)

i,ji
, one can construct a data structure using space [Kj]×{0, 1}(B−1)w for

Kj =

⌈
2−(B−1)w ·

B∏
i=1

(
2ei,ji

∣∣Xi+1,ji+1 ∩ Yi,ji
∣∣)⌉+ 1,

which allows one to decode each ki and Ti in constant time.4

To construct such a data structure, we are going to encode each ki within K(Ti−1)
i,ji

∩SUM−1(Ti−Ti−1),
and encode each Ti within Xi+1,ji+1 ∩ Yi,ji using Lemma 6.

More specifically, for every i, we know that ki ∈ K(Ti−1)
i,ji

and SUM(ki) = Ti − Ti−1. One can spend

ei,ji bits to encode the index of ki within K(Ti−1)
i,ji

∩ SUM−1(Ti − Ti−1), which has size at most 2ei,ji by
Item (b) in Claim 2 (in fact, it will be exactly 2ei,ji ). Note that the encoding length of this part does not
depend on the input.

We also know that by Item (b), no input sequence will have Ti−1 /∈ Xi,ji or Ti /∈ Yi,ji for any i ∈ [B].
That is, we must have Ti ∈ Xi+1,ji+1 ∩ Yi,ji . One can thus apply Lemma 6 to encode each Ti within the set
Xi+1,ji+1 ∩ Yi,ji , for m = (B − 1)w −

∑B
i=1 ei,ji . The premise of the lemma is satisfied, since

m− (
B∑
i=1

log
∣∣Xi+1,ji+1 ∩ Yi,ji

∣∣− w) = Bw −
B∑
i=1

(
ei,ji + log

∣∣Xi+1,ji+1 ∩ Yi,ji
∣∣)

4XB+1,jB+1 is assumed to be the entire domain [2w + σ].
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≥
B∑
i=1

(w − ei,ji − log |Yi,ji |)

≥ 0.

The last inequality is due to Equation (3). Hence, Lemma 6 constructs a data structure with spillover size

Kj =

⌈
2−m ·

B∏
i=1

∣∣Xi+1,ji+1 ∩ Yi,ji
∣∣⌉+ 1

=

⌈
2−(B−1)w ·

B∏
i=1

(
2ei,ji

∣∣Xi+1,ji+1 ∩ Yi,ji
∣∣)⌉+ 1.

The total space usage is (B − 1)w bits with a spillover of size Kj.
To decode a Ti, one can simply invoke the decoding algorithm from Lemma 6, since j is given and

all sets Xi+1,ji+1 ∩ Yi,ji are known. To decode a ki, one first decodes Ti−1 and Ti, after which both sets

K(Ti−1)
i,ji

and SUM−1(Ti−Ti−1) are known. Then ki can be decoded by retrieving its index withinK(Ti−1)
i,ji

∩
SUM−1(Ti − Ti−1).

To obtain a data structure for all good sequences, we “glue” the above data structures for all j in a
similar way to Lemma 4. Let Kgood =

∑
jKj. We may view the set [Kgood] as {(j, k) : k ∈ [Kj]} (via

a fixed bijection hard-wired in the data structure). Given a good sequence k1, . . . , kB , one first computes
j = (j1, . . . , jB) and constructs a data structure using Claim 3, which generates (B−1)w bits and a spillover
k ∈ [Kj]. The data structure will consist of these (B − 1)w bits and a final spillover of pair (j, k), encoded
in [Kgood]. To decode Ti or ki, it suffices to decode the pair (j, k), and then invoke the decoding algorithm
from Claim 3.

The spillover size is

Kgood =
∑

j∈[r1]×···×[rB ]

Kj

≤
∑

j∈[r1]×···×[rB ]

(
2−(B−1)w ·

B∏
i=1

(
2ei,ji

∣∣Xi+1,ji+1 ∩ Yi,ji
∣∣)+ 2

)

= 2−(B−1)w ·
∑

j∈[r1]×···×[rB ]

B∏
i=1

2ei,ji ·
∑

Ti∈il/2±i
√
l log 1/ε

1Xi+1,ji+1
(Ti)1Yi,ji (Ti)

+ wO(B)

= 2−(B−1)w ·
∑

j∈[r1]×···×[rB ]

∑
T0,T1,...,TB :

Ti∈il/2±i
√
l log 1/ε

B∏
i=1

(
2ei,ji · 1Xi+1,ji+1

(Ti)1Yi,ji (Ti)
)

+ wO(B),

which by the fact that 1XB+1,iB+1
(TB) = 1X1,i1

(T0) = 1, is equal to

= 2−(B−1)w ·
∑

T0,T1,...,TB :

Ti∈il/2±i
√
l log 1/ε

∑
j∈[r1]×···×[rB ]

B∏
i=1

(
2ei,ji · 1Xi,ji (Ti−1)1Yi,ji (Ti)

)
+ wO(B)
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= 2−(B−1)w ·
∑

T0,T1,...,TB :

Ti∈il/2±i
√
l log 1/ε

B∏
i=1

ri∑
ji=1

2ei,ji · 1Xi,ji (Ti−1)1Yi,ji (Ti) + wO(B),

which by Equation (3), is at most

≤ 2−(B−1)w ·
∑

T0,T1,...,TB :T0=0

B∏
i=1

((
l

Ti − Ti−1

)
· 2−l+w

)
+ wO(B)

= 2w ·
∑

T0,T1,...,TB :T0=0

B∏
i=1

((
l

Ti − Ti−1

)
· 2−l

)
+ wO(B)

= 2w + wO(B).

Hence, one can construct a data structure for good sequence using space [Kgood]× {0, 1}(B−1)w for

Kgood = 2w + wO(B), (4)

such that each ki and Ti can be decoded in constant time. In particular, one may also choose to use Bw + 1
bits in total, by rounding up the spillover to w + 1 bits. One can verify that the above construction also
applies to any shorter good sequence of length B′ ≤ B, using B′w + 1 bits of space, which will be used as
a separate subroutine below.

When the input sequence is not good, there is a smallest i∗ such that ki∗ ∈ K
(Ti∗−1)
i∗,0 . We are going to

use different constructions based on whether the suffix (ki∗+1, . . . , kB) is good, i.e., whether we have for
every i = i∗ + 1, . . . , B, ki /∈ K(Ti−1−Ti∗ )

i−i∗,0 . If (ki∗+1, . . . , kB) is good, we apply the above construction for
good sequences to both prefix and suffix. The details are presented below.

i∗ breaks the input into two good subsequences. Suppose the input has one i∗ ∈ [B] such that

• ki∗ ∈ K
(Ti∗−1)
i∗,0 ;

• (k1, . . . , ki∗−1) is good;

• (ki∗+1, . . . , kB) is good.

Since |K(Ti∗−1)
i∗,0 | ≤ 2σ, one can spend dlogBe + dlog 2σe bits to encode i∗ and the index of ki∗ within

K(Ti∗−1)
i∗,0 . Then by the above construction for good sequences, one can construct a data structure for

(k1, . . . , ki∗−1) using (i∗ − 1)w + 1 bits, and a data structure for (ki∗+1, . . . , kB) using (B − i∗)w + 1
bits. Hence, the total space is at most

dlogBe+ dlog 2σe+ (i∗ − 1)w + 1 + (B − i∗)w + 1 ≤ (B − 1)w + blogBσc+ 5

bits. By converting the extra (at most) blogBσc+ 5 bits to the spillover, one obtains a data structure using
space [Kbad]× {0, 1}(B−1)w for

Kbad = 32Bσ. (5)
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To decode Ti, one first retrieves i∗. If i < i∗, Ti can be decoded from the data structure for (k1, . . . , ki∗−1)
in constant time. If i = i∗, we have Ti∗ = Ti∗−1 + SUM(ki∗). The former term can be decoded in constant
time from the data structure for the prefix, the latter term can be computed from ki∗ , which is explicitly
stored in memory once Ti∗−1 is computed. If i > i∗, one can first compute Ti∗ , then compute Ti − Ti∗ by
querying the data structure for the suffix.

To decode ki, if i < i∗ (or i > i∗), ki can be decoded from the data structure for the prefix (or the data
structure for the suffix). If i = i∗, one computes Ti∗−1 using the above algorithm, and decodes the index
of ki∗ within K(Ti∗−1)

i∗,0 , which determines ki∗ . This completes the construction when i∗ breaks the sequence
into two good subsequences.

If the suffix (ki∗+1, . . . , kB) is not good either, then there exists another index i∗2 > i∗ such that ki∗2 ∈

K
(Ti∗2−1−Ti∗ )

i∗2−i∗,0
, which also has size at most 2σ. For a random input sequence, such case happens sufficiently

rarely, so that the “not-so-efficient” solution of Lemma 7 becomes affordable. We present the details below.

There exist i∗1 < i∗2 which are both in sets of size at most 2σ. Suppose there exist i∗1 and i∗2 such that

• ki∗1 ∈ K
(Ti∗1−1)

i∗1,0
;

• ki∗2 ∈ K
(Ti∗2−1−Ti∗1 )

i∗2−i∗1,0
.

Note that both K
(Ti∗1−1)

i∗1,0
and K

(Ti∗2−1−Ti∗1 )

i∗2−i∗1,0
have size at most 2σ.

We first spend 2dlogBe bits to encode i∗1 and i∗2, and another 2dlog 2σe bits to encode ki∗1 withinK
(Ti∗1−1)

i∗1,0

and ki2∗ within K
(Ti∗2−1−Ti∗1 )

i∗2−i∗1,0
. i∗1 and i∗2 break the input sequence into three consecutive subsequences.

Next we apply Lemma 7 to separately encode each subsequence: (k1, . . . , ki∗1−1), (ki∗1+1, . . . , ki∗2−1) and
(ki∗2+1, . . . , kB). Hence, the total space usage is at most

2 logB + 2 log 2σ + 6 + (B − 2)(w + logw)

≤ (B − 1)w + 2 logBσ + 8 +B logw − w

bits. By converting the extra (at most) 2 logBσ + 8 + B logw − w bits to the spillover, one obtains a data
structure using space [Klowprob]× {0, 1}(B−1)w for

Klowprob = (Bσ)2wB2−w+8. (6)

To decode a Ti, one first retrieves i∗1 and i∗2. If i < i∗1, Ti can be decoded from the data structure for the

first subsequence (k1, . . . , ki∗1−1). If i = i∗1, one first decodes Ti∗1−1, which determines the set K
(Ti∗1−1)

i∗1,0
. ki∗1

becomes retrievable in constant time, and Ti∗1 can be computed as Ti∗1−1 + SUM(ki∗1). When i∗1 < i < i∗2,
Ti can be computed from Ti∗1 and the data structure for (ki∗1+1, . . . , ki∗2−1). Decoding Ti in the cases when
i = i∗2 or i > i∗2 is similar. Likewise, one can also decode each ki in constant time.
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The final data structure. To handle a general input sequence (k1, . . . , kB), we again glue the above three
data structures together. By setting K = Kgood + Kbad + Klowprob, we obtain a data structure using space
[K]×{0, 1}(B−1)w which allows one to decode each ki and each Ti in constant time. Here, by Equation (4),
(5) and (6), we have

K ≤ 2w + wO(B) + 32Bσ + (Bσ)2wB2−w+8

≤ 2w + 32Bσ + (Bσ)2wO(B)2−w,

which by the fact that σ < 2w/n, is at most

≤ 2w +Bσ(32 +BwO(B)/n)

≤ 2w + 33Bσ,

since n ≥ l ≥ 2w/2B − 1 and B = w1/3. This proves the lemma.

Proof of Claim 2. By Fact 1 and Equation (3), we have

|SUM−1(Ti − Ti−1)| ≥
(

l

Ti − Ti−1

)
· 2−l+w ≥

ri∑
j=1

2ei,j1Xi,j (Ti−1)1Yi,j (Ti).

Hence Item (b) can be satisfied, e.g., by setting

K(Ti−1)
i,j :=

{
t-th element in SUM−1(Ti − Ti−1) : Ti ∈ Ti−1 + l/2±

√
l log 1/ε,

t ∈

[
j−1∑
a=1

2ei,a1Xi,a(Ti−1)1Yi,a(Ti) + 1,

j∑
a=1

2ei,a1Xi,a(Ti−1)1Yi,a(Ti)

]}
for 1 ≤ j ≤ ri.

Now let K(Ti−1)
i,0 = [2w + σ] \

⋃ri
j=1K

(Ti−1)
i,j . By definition, for all ki such that SUM(ki) /∈ l/2 ±√

l log 1/ε, we have ki ∈ K(Ti−1)
i,0 (since SUM(ki) = Ti − Ti−1).

To bound its size, we first observe that since σ > n2w/2 and n > l ≥ 2w
2/3/2 − 1, by Lemma 8, for

Ti−1 ∈ (i− 1)(l/2±
√
l log 1/ε), we have∑

Ti

E(Ti−1, Ti) ≤ σ/4 + wO(1)2w/2 ≤ σ/2.

Hence,

|K(Ti−1)
i,0 | = 2w + σ −

ri∑
j=1

|K(Ti−1)
i,j |

= 2w + σ −
ri∑
j=1

∑
Ti∈Ti−1+l/2±

√
l log 1/ε

2ei,j1Xi,j (Ti−1)1Yi,j (Ti),

which by Equation (3), is equal to

= 2w + σ −
∑

Ti−Ti−1∈l/2±
√
l log 1/ε

((
l

Ti − Ti−1

)
· 2−l+w − Ei(Ti−1, Ti)

)
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≤ 2w + σ −
∑

si∈l/2±
√
l log 1/ε

(
l

si

)
· 2−l+w + σ/2

= 3σ/2 +
∑

si /∈l/2±
√
l log 1/ε

(
l

si

)
· 2−l+w

≤ 3σ/2 + 2w+1ε

= 2σ.

4.2 Approximating binomial coefficients

In this subsection, we prove Lemma 8. We begin by approximating binomial coefficients in a small range.

Lemma 9. For any large integers l and d, 0 < α ≤ 1
2 , such that d ≤ C

√
αl, there is a polynomial P of

degree d2, such that(
l

αl + x+ y

)
· (1− ε) ≤

(
l

αl

)
·
(

1− α
α

)x+y

· P (x+ y) ≤
(

l

αl + x+ y

)
for all integers x, y ∈ [0, C ·

√
αl], a (small) universal constant C > 0, and ε = 2−d+8.

Moreover, P (x+ y) can be written as a sum of d4 + d2 + 1 nonnegative products:

P (x+ y) =
d4+d2+1∑
i=1

Qi(x)Ri(y),

where Qi(x), Ri(y) ≥ 0 for x, y ∈ [0, C ·
√
αl].

Proof. First observe that for t ∈ [0, 2C ·
√
αl], we have(

l

αl + t

)
=

(
l

αl

)
·
t∏
i=1

(1− α)l − (i− 1)

αl + i

=

(
l

αl

)
·
(

1− α
α

)t
·
t∏
i=1

1− i−1
(1−α)l

1 + i
αl

. (7)

It suffices to approximate the last factor f(t) :=
∏t
i=1

1− i−1
(1−α)l

1+ i
αl

.

For |z| < 1, 1 − z = e−
∑
j≥1 j

−1·zj . Taking only the first d − 1 terms, e−
∑d−1
j=1 j

−1·zj , introduces a
multiplicative error of

e|
∑
j≥d j

−1zj | ≤ e
1

d(1−|z|) |z|
d

.

Applying the above approximation to 1− i−1
(1−α)l and 1 + i

αl in (7), we have

f(t) ≈ exp

− t∑
i=1

d−1∑
j=1

1

j
·
(

i− 1

(1− α)l

)j
+

t∑
i=1

d−1∑
j=1

1

j
·
(
− i

αl

)j
23



= exp

d−1∑
j=1

1

j
·

t∑
i=1

(
−(i− 1)j · ((1− α)l)−j + ij · (−αl)−j

)
= exp

d−1∑
j=1

1

j
·
(
−Sj(t− 1) · ((1− α)l)−j + Sj(t) · (−αl)−j

) (8)

=: exp (P1(t)) ,

where Sj(t) = 1j + 2j + · · ·+ tj is a degree-(j + 1) polynomial of t. The approximation above has a total
multiplicative error of at most

exp

(
2

d

t∑
i=1

((
i− 1

(1− α)l

)d
+

(
i

αl

)d))
≤ exp

(
4t

d
·
(
t

αl

)d)
,

since α ≤ 1/2. When t ≤ 2C ·
√
αl ≤

√
αl, this is at most

exp

(
4

d(αl)(d−1)/2

)
≤ 1 + (αl)−(d−1)/2

for large d.
The exponent in (8) is a degree-d polynomial of t, which we denote by P1(t). We then apply ez =

1 +
∑

i≥1 z
i/i! to (8). Note that taking only the first d terms in the sum introduces an additive error of∣∣∣∣∣∣

∑
i≥d+1

zi/i!

∣∣∣∣∣∣ ≤ 2|z|d+1

(d+ 1)!
≤ 2−d

as long as |z| ≤ d/6. The exponent in (8), P1(t), is bounded by constants: Since Sj(t) ≤ tj+1, and

|P1(t)| =

∣∣∣∣∣∣
d∑
j=1

1

j
·
(
−Sj(t− 1) · ((1− α)l)−j + Sj(t) · (−αl)−j

)∣∣∣∣∣∣
≤

d∑
j=1

tj+1 · ((1− α)l)−j + (αl)−j)

≤ 2t ·
∑
j≥1

(t/αl)j

≤ 4t2/αl

≤ 4. (9)

Hence for large d, this approximation produces a degree-d2 polynomial P2(t), such that

f(t) · (1− (αl)−(d−1)/2)− 2−d ≤ P2(t) ≤ f(t) · (1 + (αl)−(d−1)/2) + 2−d.

By a similar argument to (9), we have e−4 ≤ f(t) ≤ 1. The additive errors can be translated into multi-
plicative errors,

f(t) · (1− (αl)−(d−1)/2 − e4 · 2−d) ≤ P2(t) ≤ f(t) · (1 + (αl)−(d−1)/2 + e4 · 2−d).
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By setting P (t) := (1− ε/2)P2(t), we prove the first half of the lemma.

To prove the second half, the following equation is applied to transform a negative monomial −xayb
(plus a large positive constant) to a sum of two nonnegative terms,

Ma+b − xayb ≡ 1

2
(Ma − xa)(M b + yb) +

1

2
(Ma + xa)(M b − yb). (10)

Both terms are nonnegative when x, y ∈ [0,M ]. It suffices to prove that the constant term of P (or equiva-
lently P2) is large enough to accomplish this transformation simultaneously for all negative monomials. In
particular, by expanding P2(x+ y) =

∑
a,b≥0 βa,bx

ayb, it suffices to show

β0,0 ≥
∑

a,b≥0,a+b 6=0

|βa,b|(C
√
αl)a+b. (11)

Since if (11) does hold, we will be able to rewrite

P2(x+ y) =

β0,0 −
∑

a,b≥0,a+b 6=0

|βa,b|(C
√
αl)a+b

+
∑

a,b≥0,a+b6=0

|βa,b| ·
(

(C
√
αl)a+b + sgn(βa,b)x

ayb
)

and apply (10) to the later terms with βa,b < 0. The number of terms will be at most d4 +d2 + 1, which will
prove the second half of the lemma.

In order to prove (11), let us first bound the coefficients of Sj(t). By Faulhaber’s formula (or Bernoulli’s
formula),

1j + 2j + · · ·+ tj = Sj(t) =
1

j + 1

j∑
k=0

(
j + 1

k

)
·Bk · tj−k+1,

where Bk are the Bernoulli numbers: B0 = 1; B1 = 1/2; Bk = 0 for all odd integers k > 1; and for all
even integers k ≥ 2,

Bk = (−1)k/2+1 2 · k!

(2π)k
ζ(k),

where ζ(z) =
∑∞

m=1m
−z is the Riemann zeta function [AWH05].

The constant term in P1 is 0, since both Sj(0) = 0 and Sj(−1) = (−1)j+1(Sj(1)− 1) = 0. Hence, by
definition,

β0,0 = P2(0) = 1. (12)

To upper bound the RHS of (11), consider the following operator: For polynomial Q(x) =
∑

i βix
i,

F (Q, z) :=
∑
i

|βi|zi.

Then for z > 0,

F (Sj , z) =
1

j + 1

j∑
k=0

(
j + 1

k

)
· |Bk| · zj−k+1

≤
j∑

k=0

2(j + 1)k−1

(2π)k
· |ζ(k)| · zj−k+1.
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Since limk→+∞ ζ(k) = 1, it is at most

F (Sj , z) ≤
zj+1

64C

j∑
k=0

(j + 1)k−1

(2πz)k
.

for sufficiently small constant C > 0. When j + 1 ≤ 2πz, it is at most zj+1/64C. Therefore, by the fact
that j + 1 ≤ d ≤ C

√
αl,

F (P1, 2C
√
αl) ≤

d−1∑
j=1

1

j
·
(
F (Sj , 2C

√
αl + 1) · ((1− α)l)−j + F (Sj , 2C

√
αl) · (αl)−j

)

≤
d−1∑
j=1

1

64Cj

(
(2C
√
αl + 1)j+1 · ((1− α)l)−j + (αl)−j

)

≤
d−1∑
j=1

1

32C

(
(4C
√
αl)j+1 · (αl)−j

)
≤
√
αl

8

∑
j≥1

(4C/
√
αl)j

≤ C.

Thus, the RHS of (11) is at most

d∑
i=1

F (P1, 2C
√
αl)i/i! ≤ eF (P1,2C

√
αl) − 1 ≤ eC − 1.

Together with (12), Equation (11) must hold for sufficiently small C > 0. It completes the proof of the
lemma.

The above approximation can be extended to much larger ranges. Let C be the constant in Lemma 9,
we have the following.

Lemma 10. For any large even integer l, positive numbers Mx, My and ε, such that l > 8Mx, l > 8My

and ε > 2−C
√
l/2+8, we can write

(
l

l/2+x+y

)
· 2−l as

(
l

l/2 + x+ y

)
· 2−l = E(x, y) +

r∑
i=1

Q̃i(x)R̃i(y)

for all integers x ∈ [−Mx,Mx] and y ∈ [−My,My], such that

a) E(x, y) ≥ 0 and for every integer x ∈ [−Mx,Mx],
∑My

y=−My
E(x, y) ≤ ε;

b) for all i ∈ [r] and x ∈ [−Mx,Mx], y ∈ [−My,My], 0 ≤ Q̃i(x), R̃i(y) ≤ 1;

c) r ≤ O((MxMy/l) log4 1/ε).
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Proof. The idea is to first partition the domain [−Mx,Mx] × [−My,My] into rectangles, so that in each
rectangle [ax, bx]× [ay, by], we have(

l

l/2 + x+ y

)
=

(
l

(l/2 + ax + ay) + (x− ax) + (y − ay)

)
and (

l

l/2 + x+ y

)
=

(
l

(l/2− bx − by) + (bx − x) + (by − y)

)
,

which allows us to apply Lemma 9 as long as both sides of the rectangle are not too large. Finally, we put
all error terms from these rectangles into E(x, y). In the following, we present this construction in detail.

Approximation in subrectangles. We partition [−Mx,Mx] × [−My,My] into O(MxMy/l) rectangles
of size at most C

√
l/2× C

√
l/2. For each rectangle Rk = [a

(k)
x , b

(k)
x ]× [a

(k)
y , b

(k)
y ], if a(k)

x + a
(k)
y ≤ 0, we

apply Lemma 9 to approximate the binomial coefficient(
l

(l/2 + a
(k)
x + a

(k)
y ) + (x− a(k)

x ) + (y − a(k)
y )

)
with d = log(28/ε). The premises of the lemma are satisfied:

• α = 1/2 + a
(k)
x /l + a

(k)
y /l ≤ 1/2;

• since l/2 + ax + ay ≥ l/2 − Mx − My ≥ l/4, we have α ≥ 1/4 and C
√
l/2 ≤ C

√
αl, i.e.,

(x− a(k)
x ), (y − a(k)

y ) ∈ [0, C
√
αl];

• d = log(28/ε) ≤ C
√
l/2 ≤ C

√
αl.

Otherwise, b(k)
x + b

(k)
y must be greater than zero, and we apply Lemma 9 to approximate(

l

(l/2− b(k)
x − b(k)

y ) + (b
(k)
x − x) + (b

(k)
y − y)

)
,

which is equal to
(

l
l/2−x−y

)
=
(

l
l/2+x+y

)
. Similarly, one can verify in this case, all premises of the lemma

are also satisfied.
Therefore, we obtain an approximation of

(
l

l/2+x+y

)
in rectangleRk,

rk∑
i=1

((
l

αl

)
·
(

1− α
α

)x
Q

(k)
i (x)

)
·
((

1− α
α

)y
R

(k)
i (y)

)
,

where αl = l/2+a
(k)
x +a

(k)
y (or l/2−b(k)

x −b(k)
y , depending on their values), and rk = O(d4) = O(log4 1/ε).

Next we make both Q and R bounded by 1 and vanish outside Rk, by scaling them by the following factor
and multiplying by the indicator functions of the two sides correspondingly. Let

C
(k)
i = max

y∈[a
(k)
y ,b

(k)
y ]

(
1− α
α

)y
R

(k)
i (y),
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and let

Q̃
(k)
i (x) := C

(k)
i · 2

−l
(
l

αl

)(
1− α
α

)x
Q

(k)
i (x) · 1

[a
(k)
x ,b

(k)
x ]

(x)

and

R̃
(k)
i (y) :=

1

C
(k)
i

(
1− α
α

)y
R

(k)
i (y) · 1

[a
(k)
y ,b

(k)
y ]

(y),

where 1S(z) is equal to 1 if z ∈ S, and 0 if z /∈ S.
Now consider W (k)(x, y) :=

∑rk
i=1 Q̃

(k)
i (x) · R̃(k)

i (y), we have

i) for (x, y) ∈ Rk, 2−l
(

l
l/2+x+y

)
(1− ε) ≤W (k)(x, y) ≤ 2−l

(
l

l/2+x+y

)
;

ii) for (x, y) /∈ Rk, W (k)(x, y) = 0;

iii) Q̃(k)
i (x), R̃

(k)
i (y) ≥ 0;

iv) by definition, max
y∈[a

(k)
y ,b

(k)
y ]

R̃
(k)
i (y) = 1, and

Q̃
(k)
i (x) ≤ min

y∈[a
(k)
y ,b

(k)
y ]

{
W (k)(x, y)/R̃

(k)
i (y)

}

≤

(
max

y∈[a
(k)
y ,b

(k)
y ]

R̃
(k)
i (y)

)−1

= 1.

Merging the subrectangles. Finally, let

W (x, y) :=
∑

k≤O(MxMy/l)

W (k)(x, y) =
∑

k≤O(MxMy/l)

rk∑
i=1

Q̃
(k)
i (x)R̃

(k)
i (y)

and

E(x, y) :=

(
l

l/2 + x+ y

)
· 2−l −W (x, y).

In the following, we show this construction indeed has the claimed properties:

a) by Item i) and ii) above and the fact that {Rk} is a partitioning of [−Mx,Mx] × [−My,My], we have
E(x, y) ≥ 0; for every integer x ∈ [−Mx,Mx], we have

My∑
y=−My

E(x, y) ≤
My∑

y=−My

ε2−l
(

l

l/2 + x+ y

)
≤ ε;

b) by Item iii) and iv) above, we have 0 ≤ Q̃(k)
i (x), R̃

(k)
i (x) ≤ 1;

c) r =
∑

k≤O(MxMy/l)
rk = O((MxMy/l) log4 1/ε).

This proves the lemma.
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Finally, we are ready to prove Lemma 8.

Lemma 8 (restated). For any large even integer l, positive numbers Mx,My and ε, such that l > 8Mx,
l > 8My and ε > 2−C

√
l/2+8, we have(

l

l/2 + x+ y

)
· 2−l+w = E(x, y) +

r∑
i=1

2ei1Xi(x)1Yi(y)

for all integers x ∈ [−Mx,Mx] and y ∈ [−My,My], such that

a) E(x, y) ≥ 0 and for every x ∈ [−Mx,Mx],
∑My

y=−My
E(x, y) ≤ ε2w + 4rMy2

w/2;

b) for every i ∈ [r], ei ≥ 0 is an integer, Xi ⊆ [−Mx,Mx], Yi ⊆ [−My,My] are sets of integers;

c) r ≤ O((MxMy/l)w
2 log4(1/ε)).

Proof. By Lemma 10 and multiplying both sides by 2w, we have(
l

l/2 + x+ y

)
· 2−l+w = E0(x, y)2w +

r0∑
i=1

(2w/2Q̃i(x)) · (2w/2R̃i(y))

= E(x, y) +

r0∑
i=1

b2w/2Q̃i(x)c · b2w/2R̃i(y)c, (13)

for E(x, y) ≥ 0 and

E(x, y) ≤ E0(x, y)2w +

r0∑
i=1

(
2w/2Q̃i(x) + 2w/2R̃i(y)

)
≤ E0(x, y)2w + 2r02w/2.

Therefore, we have
∑My

y=−My
E(x, y) ≤ ε2w + 4r0My2

w/2 for every x ∈ [−Mx,Mx]. It proves Item a).

Next, we write each b2w/2Q̃i(x)c and b2w/2R̃i(y)c in binary representation. Let

b2w/2Q̃i(x)c =

w/2−1∑
j=0

2j · 1Xi,j (x)

and

b2w/2R̃i(y)c =

w/2−1∑
j=0

2j · 1Yi,j (y),

where Xi,j 3 x (resp. Yi,j 3 y) if and only b2w/2Q̃i(x)c (resp. b2w/2R̃i(y)c) has a “1” in the j-th bit in its
binary representation.

By expanding Equation (13), we have(
l

l/2 + x+ y

)
· 2−l+w = E(x, y) +

r0∑
i=1

w/2−1∑
j1=0

w/2−1∑
j2=0

2j1+j21Xi,j1 (x)1Yi,j2 (y).

Hence, r = O(r0w
2) ≤ O((MxMy/l)w

2 log4 1/ε).
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4.3 Using standard word operations

The above data structure assumes that the computational model allows one to compute arbitrary functions on
O(w)-bit input (that are hard-wired in the solution) in constant time. To only use standard word operations,
one nature idea is to precompute all such functions needed at preprocessing time, and store a lookup table
in memory.

By examining the data structure, one may verify that the only part that uses non-standard word operations
is Lemma 2, combining the B spillovers. This subroutine is applied at t different levels, for σ = (34B)i ·
n2w/2 (i = 0, . . . , t − 1). In each application, there are 2B different possible queries (decoding one of
k1, . . . , kB or T1, . . . , TB). The query time is bounded by a universal constant cq. Hence, the whole query
algorithm, which is a decision tree, can be encoded by a lookup table of size

t · 2B ·
cq∑
k=0

2kw ·O(w) = O(tB2cqw · w)

bits.
Since w is required to be at least 7 log n, storing the entire lookup table is unaffordable. However, one

may use a standard trick to decrease w for self-reducible problems. Given an input of n bits, we evenly
partition the input into blocks of size n′ = n1/8cq . For each block, we apply Theorem 1 with w′ = 7 logn

8cq
,

and construct a data structure using

n′ + d n′

w′Ω(t)
e ≤ n′ + n′

(log n)Ω(t)
+ 1

bits. In addition, we also store the lookup table for the whole query algorithm using

O(tB2cqw
′ · w′) = Õ(n7/8)

bits. Note that this lookup table is shared among all blocks, and hence only one copy needs to be stored.
Finally, the total space usage is

n+
n

(log n)Ω(t)
+O(n1−1/8cq).

This proves Theorem 2.

Theorem 2 (restated). Given a 0-1 array of length n for sufficiently large n, for any t ≥ 1, one can
construct a succinct data structure using

n+
n

(log n)Ω(t)
+ n1−c

bits of memory supporting rank queries in O(t) time, in a word RAM with word-size w = Θ(log n), for
some universal constant c > 0.

5 Discussion and Open Questions

The sibling of the rank query is select, which asks “where is the k-th one in the input array?” Most previous
succinct rank data structures support both rank and select at the same time, and the lower bounds [PV10]
also apply to select queries. It is a natural question to ask whether our data structure also generalizes to both
rank and select.
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Several previous solutions also apply to sparse inputs (e.g., [Pag01], [GRR08], [Pǎt08], etc). That is,
we are given an array of n bits with m ones, and would like to design a data structure with space close to
log
(
n
m

)
. However, generalizing our data structure to such instances seems more complicated, may require

massive technical manipulation.

Most cell-probe lower bound proof techniques also apply to the information cell-probe model, defined in
Section 3. However, some data structure problems are trivial in the information cell-probe model, while their
complexities in the cell-probe model are unclear (e.g., succinct dictionary). If one believes such a problem
does not admit trivial cell-probe data structures, then proving any lower bound requires distinguishing the
two models, and likely needs a new technique. One might hope to apply the breakthrough in information and
communication [GKR14] to achieve such separation. Despite the close connections between data structures
and communication complexity, separating cell-probe and information cell-probe is not entirely equivalent
to separating information and communication complexity. One reason is that only the memory side changes
the measure from worst-case communication to information, while the data structure side still sends a mes-
sage of fixed length. It is unclear to us whether similar separations can be established in communication
complexity.
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A Proof of Lemma 6

Observe that given two elements xi ∈ [Mi] and xj ∈ [Mj ], we may treat the pair as a number from [Mi ·Mj ]
by mapping (xi, xj) 7→ xiMj + xj . Since initially each Mi ≤ 2w, by repeatedly merging elements in this
way, we may assume the universe size of each element is between 23w and 26w, except for the last element,
which may be from a set of size smaller than 23w.

Now the task becomes to encode a sequence (y1, . . . , yB′) ∈ [N1]× · · · × [NB′ ] such that

• for i = 1, . . . , B′ − 1, 23w < Ni ≤ 26w, and

• NB′ ≤ 26w.

We first inductively calculate and hard-wire the following constants:

V0 = 1

and for i ≥1,

wi = blog(Vi−1) + 1.5wc (14)

Ui = b 2wi

Vi−1
c (15)

Vi = dNi

Ui
e (16)

Then we break each element yi ∈ [Ni] into a pair (ui, vi) such that ui ∈ [Ui] and vi ∈ [Vi] due to (16),
e.g., ui := byi/Vic and vi = yi mod Vi. Then for 1 ≤ i ≤ B′ − 1, we combine (vi−1, ui) into an element
zi ∈ [2wi ] due to (15), e.g., zi = vi−1 · Ui + ui.

The data structure will explicitly store z1, . . . , zB′−1 using w1 + · · · + wB′−1 bits. For the last two
elements (vB′−1, yB′), we combine them into an element zB′ ∈ [VB′−1 · NB′ ], and store zB′ using m −
(w1 + · · ·+ wB′−1) bits and a spillover of size

K = dVB′−1 ·NB′ · 2(w1+···+wB′−1)−me.

To decode a yi, it suffices to retrieve zi and zi+1, which determines ui and vi respectively. Sincewi = O(w),
it takes constant time.

The data structure uses m bits of memory. It remains to show that K is at most
⌈
2−m ·

∏B
i=1Mi

⌉
+ 1.

By Equation (14), (15) and (16), we have

Ui = Θ(2wi/Vi) = Θ(21.5w),
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and
Vi = Θ(Ni/Ui) ≥ Ω(21.5w).

Thus, by (15) again, we have

2wi ≤ (Ui + 1)Vi−1 ≤ UiVi−1 · (1 +O(2−1.5w)),

and by (16), we have
UiVi ≤ Ni · (1 +O(2−1.5w)).

Finally, by definition, we have

K = d2−m · VB′−1NB′

B′−1∏
i=1

2wie

≤ d2−m · VB′−1NB′

B′−1∏
i=1

UiVi−1 · (1 +O(2−1.5w))e

≤ d2−m ·NB′ · (1 +O(B′ · 2−1.5w))
B′−1∏
i=1

UiVie

≤ d2−m · (1 +O(B′ · 2−1.5w))
B′∏
i=1

Ni · (1 +O(2−1.5w))e

≤ d2−m · (1 +O(B · 2−1.5w))
B∏
i=1

Mie.

The last inequality is because
∏B
i=1Mi =

∏B′

i=1Ni. Since m ≥
∑B

i=1 logMi − w and B = o(2w/2), we
have

K ≤ d2−m
B∏
i=1

Mi + 1e = d2−m
B∏
i=1

Mie+ 1.

This proves the lemma.
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