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Abstract. For positive integers U , n and σ, given a set S of n (distinct) keys from key space [U ], each associated
with a value from [σ], the static dictionary problem asks to preprocess these (key, value) pairs into a data structure,
supporting value-retrieval queries: for any given x ∈ [U ], valRet(x) must return the value associated with x if
x ∈ S, or return ⊥ if x /∈ S. The special case where σ = 1 is called the membership problem. The “textbook”
solution is to use a hash table, which occupies linear space and answers each query in constant time. On the other
hand, the minimum possible space to encode all (key, value) pairs is only OPT := ⌈lg2

(U
n

)
+n lg2 σ⌉ bits, which

could be much smaller than a hash table.
In this paper, we design a randomized dictionary data structure using

OPT+ poly lgn+O(lg(ℓ) U)

bits of space, and it has expected constant query time, assuming the query algorithm can access an external lookup
table of size nϵ for any constant ℓ and ϵ. The lookup table depends only on U , n and σ, and not the input. Previously,
even for membership queries and U ≤ nO(1), the best known data structure with constant query time requires
OPT + n/poly lgn bits of space (Pagh [21] and Pǎtraşcu [23]); the best known using OPT + n1−ϵ space has
query time O(lgn). Our new data structure answers open questions by Pǎtraşcu and Thorup [23, 30].

We also present a scheme that compresses a sequence X ∈ [σ]n to its zeroth order (empirical) entropy up to
σ · poly lgn extra bits, supporting decoding each Xi in O(lg σ) expected time.
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1. Introduction. Given n (key, value) pairs {(xi, vi)}i=1,...,n with distinct keys xi ∈
[U ] and (possibly duplicated) values vi ∈ [σ],1 the static dictionary problem asks to prepro-
cess them into a data structure, supporting value-retrieval queries

• valRet(x): return vi if x = xi, and return ⊥ if x ̸= x1, . . . , xn.
When σ = 1, it is called the membership problem, i.e., preprocessing a set S of n keys into a
data structure, supporting queries of form “is x ∈ S?”2

Dictionaries are very fundamental data structures, which have been extensively studied
in theory [4, 5, 6, 8, 9, 10, 11, 18, 19, 21, 22, 29, 33]. They are also one of the most basic
data structures in practice, included in standard libraries for most of the popular programming
languages.3

One “textbook” implementation of a dictionary is to store a hash table: use a hash func-
tion to map all keys to m = O(n) buckets, and store each (key, value) pair in the correspond-
ing bucket. Simple hash functions (e.g. (kx mod p) mod m for prime p ≥ U and random
k ∈ {1, . . . , p − 1}) have low collision probabilities, and resolving collisions by chaining
leads to a dictionary data structure with expected constant query time. Using perfect hashing
(e.g. [11]), one can further improve the query time to worst-case constant. However, such data
structures use at least n lgU + n lg σ bits of space, even just to write down all (key, value)
pairs in the buckets, while the information theoretical space lower bound for this problem is
only4

OPT := lg

(
U

n

)
+ n lg σ

bits, which is about n lg n bits less than n lgU+n lg σ (note that lg
(
U
n

)
= n lg(U/n)+O(n)).

It turns out that it is possible to not explicitly store all pairs, and beat n lgU +n lg σ bits.
For membership queries (σ = 1), the previously best known data structure by Pagh [21], as
later improved by Pǎtraşcu [23], uses OPT + O(n/poly lg n + lg lgU) bits of space, and
answers queries in constant time. Such data structures that use OPT + o(OPT) bits of
space are called the succinct data structures [15]; the extra space is called the redundancy.
This data structure also gives a smooth tradeoff between time and space: for query time O(t),
it uses space

OPT+ n/r +O(lg lgU),

where r = ( lgn
t )Ω(t). To achieve this query time, it is assumed that the query algorithm has

access to an external lookup table of size min{n3, r6}, which depends only on U and n, and
not the input. In particular, when U = poly n, if the redundancy is n0.99, the query time
becomes O(lg n). If we want the space to be very close to OPT, the query time is O(lg n),
but the lookup table size becomes about n3 (it may even be larger than the data structure
itself). For σ > 1, only (OPT + O(n + lg lgU))-bit data structures were known [21].
While these data structures have deterministic query algorithms (and worst-case query-time
guarantee), no better zero-error randomized data structure was known.5

1.1. Our contributions. In this paper, we show that if we allow randomization, a much
smaller redundancy and optimal time can be achieved simultaneously. We design a dictionary
data structure with poly lg n + O(lg lgU) bits of redundancy and expected constant query

1[U ] denotes the set {0, . . . , U − 1}.
2Note that in some literature, all elements in the key space are called the “keys”. In this paper, we only call

elements in the input set S “keys”, and all other elements in the key space are called the “non-keys”.
3These dictionary data structures usually also support insertion and deletion of key-value pairs.
4Throughout the paper, lg is the binary logarithm.
5Monte Carlo algorithms, where the query is allowed to err with a small probability, would have a different

optimal space bound. Thus, they are not the focus of this paper.
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time, making a step towards the optimal static dictionary. The query algorithm only needs to
access the data structure and a small lookup table of size nϵ.

THEOREM 1.1. For any constant ϵ > 0, there is a randomized algorithm that can pre-
process n (key, value) pairs into a data structure with

OPT+ poly lg n+O(lg lgU)

bits, and a lookup table of size nϵ that only depends on U , n and σ, such that for any given
query x ∈ [U ], a query algorithm can output valRet(x) in expected constant time on a
random access machine with word size w ≥ c · (lgU + lg σ) for some large constant c, by
accessing the data structure and the lookup table.

In fact, the lg lgU term can be improved to lg lg · · · lgU for logarithm iterated any constant

number of times. Hence, when U is at most 22
...
2n

with O(1) levels, this term can be removed.
In this case, among the OPT + poly lg n bits of the data structure, the first poly lg n are
the (plain) random bits used by the preprocessing algorithm, and the “actual” data structure
only occupies the next (and last) OPT + 1 bits. The expectation of the query time is taken
over these random bits, which we assume the worst-case input data and query do not see.
Moreover, the query time is O(1) with probability 1− o(1), and is poly lg n in worst case.

By storing the lookup table as part of the data structure, Theorem 1.1 implies a data
structure with OPT+ nϵ +O(lg lgU) bits and expected constant query time, which is still
an improvement over the previous best known. In the cell-probe model, where we only count
how many times the query algorithm accesses the memory and the computation is free, the
lookup table is not necessary, because it does not depend on the input and can be computed
without accessing the data structure.

In the theorem, we assumed that each (key, value) pair fits in O(1) words, which is
necessary to obtain constant query time on random access machines. We will discuss larger
keys or values in Section 10.

Perfect hashing. In general, a perfect hashing maps n input keys to distinct buckets, and
it is called minimal if it maps them to exactly n distinct buckets, labeled from 0 to n− 1. En
route to the new dictionary data structure, the key component is a succinct membership data
structure, equipped with a two-sided minimal perfect hashing, defined as follows.

DEFINITION 1.2. Given a set S ⊆ [U ] of size n, a two-sided minimal perfect hash func-
tion with membership (2-PHM) for S is an bijection between [U ] and ({0} × [n]) ∪ ({1} ×
[U − n]) such that it maps S to {0} × [n]. Hence, when restricted to S, it can be viewed as a
bijection h between S and [n]; when restricted to S, it can be viewed as a bijection h between
S and [U − n].

That is, we want to perfectly hash all keys, as well as all non-keys.

THEOREM 1.3 (informal). For any constant ϵ > 0, there is a randomized algorithm
that preprocesses a set S ⊆ [U ] of size n into a data structure with

lg

(
U

n

)
+ poly lg n+O(lg lgU)

bits, and a lookup table of size nϵ that depends only on n and U . Moreover, the data structure
determines 2-hq : [U ] → ({0} × [n]) ∪ ({1} × [U − n]), a 2-PHM for S, such that for
any x, the query algorithm outputs 2-hq(x) in expected constant time on a random access
machine with word size w ≥ c · lgU for some sufficiently large constant c, by accessing the
data structure and the lookup table.
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See Section 9 for the formal statement. Note that the optimal space bound for 2-PHM is the
same as storing the set S. This is because if we have stored the set S, then one trivial way
to define a 2-PHM is to map the i-th largest element in S to (0, i), and map the i-th largest
element in [U ] \ S to (1, i).

Locally decodable arithmetic codes. We also show that the above perfect hashing data
structure can be applied to obtain a version of locally decodable arithmetic codes with a
better space [23]. This problem asks to compress a sequence X = (x1, . . . , xn) ∈ Σn for
some (small) alphabet set Σ, such that each symbol xi can be recovered efficiently from
the compression. We should think of a sequence X that is sampled from some low entropy
source, and the encoding should take much less than n lg |Σ| bits. The size of such a data
structure should match the zeroth order entropy of X , i.e., if each symbol in the sequence
has entropy H (marginally), then the encoding has length ∼ n ·H . Pǎtraşcu [23] gave a data
structure whose size is∑

a∈Σ

fa lg
n

fa
+O(|Σ| lg n) + n/

(
lg n

t

)t

+ Õ(n3/4),

where fa is the number of occurrences of a. It supports single-element access in O(t) time
on a word RAM. Note that when each symbol xi is sampled independently from a source
of entropy H , then the empirical entropy

∑
a∈Σ fa lg

n
fa

is approximately n · H with high
probability.

THEOREM 1.4. For any constant ϵ > 0, there is a randomized algorithm that prepro-
cesses a sequence (x1, . . . , xn) ∈ Σn into a data structure with

lg

(
n!

fa1
!fa2

! · · ·

)
+ |Σ| · poly lg n

bits, where fa is the number of occurrences of a. For any index i, the query algorithm recovers
xi in O(lg |Σ|) time in expectation on a word RAM with word-size w ≥ c · lg n for some large
constant c, assuming it has access to an external lookup table of size nϵ.

Note that the first term in the space is the minimum possible space to store a sequence
with frequencies (fa)a∈Σ, which is at most

∑
a∈Σ fa lg

n
fa

.

1.2. Related work. The perfect hashing scheme [11] by Fredman, Komlós and Sze-
merédi maps [U ] to [n + o(n)] such that for any given set S of size n, there is a hash func-
tion h that maps all elements in S to different buckets (i.e., no hash collision) such that
h(x) can be evaluated in constant time. This hash function takes O(n

√
lg n + lg lgU) bits

to store. It was later improved to O(n + lg lgU) bits by Schmidt and Siegel [28], and to
n lg e+ lg lgU + o(n+ lg lgU) bits by Hagerup and Tholey [14]. By storing the (key, value)
pair in the corresponding bucket, the perfect hashing scheme solves the dictionary problem
with O(n) words of space and constant query time. Fiat, Naor, Schmidt and Siegel [9] showed
that only O(lg n + lg lgU) extra bits are needed to store both the hashing function and the
table, obtaining space of n⌈lgU⌉ + n⌈lg σ⌉ + O(lg n + lg lgU). Fiat and Naor [8] further
removed the O(lg n) term, as well as the O(lg lgU) term when U is not too large.

The first dictionary data structure that achieves nearly optimal space is due to Brodnik
and Munro [4]. Their data structure uses OPT + O(OPT/ lg lg lgU) bits, and it has con-
stant query time. Pagh [21] reduced the dictionary problem to the rank problem (see below,
also Section 5.1 for definition of the rank problem), and designed a data structure for mem-
bership queries using OPT + O(n lg2 lg n/ lg n + lg lgU) bits for n < U/ lg lgU , and
OPT + O(U lg lgU/ lgU) for n ≥ U/ lg lgU . Pagh’s dictionary uses rank data structures
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as subroutines. By improving the rank data structures, Pǎtraşcu [23] improved the bound to
OPT+ n/poly lg n+O(lg lgU), as we mentioned earlier.

It is worth mentioning that when n = U , i.e., when the input is a sequence of values
v1, . . . , vU ∈ [σ], Dodis, Pǎtraşcu and Thorup [7] designed a data structure using optimal
space. Their data structure uses a lookup table of poly lg n size. We make this lookup table
more explicit (see Lemma 5.1 in Section 8) as an application of our new technique.

No non-trivial lower bounds on the query time are known without restrictions on the
data structure or model. Fich and Miltersen [10] and Miltersen [18] proved Ω(lg n) and
Ω(lg lg n) lower bounds in the RAM model with restricted operations. Buhrman, Miltersen,
Radhakrishnan and Venkatesh [5] proved that in the bit-probe model (where the word size
w is 1), any data structure using O(OPT) space must have query time at least O(lg U

n ).
Viola [31] proved a lower bound for the case where U = 3n, that any bit-probe data structure
with query time q must use space OPT+ n/2O(q) − log n.

Raman, Raman and Rao [27] considered the indexable dictionary problem, which gen-
eralizes membership. Given a set S of n keys, it supports rank and select queries: rankS(x)
returns ⊥ if x /∈ S, and returns i if x is the i-th smallest in S; selectS(i) returns the i-th
smallest element in S. They obtained a data structure using OPT + o(n) + O(lg lgU) bits
and constant query time. Grossi, Orlandi, Raman and Rao [13] studied the fully indexable
dictionary problem. It generalizes the indexable dictionary problem to let rankS(x) return
the number of elements in S that are at most x (also for x /∈ S). They obtained a data struc-
ture using space OPT + O

(
n1+δ + U ϵ · n1−sϵ

)
with query time O(s/δ + 1/ϵ). In fact,

this problem is much harder. It was observed in [26] that rank queries can be reduced from
colored predecessor search, which has a query time lower bound of Ω(lg lg n) even when
the space is O(n lgU) [24, 25] (not to say the succinct regime). When U > n2, the prob-
lem requires n1+ϵ space to get constant query time (when the word-size is lg n), even only
supporting rank queries.

Makhdoumi, Huang, Médard, Polyanskiy [17] studied locally decodable source coding.
They consider X that consists of i.i.d samples from a source of entropy H , and would like to
encode X such that each Xi can be recovered efficiently. However, the main focus is non-
adaptive bit-probe query algorithms. That is, the query algorithm has to decide which t bits
of the encoding to access based only on the queried index i. They also studied the lossy case,
where the encoding is equipped with the error correcting ability.

1.3. Technical contributions. We make two technical contributions to succinct data
structures: We summarize the “spillover representation”, introduced by Pǎtraşcu [23], to de-
fine binary strings with fractional lengths and build a “toolkit” of black-box operations; we
study the “opposite” of data structures, called the data interpretation. We believe they will
have more applications to other problems in succinct data structures.

1.3.1. Strings with fractional lengths. A data structure is simply a bit string, and its
length (or size) is the number of bits. Under standard notions, an s-bit string is only well-
defined for integer s. Here, we show how to define strings when s is non-integer.6 We will
see why this notion is useful later (or see [23]).

Let (M,K) be a pair such that M ∈ {0, 1}m is a bit string, and K ∈ [R] is an integer.
These pairs are viewed as “binary strings” of length s = m + lg2 R. When R is a power
of two, this matches the standard notion of length, as we could simply write K in its binary

6The terminology “fractional” may seem to imply that s has to be expressible as fractions, i.e., rational numbers.
However, this is not the case.

5



representation using lgR bits and append it to M . As we increase R, such a pair could
potentially represent more information. Only when R is increased by a factor of two, does
the pair correspond to a string with one more bit. That is, by restricting R ∈ [2κ, 2κ+1)
for some fixed parameter κ, we essentially “insert” 2κ − 1 valid lengths between adjacent
integers. It makes the measure of space more fine-grained. In this paper, R is always set to
2Θ(w), i.e. κ = Θ(w) (recall that w is the word size). Thus, K is an O(w)-bit integer, and
the algorithms are able to do arithmetic operations on K in constant time.

We summarize a few black-box operations on fractional-length strings. The two major
ones are concatenation and fusion.

Concatenation. Given B (fractional-length) strings S1, . . . ,SB of lengths s1, . . . , sB ,
we show that they can be “concatenated” into one string of length s ≈ s1 + · · · + sB .
Moreover, we prove that given access to S , each Si can be decoded efficiently. We emphasize
that decoding an Si = (Mi,Ki) does not mean reconstructing the entire string. Instead, the
decoding algorithm only recovers Ki, and finds where Mi is located within the long string
(where Mi is guaranteed to be a consecutive substring). Thus, the decoding algorithm can
be very efficient. Nevertheless, after decoding, Si can still be accessed as if it was stored
independently.

Concatenation is useful when the data structure has multiple parts. We could simply
construct each part separately and then concatenate them. It also demonstrates, to some
extent, why fractional lengths are useful and necessary. If we only use integral-length strings,
then each Si will have length (at least) ⌈si⌉. The length of the concatenated string becomes
⌈s1⌉+ · · ·+ ⌈sB⌉, which could be B − 1 bits longer than ⌈s1 + · · ·+ sB⌉.

Fusion. The other major operation is to fuse an integer into a string. That is, we first
fix lengths s1, . . . , sC . Then the fusion operation maps a pair (i,Si), for i ∈ [C] and Si

of length si, to a single fractional-length string S. We show that S can have length s ≈
lg(2s1 + · · ·+2sC ). This is the best possible length, since there are 2s1 + · · ·+2sC different
pairs (i,Si) in total. Furthermore, we show that given access to S , we can efficiently decode
the original input pair (i,Si).

The fusion operation is useful when we study different cases of the input, and construct a
data structure for each case separately. Suppose we can partition the set of all possible inputs
I into C subsets I1, . . . , IC , such that we can apply a possibly different construction for each
Ii that produces a data structure of size ≈ lg |Ii|. Then by fusing the index of the subset that
contains the input into the data structure, we obtain a data structure for all inputs using space
≈ lg |I|.

By including a few other operations, we build a “toolkit” for operating on fractional-
length strings. The view of fractional-length strings makes the “spillover representation” of
Pǎtraşcu [23] more explicit. The original data structure of [23] needs huge lookup tables to
store truth tables for O(w)-bit word operations. The new view assigns semantic meanings to
those operations, so that a major part can be efficiently computed without lookup tables. This
is the main reason why we can reduce the lookup table size.

1.3.2. Data interpretation. For a data structure problem, we preprocess a combinato-
rial object into a binary string. Then this string is stored in memory, which is divided into
w-bit words. In each time step, a query algorithm may access a memory word (i.e. a w-bit
substring), or do local computation. Finally, it computes some function of the input object.
The concept of data interpretation is to perform the above procedure in the opposite direc-
tion. Given a binary string, we preprocess it into a combinatorial object. In each time step, a
query algorithm may query an oracle for some function of the object, or do local computation.
Finally, it reconstructs a w-bit substring of the input string.

6



It might not be obvious at this moment why it is beneficial to convert a string (data
structure) back to a set, but it turns out to be a key subroutine in our data structure. Since this
paper concerns data structures with space almost matching the information theoretical lower
bound, we will also make data interpretation space-efficient. We design a data interpretation
algorithm which preprocesses an input string of (fractional) length ≈ lg

(
V
m

)
into a set S ⊆

[V ] of size m, such that assuming there is a rank oracle for S (rankS(x) returns the number
of elements in S that are at most x), any designated w consecutive bits of the input string can
be reconstructed in poly lg V time (see Section 8.2).

2. Overview. In this section, we give an overview over our new data structure. For
simplicity, we will focus only on the membership queries, and assume U = poly n, and there
is no divisibility problem. These assumptions will be removed in the later sections. In this
case, all previous solutions use hash functions in their main construction, to map the keys
into buckets. Our data structure is conceptually different: Instead of random hash functions,
we consider random inputs. While our data structure works for worst-case inputs, let us first
think of the input set being n uniformly random (distinct) keys. Then with high probability,
the input already has the properties we wanted from a random hash function, e.g., by dividing
the key space into buckets in some fixed way, we have the sizes of buckets roughly balanced,
etc. We first construct a data structure just for those “random-looking” inputs. On the other
hand, with low probability, the input may look “non-typical,” e.g., some bucket may have
size much larger than average. However, “with low probability” means that only a small
fraction of all possible inputs have these non-typical features. Suppose the total number
of such inputs is, say 1

n2 · 2OPT, then only OPT − 2 lg n bits are needed for the optimal
encoding. This suggests that we can afford to spend more extra bits on them. Suppose we
use OPT − lg n bits (lg n extra bits) to encode these non-typical inputs, it is still negligible
overall — among all O(2OPT) possible data structures (memory states), such an encoding
only wastes ≈ 2OPT · 1

n memory states. Another useful way to view it is that if we use r
extra bits for such rare cases, then those r bits “start” at the (OPT − 2 lg n)-th bit, rather
than the OPT-th bit. The more non-typical the input is, the more extra bits we can afford to
spend. Finally, we will use the fusion operation to fuse all cases together. Similar strategies
for constructing succinct data structures, where we consider random inputs and/or non-typical
inputs, have been used in [3, 32, 34]. In the following, we give an overview for the “random-
looking” case, the formal argument can be found in Section 7.3. Then in Section 7.4, we show
that we can afford to apply known constructions with larger redundancy on the “non-typical
parts” of the “non-typical” sets, according to the above argument.

2.1. Random inputs. We partition the universe into n/ lg4 n blocks of size V . Then
for a “random-looking” input set S, every block contains lg4 n ± lg3 n keys.7 As we will
see in Section 8.1, for poly lg n = poly w keys, we can construct a rank data structure
with only O(1/U) extra bits, such that given the number of keys, a query algorithm answers
rank queries in constant time. In particular, it supports membership queries (e.g., by asking
rankS(x) and rankS(x − 1)). The high-level idea is to construct a rank data structure for
each block, then concatenate them. In order to answer a query in block i, we need to

• recover the number of keys in block i (as the rank data structure assumes this number
is known), and

• approximate the total length of data structures for the first i − 1 blocks (to decode
the i-th data structure).

That is, besides the n/ lg4 n rank data structures, we need to store their lengths such that
any prefix sum can be approximated. Unfortunately, any data structure supporting prefix

7a± b denotes a number in the range [a− b, a+ b].
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sum queries cannot simultaneously have “low” query time and “small” space, due to a lower
bound of Pǎtraşcu and Viola [26]. The underlying issue in this approach is that the data
structure for each block has a variable length (the length depends on the number of keys in
the block, which varies based on the input). In order to locate the i-th data structure from the
concatenated string, computing a prefix sum on a sequence of variables seems inevitable. The
Pǎtraşcu-Viola lower bound even prevents us from supporting prefix sums implicitly. That is,
not only separately storing a prefix sum data structure for the lengths requires “high” query
time or “large” space, there is also no “clever” way to jointly store the lengths together with
the data structures for the blocks. Hence, this “variable-length encoding” issue is the primary
problem we need to tackle for “random-looking” inputs.

To this end, observe that although the number of keys in each block is not fixed, its
deviation is actually small compared to the number, i.e., the number of keys cannot be too
different for different inputs. Then the main idea is to construct two data structures for each
block, consisting of

• a main data structure, which stores “most of the information” about the block, and
importantly, has a fixed length (independent of the number of keys), and

• an auxiliary data structure, which stores all “remaining information” about the block
(and unavoidably has variable length).

Furthermore, we wish that with high probability, a given query can be answered by only
accessing the main data structure (in constant time) without knowing the number of keys. If
this is possible, then to construct the final data structure, we

• concatenate all main data structures,
• concatenate the auxiliary data structures, and store them together with a prefix sum

structure,
• finally concatenate the two.

Now, since all main data structures have fixed lengths, each one can be decoded in constant
time without a prefix sum structure (the total length of the first i− 1 data structures is simply
i − 1 times the length of a single one). Then to answer a query in block i, we first decode
the i-th main data structure, and query it in constant time. With high probability, the answer
to the query is already found, and we are done. Otherwise, we decode the i-th auxiliary data
structure by querying the prefix sum structure, and query the data structures to find the answer.
This may take a longer time, but if the probability that we have to decode the auxiliary data
structure is sufficiently low, then the expected query time is still constant.

Next, we describe an approach to construct such two data structures for a block, which
uses more space than what we aim for, but exhibits the main idea. For each block of size V ,
we pick lg4 n − lg3 n random keys in the block to store in the main data structure. We also
pick V − (lg4 n + lg3 n) random non-keys (i.e. the elements in the key space but not in the
input set), and store them in the main data structure. This is always possible because there
are at least lg4 n − lg3 n and at most lg4 n + lg3 n keys in each block for “random-looking”
inputs. Hence, only 2 lg3 n elements are “unknown” from the main data structure. Then we
show that such a separation of the block into lg4 n− lg3 n keys, V − (lg4 n+lg3 n) non-keys
and 2 lg3 n unknowns can be jointly stored using the near-optimal ≈ lg

(
V

lg4 n−lg3 n,2 lg3 n

)
bits (this is an easy application of the rank data structures).8 Its size is independent of the
actual input. Then in the auxiliary data structure, we store the remaining information about
the block, i.e., among the unknowns, which ones are the keys. For a block with m keys, it
takes ≈ lg

(
2 lg3 n

m−(lg4 n−lg3 n)

)
bits. Then for each query, the answer can be found in the main

data structure with probability at least 1 − O(1/ lg n). Only when the main data structure

8
( n
k1,k2

)
= n!/(k1!k2!(n− k1 − k2)!).
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returns “unknown” does the query algorithm need to access the auxiliary data structure.
The above construction has all the desired properties, except that it uses too much space.

The inherent reason is that it implicitly stores the randomness used in deciding which keys
and non-keys to store in the main data structure. If we sum up the sizes of the main and
auxiliary data structures,

lg

(
V

lg4 n− lg3 n, 2 lg3 n

)
+ lg

(
2 lg3 n

m− (lg4 n− lg3 n)

)
= lg

(
V

m

)
+ lg

(
m

lg4 n− lg3 n

)
+ lg

(
V −m

V − (lg4 n+ lg3 n)

)
.

Unsurprisingly, the number of extra bits lg
(

m
lg4 n−lg3 n

)
+ lg

(
V−m

V−(lg4 n+lg3 n)

)
is exactly how

much is needed to decide which keys and non-keys to store in the main data structure. These
“random bits” are not part of the input, and implicitly storing them causes a large amount of
redundancy.

However, when the inputs are uniform, we do not really need any external randomness
to decide the two subsets, since the entire data structure is close to a random string. This
suggests that for each block, we should treat the data structure from other part of the inputs as
the “randomness”. That is, we turn the necessity of implicitly storing the random bits into an
opportunity to store other information. This is where we use data interpretation. We convert
existing data structures back to subsets of certain sizes, which correspond to the keys and
non-keys in the main data structure (note that the main purpose of using data interpretation is
to save space). We present more details in the next subsection.

2.2. Using data interpretation. To implement this idea, we will have to slightly modify
the construction. Now, the universe is partitioned into pairs of blocks. Each pair consists of
a primary block and a secondary block, such that for a “random-looking” input, the primary
block contains lg2c n± lgc+1 n keys, and the secondary block contains Θ(lgc+1 n) keys, for
some constant c, where the secondary block plays the role of the “randomness”.9 Fix a block
pair, let V be the size of the primary block, m be the number of keys in the primary block,
Vsec be the size of the secondary block, and msec be the number of keys in the secondary
block. The goal is to construct two data structures using ≈ lg

(
V
m

)
+ lg

(
Vsec

msec

)
bits in total.

We first construct a rank data structure for the secondary block using ≈ lg
(
Vsec

msec

)
bits. We

then split this data structure into three substrings of lengths approximately lg
(

m
lg2c n−lgc+1 n

)
,

lg
(

V−m
V−(lg2c n+lgc+1 n)

)
and the remaining bits (we show that such a split can also be done for

fractional-length strings). Then msec = Θ(lgc+1 n) guarantees that there are enough bits
and such split is possible. Next, we apply a data interpretation algorithm to interpret the
first string of length lg

(
m

lg2c n−lgc+1 n

)
as a set of size lg2c n − lgc+1 n over a universe of

size m, indicating which of the m keys in the primary block should be stored in the main
data structure. We also interpret the second string as a subset indicating which of the V −
(lg2c n+ lgc+1 n) non-keys should be stored in the main data structure. Moreover, we show
that the data interpretation algorithm guarantees that any consecutive w bits of the original
string can be recovered in lgO(1) n time, assuming there is a rank oracle of the set generated
from the interpretation. Therefore, there is no need to store the first two strings, as they can
be implicitly accessed efficiently.

The main data structure is the same as what we stated in the previous subsection: storing
lg2c n− lgc+1 n keys, V −(lg2c n+lgc+1 n) non-keys and 2 lgc+1 n “unknowns”, supporting
rank queries in constant time. The auxiliary data structure now consists of two parts:

9The parameters used here are slightly different from the formal proof for simplicity of notations.
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• among the 2 lgc+1 n unknowns, which m− (lg2c n− lgc+1 n) are keys, and
• the third substring from above.

One may verify that the sizes of the two data structures is what we claimed. This leads to our
main technical lemma.

LEMMA 2.1 (main technical lemma, informal). For V ≤ poly n, given S ⊆ [V ] of size
m and Ssec ⊆ [Vsec] of size msec, we can construct a main data structure Dmain of size

≈ lg

(
V

lg2c n− lgc+1 n, 2 lgc+1 n

)
and an auxiliary data structure Daux of size

≈ lg

(
V

m

)
+ lg

(
Vsec

msec

)
− lg

(
V

lg2c n− lgc+1 n, 2 lgc+1 n

)
,

such that
• any given query “x

?
∈ S” can be answered in constant time by accessing only Dmain

with probability 1−O(lg−c+1 n);

• any given query “x
?
∈ S” or “x

?
∈ Ssec” can be answered in poly lg n time by

accessing both Dmain and Daux in worst case.

See Lemma 7.1 for the formal statement. Then, the final data structure will be the con-
catenation of all main and auxiliary data structures, in a similar way to what we stated in
the previous subsection. The auxiliary data structure needs to be decoded only when the
main data structure returns “unknown” or the query lands in a secondary block. By ran-
domly shifting the universe, we bound the probability of needing the auxiliary data structure
by O(lg−c+1 n). By setting c to be a sufficiently large constant, the expected query time is
constant.

2.3. Organization. In Section 3, we define notations and the model of computation. In
Section 4, we formally define fractional-length strings, and present the operations on them.
In Section 5, we present applications of fractional-length strings. In Section 6, we show how
to construct the succinct dictionary and locally decodable arithmetic codes using 2-PHM.
In Section 7, we design the data structure for the case where U = poly n using the main
technical lemma. Then we prove the main technical lemma in Section 8, and generalize to all
n and U in Section 9.

3. Preliminaries and Notation.

3.1. Random access machine. A random access machine (RAM) [12] has a memory
divided into w-bit words, where w is called the word-size. Typically, we assume the number
of words in the memory is at most 2w, and that the words are indexed by the elements of
[2w]. In each time step, an algorithm may load one memory word to one of its O(1) CPU
registers, write the content of a CPU register to one memory word, or compute (limited) word
operations on the CPU registers.

The standard word operations are the four basic arithmetic operations (addition, subtrac-
tion, multiplication and division) on w-bit integers, bit-wise operators (AND, OR, XOR), and
comparison. In this paper, we also assume that the machine supports floating-point numbers.
We use two registers a and b to represent the number a · 2b such that 1 ≤ a < 2 and b is an
integer. The arithmetic operations extend to these numbers as well (possibly with rounding
errors). This is without loss of generality, as they can be simulated using the standard oper-
ations. Finally, we assume it is possible to compute 2x up to a 1 ± 2−w multiplicative error
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for |x| ≤ 2O(w), and lg2 x up to an additive error of ±2−w for |lg2 x| ≤ 2O(w). We further
assume that the error can be arbitrary but has to be deterministic, i.e., for any given x, 2x

and lg2 x always evaluate to the same result within the desired range. By expanding into the
Taylor series, the two can be computed in O(w) time using only arithmetic operations, which
is already sufficient for our application.

To compute 2x, we first compute x0 = ⌊x⌋ and x1 = x− x0. Since x0 is an integer, and
1 ≤ 2x1 < 2, it suffices to approximate 2x1 . Since 0 ≤ x1 < 1, by Taylor expansion, we
have

2x1 = ex1 ln 2 =
∑
i≥0

1

i!
· (x1 ln 2)

i,

where ln 2 < 1 is a constant that can be stored. Truncating the sum at i = w results in
an additive error of at most O(1/w!), and the sum can be computed using O(w) arithmetic
operations. The rounding error from the arithmetic operations can be made to at most 2−2w.
Finally, observe that 2x1 ∈ [1, 2), the multiplicative error is at most 1± 2−w.

To compute lg2 x, where x = a · 2b, note that lg2 x = b+ lg2 a. Letting t = (a− 1)/a,
we have a = 1/(1− t), and 0 ≤ t < 1/2. By Taylor expansion, we have

lg2 a = (lg e) · ln(1/(1− t)) = (lg e)
∑
i≥1

ti

i
.

By truncating the sum at i = w, the truncation error is at most O(2−w/w), since t < 1/2.
Similarly, the sum can be computed in O(w) arithmetic operations, and the rounding error
from them can be made to at most 2−2w. Therefore, the total additive error is at most 2−w.

3.2. Notation. In this paper, for integers X and Y > 0, let X div Y denote ⌊X/Y ⌋,
X mod Y denote X − Y · (X div Y ), and let [Y ] denote the set {0, 1, . . . , Y − 1}. For
integer a and set S, let a + S denote the set {a + x : x ∈ S}. Let frac(α) denote α − ⌊α⌋.
Throughout the paper, lg x is the binary logarithm lg2 x, Õ(f) = f ·poly lg f .10 a±b denotes
a number in the range [a− b, a+ b]. Let

(
n

k1,k2

)
:= n!/(k1!k2!(n− k1 − k2)!).

Let

OPTV,m := lg

(
V

m

)
be the information theoretical optimal space when storing a set of m keys over key space of
size V .

3.3. Useful equations and inequalities. Stirling’s formula states that

n! =
√
2πn

(n
e

)n
(1 +O(1/n)) .

Let P,Q be two distributions over U , then Pinsker’s inequality states that

∥P −Q∥1 ≤
√

2DKL(P ∥Q),

where ∥P − Q∥1 =
∑

x∈U |P (x)−Q(x)| is the total variation distance (ℓ1 distance), and
DKL(P ∥Q) =

∑
x∈U P (x) lg P (x)

Q(x) is the Kullback–Leibler divergence [16] (or the KL-
divergence). In particular, when Q is the uniform distribution over U , we have

DKL(P ∥Q) =
∑
x∈U

P (x) lgP (x) + lg |U| = H(Q)−H(P ),

where H(P ) =
∑

x∈U P (x) lg 1
P (x) is the entropy.

10Note that in some literature, Õ(f) hides log factors in any parameter of the problem studied, e.g., lg3 n =
Õ(1), which is not the case for this paper.
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4. Fractional-length Strings. In this section, we formally define binary strings with
fractional lengths using the spillover representation of [23], and present block-box operations.

4.1. Definition of fractional-length strings. Throughout the paper, let κ be the fineness
parameter, which characterizes the gaps between adjacent valid lengths and determines the
space loss when doing the operations. It is an integer parameter that is specified by the
algorithm designer and will be hardwired into the preprocessing and query algorithms. In the
following, we will see that each operation introduces a redundancy of O(2−κ) bits; and on
the other hand, the algorithms will have to perform arithmetic operations on κ-bit integers.
In our data structure construction, κ will be set to Θ(lgU) = O(w), so that each operation
introduces negligible redundancy, and κ-bit arithmetic operations can still be performed in
constant time.

DEFINITION 4.1 (fractional-length strings). For integers m,R such that either m = 0
and R ∈ [1, 2κ), or m > 0 and R ∈ [2κ, 2κ+1), {0, 1}m × [R] is the set of all fractional-
length strings of dimension (m,R), denoted by FL(m,R).

For S = (M,K) ∈ FL(m,R), we say S is a binary string of length s = m+ lgR, and

S[i] :=

{
M [i] i ∈ [m],

K i = m.

Let |S| denote the length of S. Let S[i, j] denote the sequence (substring) (S[i], . . . ,S[j]).
Let range[K] := R be the size of the range of K.

For any real number s > 0, s is a valid fractional length if there exists such m and R
such that s = m+ lgR.

Note that any valid fractional length s uniquely determines (m,R), since when s < κ, we
have

m = 0 and R = 2s,

when s ≥ κ,
m = ⌊s− κ⌋ and R = 2s−m.

We will also use FL(s) to denote FL(m,R).

Remark 4.2. Note the following facts about fractional-length strings:
• When s is an integer, by writing K in its binary representation, a binary string of

length s from Definition 4.1 is a standard binary string of s bits;
• A uniformly random string of length s has entropy exactly s;
• The length of a string may be an irrational number, but it can always be efficiently

encoded, e.g., by encoding |M | and range[K];

Since the word size is Ω(κ), any O(κ) consecutive bits of a string can be retrieved using
O(1) memory accesses, which suggests how a fractional-length string is accessed. Formally,
we define an access as follows.

DEFINITION 4.3 (access). Let S be a (fractional-length) string, an access to S is to
retrieve S[i, j] for j − i ≤ O(κ).

When j < |M |, an access is to retrieve j − i + 1 bits of M . When j = |M |, it is to retrieve
j − i bits and the integer K.

In the following, we show how to operate on fractional-length strings. First, one can
always convert a fractional-length string with a shorter length to one with a longer length.
Therefore, when we say an algorithm outputs a string of length at most s, we can always
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assume without loss of generality that its length is exactly the largest valid fractional length
that is at most s.

DEFINITION 4.4. An algorithm decodes a string S1 = (M1,K1) from S2 = (M2,K2),
where M1 is a (consecutive) substring of M2, if the algorithm computes the value of K1 and
the start location of M1.

After decoding S1, any further access can be performed as if S1 is stored explicitly, by only
directly accessing S2.

PROPOSITION 4.5. Let s1, s2 be two valid fractional lengths such that s1 ≤ s2. Then
given a string S1 = (M1,K1) of length s1, it can be converted to a string S2 = (M2,K2)
of length s2 such that M1 is a substring of M2. Moreover, given s1, s2, S1 can be decoded
using O(1) time and one access to S2.

Proof. Let s1 = m1 + lgR1 and s2 = m2 + lgR2 such that R1, R2 ∈ [2κ, 2κ+1). If
m1 = m2, we must have R1 ≤ R2, by setting S2 := S1, S1 can be decoded trivially.

If m1 < m2, then we append the lowest bit of K1 to M1: Let

M2 := M1 ◦ 0m2−m1−1 ◦ (K1 mod 2)

and
K2 := K1 div 2.

Thus, |M2| = m2, and K2 ≤ R1/2 ≤ 2κ ≤ R2. K1 can be decoded by accessing S2[m2 −
1,m2].

4.2. Concatenation. Now we study the concatenation of fractional-length strings.

DEFINITION 4.6. An algorithm concatenates B strings S1 = (M1,K1) ∈ FL(s1), . . .,
SB = (MB ,KB) ∈ FL(sB) into one single string S ∈ FL(s), if each Mi is a substring of
M , and each Si can be decoded from S.

We begin by proving there is an algorithm that concatenates two strings.

PROPOSITION 4.7. Let s1, s2 ≥ 0 be valid fractional lengths. Given two strings S1 ∈
FL(s1) and S2 ∈ FL(s2), they can be concatenated into one string S of length at most
s1 + s2 + 2−κ+2. Moreover, given the values of s1 and s2, both S1 and S2 can be decoded
using constant time and one access to S.

Proof. Let S1 = (M1,K1) and S2 = (M2,K2). To concatenate two strings, let us first
combine K1 and K2 into a single integer K ′ ∈ [range[K1] · range[K2]]:

K ′ := K1 · range[K2] +K2.

If s1 + s2 < κ + 1, we simply let K = K ′, and let M be the empty string. Then
lg(range[K]) = s1 + s2 < κ+ 1, (M,K) is the concatenation.

Next, we assume s1 + s2 ≥ κ + 1. In this case, in the final string S = (M,K), M
will be the concatenation of M1, M2 and the lowest bits of K ′. More specifically, let |M | be
⌊s1 + s2 + 2−κ+2⌋ − κ, and let range[K] be ⌊2κ+frac(s1+s2+2−κ+2)⌋.11 It is easy to verify
that |M |+ lg(range[K]) ≤ s1 + s2 + 2−κ+2 and range[K] ∈ [2κ, 2κ+1).

We set
M := M1 ◦M2 ◦ (K ′ mod 2|M |−|M1|−|M2|)2,

where (x)2 is the binary representation of x, and

K := K ′ div 2|M |−|M1|−|M2|.

11Recall that frac(x) = x− ⌊x⌋.
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To see why K is at most range[K]− 1, we have

K ≤ (range[K1] · range[K2]− 1) div 2|M |−|M1|−|M2|

=
(
2s1−|M1|+s2−|M2| − 1

)
div 2|M |−|M1|−|M2|

≤ 2s1+s2−|M |

≤ (range[K] + 1) · 2−2−κ+2

≤ range[K]− 1,

where the last inequality uses the fact that 2−2−κ+2 ≤ 1− 2−κ+1 and range[K] ≥ 2κ.

To decode S1 and S2, observe that S[|M1| + |M2|, |M |] encodes exactly K ′. We ac-
cess S to retrieve its value, and compute K1 and K2 using K1 := K ′ div range[K2]
and K2 := K ′ mod range[K2]. By our construction, M1 is M [0, |M1| − 1] and M2 is
M [|M1|, |M1|+ |M2| − 1]. Hence, we decode S1 and S2 in constant time and one access to
S.

Using ideas similar to [7], we show that a sequence of strings can be concatenated, as
long as one can provide upper bounds T̃i of s1 + · · ·+ si such that T̃i − T̃i−1 ≥ si +2−κ+2.

PROPOSITION 4.8. Let s1, . . . , sB ≥ κ be valid fractional lengths. Suppose there are
numbers T̃0, . . . , T̃B such that

• T̃0 = 0 and T̃i − T̃i−1 ≥ si + 2−κ+2;
• each T̃i is of the form T̃i = m̃i + lg R̃i, where R̃i ∈ [2κ, 2κ+1) and m̃i ≥ 0 are

integers;
• for any given i, T̃i can be computed in O(t) time.

Then given B strings S1, . . . ,SB , where Si ∈ FL(si), they can be concatenated into one
string S of length T̃B . Moreover, given any i and si, Si can be decoded using O(t) time and
three accesses to S.

Proof. Let s̃i be the largest valid fractional length such that s̃i ≤ T̃i − T̃i−1 − 2−κ+2.
Note that s̃i ≥ si and s̃i can be computed in constant time given T̃i and T̃i−1. We first apply
Proposition 4.5 to convert every Si to a string of length s̃i. By Proposition 4.5, it suffices
to decode this new string, and then apply one access to decode Si. Hence, for simplicity of
notations, we simply assume si = s̃i below.

Without loss of generality, we assume B is odd, since otherwise, we could first apply the
following argument to the first B − 1 strings, then apply Proposition 4.7 to concatenate the
outcome with the last string SB .

Let Si = (Mi,Ki) for i = 1, . . . , B. To concatenate all strings, we break S2, . . . ,SB

into (B − 1)/2 pairs, where the j-th pair consists of S2j and S2j+1. We start with the first
string S1, and append the pairs one by one. More specifically, let S(0) := S1. Suppose we
have concatenated S1 and the first j − 1 pairs into S(j−1) = (M (j−1),K(j−1)), such that
|M (j−1)| = m̃2j−1 and range[K(j−1)] = R̃2j−1. In particular, it has length T̃2j−1. Now, we
show how to “append” S2j and S2j+1 to it.

To this end, we combine K2j and K2j+1 into a single integer Lj ,

Lj := K2j · range[K2j+1] +K2j+1.

Thus, range[Lj ] = range[K2j ]·range[K2j+1], and we have range[Lj ] ∈ [22κ, 22κ+2). Then,
we re-break Lj into a pair (Xj , Yj), such that the product of range[Xj ] and range[K(j−1)] is
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close to a power of two: we set

range[Xj ] :=

⌊
2⌊T̃2j+1⌋−⌊T̃2j−1⌋−|M2j |−|M2j+1|

range[K(j−1)]

⌋
,

and

range[Yj ] :=

⌈
range[Lj ]

range[Xj ]

⌉
.

Note that
2κ ≤ ⌊T̃2j+1⌋ − ⌊T̃2j−1⌋ − |M2j | − |M2j+1| ≤ 2κ+ 4.

To break Lj into such a pair, we let Yj := Lj div range[Xj ] and Xj := Lj mod range[Xj ].
Next, we combine K(j−1) and Xj into an integer Zj < 2⌊T̃2j+1⌋−⌊T̃2j−1⌋−|M2j |−|M2j+1|: let
Zj := K(j−1) · range[Xj ] +Xj .

Finally, we let S(j) := (M (j),K(j)), where

M (j) := M (j−1) ◦ (Zj)2 ◦M2j ◦M2j+1,

and
K(j) := Yj .

The length of M (j) is

|M (j)| = |M (j−1)|+ (⌊T̃2j+1⌋ − ⌊T̃2j−1⌋ − |M2j | − |M2j+1|) + |M2j |+ |M2j+1|
= ⌊T̃2j+1⌋ − κ

= m̃2j+1.

The range of K(j) has size

range[K(j)] <
range[Lj ]

range[Xj ]
+ 1

≤ range[K2j ] · range[K2j+1]

2⌊T̃2j+1⌋−⌊T̃2j−1⌋−|M2j |−|M2j+1|

range[K(j−1)]
− 1

+ 1

≤ range[K2j ] · range[K2j+1] · range[K(j−1)]

2⌊T̃2j+1⌋−⌊T̃2j−1⌋−|M2j |−|M2j+1|
· (1− 2−κ+1)−1 + 1

= 2s2j+s2j+1+T̃2j−1−|M(j)| · (1− 2−κ+1)−1 + 1

≤ 2κ+frac(T̃2j+1)−2κ+3

· (1− 2−κ+1)−1 + 1

≤ 2κ+frac(T̃2j+1)

= R̃2j+1.

Thus, S(j) has length T̃2j+1, and hence, the final string S := S((B−1)/2) has length T̃B .

Next, we show that each Si can be decoded in O(t) time and two accesses to S. If
i = 1, we compute T̃1, T̃2, T̃3 in O(t) time, and then use them to compute s̃1, s̃2, s̃3 (which
we assumed are equal to s1, s2, s3 respectively). Then, range[Z1], range[X1] and |M1| can
be computed according to their definitions. Thus, M1 = M [0, |M1| − 1], and Z1 is stored in
M immediately after M1. By making one access to S, we recover the value of Z1, and hence,
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K1 can be computed using K1 = Z1 div range[X1]. This decodes S1 in O(t) time and one
access to S.

If i > 1, let j = ⌊i/2⌋, i.e., Si is in the j-th pair. We first compute T̃2j−1, T̃2j and T̃2j+1

in O(t) time, then compute s2j and s2j+1 from them. They together determine range[Zj ],
range[Xj ] and |M (j−1)|, as well as the starting location of Mi. Thus, Zj can be recovered
with one access to S. Xj can be computed using Xj = Zj mod range[Xj ]. Similarly, we
then recover Zj+1, and Yj can be computed using Yj = K(j) = Zj+1 div range[Xj+1]
(if Si is in the last pair, Yj is simply K in the final string). This recovers both Xj and Yj .
Next, we recover Lj using Lj = Yj · range[Xj ] + Xj , and compute K2j and K2j+1 using
K2j = Lj div range[K2j+1] and K2j+1 = Lj mod range[K2j+1]. In particular, it recovers
the value of Ki, and hence, it decodes Si.

If we can efficiently approximate every s1+· · ·+si, then the strings can be concatenated.

PROPOSITION 4.9. Let s1, . . . , sB ≥ κ be valid fractional lengths. Suppose for any
given i, s1 + · · · + si can be approximated (deterministically) in O(t) time with an additive
error of at most 2−κ. Then given B strings S1, . . . ,SB , where Si ∈ FL(si), they can be
concatenated into one string S of length at most

s1 + · · ·+ sB + (B − 1) · 2−κ+4.

Moreover, given any i and si, Si can be decoded using O(t) time and three accesses to S.

Proof. Suppose we can compute S̃i = s1 + · · · + si ± 2−κ. We set m̃i = ⌊S̃i + i ·
2−κ+3⌋−κ, R̃i = ⌊2S̃i+i·2−κ+3−m̃i⌋ and T̃i = m̃i+lg R̃i. Then T̃i ≤ S̃i+ i ·2−κ+3, and by
the fact that lg(1−ε) ≥ −2ε for small ε ∈ (0, 1/2), T̃i > S̃i+ i ·2−κ+3−2−κ+1. Therefore,

T̃i − T̃i−1 ≥ S̃i − S̃i−1 + 2−κ+3 − 2−κ+1

≥ si + 2−κ+2.

Finally, by Proposition 4.8, the size of the data structure is at most T̃B ≤ S̃B +B · 2−κ+3 ≤
s1 + · · ·+ sB + (B − 1) · 2−κ+4.

In particular, by storing approximations of all B prefix sums in a lookup table of size O(B)
words, each Si can be decoded in O(1) time. Note that this lookup table does not depend on
the B strings.

PROPOSITION 4.10. Let s1, . . . , sB ≥ 0 be valid fractional lengths. Given B strings
S1, . . . ,SB , where Si ∈ FL(si), they can be concatenated into one string S of length at
most

s1 + · · ·+ sB + (B − 1)2−κ+4.

Moreover, there is a lookup table of size O(B) words that depends only on s1, . . . , sB such
that assuming we can make random accesses to the lookup table, each Si can be decoded
using constant time and three accesses to S.

Proof. If all si ≥ κ, the proposition is an immediate corollary of Proposition 4.9, as
we could simply store the approximations of all B prefix sums as well as all si. For general
si ≥ 0, we group the strings so that each group has length at least κ.

Let Si = (Mi,Ki) for i = 1, . . . , B. We greedily divide all strings into groups: Pick the
first i1 such that s1+ · · ·+ si1 ≥ κ, then pick the first i2 such that si1+1+ · · ·+ si2 ≥ κ, etc.
Then each group has total length at least κ, possibly except for the last group. We store in the
lookup table which group each string belongs to, and the values of i1, i2, . . . Then consider a
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group consisting of Sa, . . . ,Sb. We must have sa + · · · + sb−1 < κ, which means that they
can be combined into one single integer smaller than

∏b−1
i=a range[Ki] < 2κ, e.g.,

K :=

b−1∑
i=a

Ki ·
i−1∏
j=a

range[Kj ].

If we store
∏i−1

j=a range[Kj ] and range[Ki] in the lookup table for each i in the group, then
Ki can be recovered from K using

Ki = (K div

i−1∏
j=a

range[Kj ]) mod range[Ki].

This concatenates all strings in the group except the last one. We then apply Proposi-
tion 4.7 to concatenate the last string in the group to it. Then we apply Proposition 4.9 to
concatenate the strings obtained from each group (except for the last group), using the lookup
table. Finally, we concatenate the string obtained from the last group to it.

Concatenating strings in each group loses at most 2−κ+2 bits due to Proposition 4.7. The
length of the final string is at most s1 + · · ·+ sB + (B− 1)2−κ+4. The lookup table has size
O(B) words.

4.3. Fusion. Next, we consider the fusion operation.

DEFINITION 4.11. Let (i,Si) = (i, (Mi,Ki)) be a pair in ({1} × FL(s1)) ∪ ({2} ×
FL(s2))∪· · ·∪({C}×FL(sC)). An algorithm fuses i into Si and obtains a single fractional-
length string S = (M,K), if Mi is a substring of M , i can be recovered from S, and Si can
be decoded from S.

Equivalently, this is to jointly store the pair (i,Si) in one data structure. In the following,
we show that the fusion operation can be done with nearly optimal output length such that
the input can be decoded efficiently, as long as one can provide upper bounds T̃i on lg(2s1 +

· · ·+ 2si) such that 2T̃i − 2T̃i−1 ≥ 2si .

PROPOSITION 4.12. Let s1, . . . , sC ≥ 0 be valid fractional lengths. Suppose there are
numbers T̃1, . . . , T̃C such that

• 2T̃1 ≥ 2s1 , and 2T̃i − 2T̃i−1 ≥ 2si for i = 2, . . . , C;
• each T̃i is of the form T̃i = m̃ + lg R̃i, where m̃, R̃i are integers (note that m̃ does

not depend on i);
• T̃C is a valid length, i.e., m̃ = 0 and R̃C ∈ [1, 2κ), or m̃ > 0 and R̃C ∈ [2κ, 2κ+1);
• for any given K, the largest i ≤ C such that R̃i ≤ K can be computed in O(t) time.

Then given i ∈ {1, . . . , C} and Si ∈ FL(si), i can be fused into Si resulting in a string S of
length T̃C . Moreover, we can recover the value of i and decode Si using O(t) time and two
accesses to S.

Proof. Let Si = (Mi,Ki). Clearly, we have si ≤ T̃C for all i, and hence, |Mi| ≤ m̃.
We first extend |Mi| to obtain M , which has length m̃, by appending the least significant bits
of Ki to it. That is, let

M := Mi ◦ (Ki mod 2m̃−|Mi|)2.

Next, we encode the remaining information of (i,Si) in K, i.e., encode i and the top bits of
Ki:

K := R̃i−1 + (Ki div 2m̃−|Mi|),
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where R̃0 is assumed to be 0. Let the final output S := (M,K). Note that we have

R̃i−1 + (range[Ki]− 1) div 2m̃−|Mi| < R̃i−1 + range[Ki] · 2|Mi|−m̃

= R̃i−1 + 2si−m̃

= 2−m̃(2T̃i−1 + 2si)

≤ 2T̃i−m̃

= R̃i.

That is, the value of K determines both i and Ki div 2m̃−|Mi|, and range[K] is at most R̃C .
Thus, S is a string of length T̃C .

To decode i and Si, we first access S to retrieve K. Then we compute the largest i ≤ C
such that R̃i ≤ K in O(t) time. By the argument above, it recovers the value of i and
determines

(Ki div 2m̃−|Mi|) = K − R̃i.

To decode Si, observe that Mi = M [0, |Mi|−1], and M [|Mi|, m̃−1] stores the value of
Ki mod 2m̃−|Mi|. If m̃− |Mi| ≤ κ+ 1, we retrieve its value using one access, and together
with Ki div 2m̃−|Mi|, it determines Ki. Otherwise, since Ki < 2κ+1, its value is entirely
stored in M (in its binary representation). We simply make one access to retrieve it. In both
cases, we recover the value of i and decode Si in O(t) time and two accesses to S.

Now if one can approximate every 2s1 + · · ·+2si , then the fusion operation can be done.

PROPOSITION 4.13. Let s1, . . . , sC ≥ 0 be valid fractional lengths, where C ≤ 2κ/2.
Suppose for any given i, 2s1 + · · ·+2si can be approximated (deterministically) in O(t) time
with an additive error of at most (2s1 + · · ·+ 2sC ) · 2−κ−3. Then given i ∈ {1, . . . , C} and
Si ∈ FL(si), i can be fused into Si to obtain S of length at most

lg(2s1 + · · ·+ 2sC ) + C · 2−κ+4.

Moreover, we can recover the value of i and decode Si using O(t lgC) time and two accesses
to S .

Note that the error term is only required to be bounded by a multiple of 2s1 + · · ·+ 2sC , for
every i. In particular, it is possible that for some (small) i, the error term dominates the value,
making the assumption easy to satisfy (for that i).

Proof. We compute S̃i such that∣∣∣S̃i − (2s1 + · · ·+ 2si)
∣∣∣ ≤ (2s1 + · · ·+ 2sC ) · 2−κ−3.

If 2s1 + · · · + 2sC < 2κ, then the error term (2s1 + · · · + 2sC ) · 2−κ−3 < 1/8. However,
each 2s1 + · · · + 2si must be an integer by definition. S̃i rounded to the nearest integer is
the accurate value of 2s1 + · · · + 2si . To apply Proposition 4.12, we simply set m̃ := 0,
R̃i := ⌊S̃i+1/2⌋ for i = 1, . . . , C and T̃i = m̃+lg R̃i. It is easy to verify that R̃i− R̃i−1 ≥
2si ; T̃C is a valid length. For any given K, by doing a binary search, the largest i such that
R̃i ≤ K can be found in O(t lgC) time. Thus, by Proposition 4.12, the pair (i,Si) can be
stored using space

T̃C = lg(2s1 + · · ·+ 2sC ),

and allowing O(t lgC) time for decoding.
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Next, we consider the case where 2s1 + · · ·+ 2sC ≥ 2κ. To apply Proposition 4.12, we
let T̃C be the largest valid length smaller than lg S̃C + C · 2−κ+3. That is, we set

m̃ := ⌊lg S̃C + C · 2−κ+3⌋ − κ.

Then
R̃C := ⌊S̃C · 2C·2−κ+3

· 2−m̃⌋,

and T̃C = m̃+ lg R̃C . For i < C, we let

R̃i := ⌊S̃i · 2−m̃⌋+ 2i,

and T̃i = m̃+ lg R̃i.
To apply Proposition 4.12, we need to verify 2T̃1 ≥ 2s1 , and 2T̃i −2T̃i−1 ≥ 2si for i > 1.

For T̃1, we have

2T̃1 ≥ 2m̃ · (S̃1 · 2−m̃ + 1)

≥ 2s1 + 2m̃ − (2s1 + · · ·+ 2sC ) · 2−κ−3.

On the other hand, S̃C = (2s1 + · · ·+ 2sC ) · (1± 2−κ−3), i.e., 2s1 + · · ·+ 2sC = S̃C · (1±
2−κ−3)−1. We have

2m̃ − (2s1 + · · ·+ 2sC ) · 2−κ−3 ≥ 2m̃ − S̃C · 2−κ−2 ≥ 0.

Thus, 2T̃1 ≥ 2s1 . Similarly, for 1 < i < C, we have

2T̃i − 2T̃i−1 = 2m̃ ·
(
R̃i − R̃i−1

)
≥ 2m̃ · (S̃i · 2−m̃ − S̃i−1 · 2−m̃ + 1)

≥ 2si + 2m̃ − (2s1 + · · ·+ 2sC ) · 2−κ−3

≥ 2si .

For i = C, it suffices to show ⌊S̃C · 2−m̃⌋+ 2C ≤ R̃C . Indeed, we have

R̃C − (⌊S̃C · 2−m̃⌋+ 2C) ≥ S̃C · 2C·2−κ+3

· 2−m̃ − 1− S̃C · 2−m̃ − 2C

= S̃C · 2−m̃ · (2C·2−κ+3

− 1)− 2C − 1

≥ S̃C · 2−m̃ · C · 2−κ+3 · ln 2− 2C − 1.

Since m̃+ κ ≤ lg S̃C + 1/2, it is at least

22.5 · C · ln 2− 2C − 1 ≥ 0.

Since each R̃i can be computed in O(t) time, by doing a binary search, for any given K,
we can find the largest i such that R̃i ≤ K in O(t lgC) time. By Proposition 4.12, we obtain
a data structure of size

T̃C ≤ lg S̃C + C · 2−κ+3 ≤ lg(2s1 + · · ·+ 2sC ) + C · 2−κ+4.

This proves the proposition.

The decoding algorithm can take constant time if we use a lookup table of O(C) words.
Again, the lookup table does not depend on the string.
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PROPOSITION 4.14. Let s1, . . . , sC ≥ 0 be valid fractional lengths. Given an integer
i ∈ {1, . . . , C} and a string Si ∈ FL(si), i can be fused into Si resulting in a string S of
length at most

lg(2s1 + · · ·+ 2sC ) + C · 2−κ+2.

Moreover, there is a lookup table of size O(C) words that depends only on s1, . . . , sC such
that assuming we can make random accesses to the lookup table, the value of i can be recov-
ered and Si can be decoded using constant time and two accesses to S.

Proof. Without loss of generality, assume s1 ≤ · · · ≤ sC , since otherwise, we simply
sort s1, . . . , sC and store the permutation in the lookup table.

To apply Proposition 4.12, if 2s1 + · · ·+ 2sC ≤ 2κ, we set

m̃ := 0,

R̃i = 2s1 + · · ·+ 2si

and T̃i = m̃+ lg R̃i. Otherwise, if 2s1 + · · ·+ 2sC > 2κ, we set

m̃ :=
⌊
lg(2s1 + · · ·+ 2sC ) + C · 2−κ+2

⌋
− κ,

for i < C, let
R̃i := ⌈2s1−m̃⌉+ · · ·+ ⌈2si−m̃⌉,

and
R̃C := max

{
⌈2s1−m̃⌉+ · · ·+ ⌈2sC−m̃⌉, 2κ

}
.

Finally, let T̃i = m̃ + lg R̃i. Clearly, in both cases, we have 2T̃1 ≥ 2s1 , 2T̃i − 2T̃i−1 ≥
2m̃ · 2si−m̃ = 2si . Also, we have T̃C ≤ lg(2s1 + · · ·+ 2sC ) + C · 2−κ+2. This is because

R̃C < max{(2s1 + · · ·+ 2sC ) · 2−m̃ + C, 2κ}

= max{2κ+frac(lg(2s1+···+2sC )+C2−κ+2)−C2−κ+2

+ C, 2κ}

≤ max{2κ+frac(lg(2s1+···+2sC )+C2−κ+2) · (1− C · 2−κ+1) + C, 2κ}

≤ 2κ+frac(lg(2s1+···+2sC )+C2−κ+2).

Thus, T̃C = m̃+ lg R̃C ≤ lg(2s1 + · · ·+2sC )+C · 2−κ+2. Also, in particular, R̃C < 2κ+1.

Then, we need to show that for any given K, the largest i such that R̃i ≤ K can be
found in constant time. To this end, we store a predecessor search data structure for the set
{R̃1, . . . , R̃C}. Note that the set of integers {R̃1, . . . , R̃C} has monotone gaps. That is, the
difference between adjacent numbers is non-decreasing. Pǎtraşcu (Claim 7 in [23]) showed
that for such sets, there is a predecessor search data structure using linear space and constant
query time, i.e., there is an O(C)-sized data structure such that given an integer K, the query
algorithm can answer in constant time the largest value in the set that is at most K. This
data structure is stored in the lookup table (it only depends on s1, . . . , sC , but not the input
string). To compute the index i rather than R̃i, we simply store another hash table using
perfect hashing in the lookup table. Hence, the lookup table has size O(C) words.

The premises of Proposition 4.12 are all satisfied. The size of S is T̃C ≤ lg(2s1 + · · ·+
2sC )+C ·2−κ+2, and i and Si can be decoded in constant time. This proves the proposition.
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4.4. Double-ended strings. Fractional-length strings have “one of its ends” encoded
using an integer. For technical reasons, we also need the following notion of double-ended
fractional-length strings.

DEFINITION 4.15 (double-ended strings). For integers Rh,m,Rt such that m ≥ 0 and
Rh, Rt ∈ [2κ, 2κ+1), [Rh] × {0, 1}m × [Rt] is the set of all double-ended fractional-length
strings of dimension (Rh,m,Rt), denoted by 2-FL(Rh,m,Rt).

For a double-ended fractional-length string S = (Kh,M,Kt) ∈ 2-FL(Rh,m,Rt), let

S[i] :=


Kh i = −1,

M [i] i ∈ [m],

Kt i = m.

The length of S, denoted by |S|, is defined to be m + lgRh + lgRt. Let S[i, j] denote the
substring (S[i], . . . ,S[j]). Let range[Kh] := Rh, range[Kt] := Rt be the sizes of ranges of
Kh and Kt respectively.

Remark 4.16. Note the following facts:
• Unlike the (single-ended) fraction-length strings, the length of a double-ended string

does not necessarily determine range[Kh], range[Kt], or even |M |;
• For s ≥ 2κ, any (M,K) ∈ FL(s) can be viewed as a double-ended string by taking

the first κ bits of M as Kh and letting Kt be K;
• For simplicity, in this paper, we do not define double-ended strings with length

shorter than 2κ.

Double-ended strings are accessed in the same way as usual fractional-length strings.

DEFINITION 4.17 (access). Let S be a double-ended string, an access to S is to retrieve
S[i, j] for j − i ≤ O(κ).

Prefixes and suffixes of a double-ended string are defined in the natural way, as follows.

DEFINITION 4.18 (prefix/suffix). Let S = (Kh,M,Kt) be a double-ended string. Then
S[−1, j] is a prefix of S for any j ≤ |M |, S[i, |M |] is a suffix of S for any i ≥ −1.

Using double-ended strings, it is possible to split a double-ended fractional-length string
into two strings.

DEFINITION 4.19. An algorithm splits a double-ended fractional-length string S =
(Kh,M,Kt) into two strings S1 = (K1,h,M1,K1,t) and S2 = (K2,h,M2,K2,t), if

• (K1,h,M1) is a prefix of S ,
• (M2,K2,t) is a suffix of S, and
• K1,t,K2,h together determine M [|M1|, |M | − |M2| − 1], i.e., the remaining bits of

M .

PROPOSITION 4.20. Let s = lgRh + m + lgRt. Given a double-ended string S =
(Kh,M,Kt) ∈ 2-FL(Rh,m,Rt) and s1, s2 ≥ 3κ such that s ≤ s1+s2−2−κ+2, there is an
algorithm that splits S into two strings S1 = (K1,h,M1,K1,t) and S2 = (K2,h,M2,K2,t) of
lengths at most s1 and s2 respectively. Moreover, range[Ki,h], range[Ki,t] and |Mi| can be
computed in O(1) time given Rh, m, Rt and s1, s2, for i = 1, 2; M [|M1|, |M | − |M2| − 1]
can be computed in O(1) time given K1,t,K2,h.

Remark 4.21. Proposition 4.20 guarantees that each access to S can be implemented
using at most two accesses to S1 and S2. Moreover, accessing a (short) prefix of S requires
only accessing the prefix of S1 of the same length. Likewise, accessing a suffix of S requires
only accessing the suffix of S2 of the same length.
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Note that split is not the inversion function of concatenation, i.e., if we split S into S1 and
S2, then S1 and S2 do not concatenate into S using Proposition 4.7 (the easiest way to see it
is that its length becomes strictly longer).

Proof. We first calculate the length of M1 and M2, let |M1| := ⌊s1 − lgRh⌋ − κ and
|M2| := ⌊s2 − lgRt⌋ − κ. Then let

(Kh,1,M1) := S[−1, |M1| − 1]

be a prefix, and
(M2,Kt,2) := S[m− |M2|,m]

be a suffix. The remaining task is to divide the middle m− |M1| − |M2| bits of M into Kt,1

and Kh,2.
To this end, we represent the middle bits as an integer L in the range [2m−|M1|−|M2|].

The sizes of ranges of Kt,1 and Kh,2 can be calculated using

range[Kt,1] = ⌊2s1−lg(Rh)−|M1|⌋

and
range[Kh,2] = ⌊2s2−lg(Rt)−|M2|⌋.

Then let Kt,1 := L mod range[Kt,1] and Kh,2 := L div range[Kt,1]. Clearly, Kt,1 ∈
[range[Kt,1]]. It suffices to show that Kh,2 is in its range:

Kh,2 <
2m−|M1|−|M2|

2s1−lgRh−|M1| − 1

=
2m−|M2|−s1+lgRh

1− 2−s1+lgRh+|M1|

≤ 2s−|M2|−s1−lgRt

1− 2−κ

≤ 2s2−|M2|−lgRt−2−κ+2

1− 2−κ

< (range[Kh,2] + 1) · 2
−2−κ+2

1− 2−κ

≤ range[Kh,2] ·
(1 + 2−κ)(1− 2−κ+1)

1− 2−κ

< range[Kh,2].

Thus, S1 has at most s1 bits and S2 has at most s2 bits. This proves the proposition.

Finally, we study the extraction operation.

DEFINITION 4.22. Let s1, . . . , sC ≥ 0. An algorithm extracts an integer i from a double-
ended fractional-length string S with respect to lengths s1, . . . , sC and obtains a pair (i,Si),
if

• i ∈ {1, . . . , C},
• Si = (Ki,h,Mi,Ki,t) has length at most si,
• (Mi,Ki,t) is a suffix of S, and
• S[−1,m− |Mi| − 1] (i.e., the rest of S) can be recovered given i and access to Si.
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PROPOSITION 4.23. Let s1, . . . , sC ≥ 0, Rh, Rt ∈ [2κ, 2κ+1) and m ≥ κ, let s =
m+ lgRh + lgRt, and s ≤ lg(2s1 + · · ·+ 2sC )− C · 2−κ+2. Given a double-ended string
S = (Kh,M,Kt) ∈ 2-FL(Rh,m,Rt), there is an algorithm that extracts i from S with
respect to s1, . . . , sC and obtains (i,Si) for Si = (Ki,h,Mi,Ki,t). Moreover, there is a
lookup table of size O(C) words that depends only on s1, . . . , sC such that assuming we can
make random access to the lookup table, S[−1,m− |Mi| − 1] can be recovered in constant
time given i and access to Si. range[Ki,h], range[Ki,t] and |Mi| does not depend on S, and
can be stored in the lookup table.

Remark 4.24. We can safely omit any i with |M | − |Mi| > κ+ 1, since removing such
si from the list (s1, . . . , sC) (and decreasing C by one) could only increase the upper bound
on s, lg(2s1 + · · ·+ 2sC )− C · 2−κ+2. That is, the extraction algorithm may never generate
a pair with this i. Therefore, we may assume that S[−1, |M | − |Mi| − 1] has length at most
O(κ), taking constant time to output.

Proof. We first set Ki,t := Kt. Then, the task becomes to encode (Kh,M) using
(i, (Ki,h,Mi)). Next, we show how to determine i. To this end, we divide the range of
Kh into C disjoint intervals {[li, ri)}i=1,...,C , such that the i-th interval has size at most

⌊2si−m−lgRt⌋.

Such division is possible, because

C∑
i=1

⌊2si−m−lgRt⌋ >
C∑
i=1

2si−m−lgRt − C

≥ 2−m−lgRt · 2s+C·2−κ+2

− C

≥ 2s−m−lgRt · (2C·2−κ+2

− C · 2−κ)

≥ Rh · (1 + C · 2−κ+1 − C · 2−κ)

≥ Rh.

Fix one such division, e.g., the i-th interval is from

li := ⌊2s1−m−lgRt⌋+ · · ·+ ⌊2si−1−m−lgRt⌋

to
ri := ⌊2s1−m−lgRt⌋+ · · ·+ ⌊2si−m−lgRt⌋

excluding the right endpoint. We store all endpoints li, ri in the lookup table, taking O(C)
space.

Now, find i such that Kh ∈ [li, ri). Then compute |Mi| = ⌊si − lgRt⌋ − κ, and let

Mi := M [m− |Mi|,m− 1].

Finally, we view the first m− |Mi| bits of M as a nonnegative integer Z ∈ [2m−|Mi|] and let

Ki,h := 2m−|Mi| · (Kh − li) + Z.

Observe that Ki,h < ⌊2κ+frac(si−lgRt)⌋, because

Ki,h < 2m−|Mi| · (ri − li)

≤ 2m−(⌊si−lgRt⌋−κ) · 2si−m−lgRt
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= 2κ+frac(si−lgRt).

Thus, the length of Si = (Ki,h,Mi,Ki,t) is at most

lg(range[Ki,h]) + |Mi|+ lg(range[Ki,t]) ≤ si.

We also store the sizes of Si for every i in the lookup table.

It is clear that (Mi,Ki,t) is a suffix of S. Given i and Ki,h, we retrieve li and Mi from
the lookup table. Then S[−1] = Kh can be recovered using

Kh = li +Ki,h div 2m−|Mi|.

Also, Z can be recovered using

Z = Ki,h mod 2m−|Mi|,

which determines S[0,m− |Mi| − 1]. This proves the proposition.

5. Applications of Fractional-length Strings.

5.1. Overview of Pǎtraşcu’s rank data structure. In this subsection, we summarize
how Pǎtraşcu’s rank data structure [23] works, which has important ideas to be used in our
data structure. We will “rephrase” this data structure using fractional-length strings, which is
a non-trivial simplification.

Given a set S ⊆ [U ] of size n, the rank data structure preprocesses it into ≈ lg
(
U
n

)
bits, such that for any given query x, the number of elements in S that are at most x can
be computed in O(lgU) time (recall that U and n are given ahead of time, hence, both
the preprocessing algorithm and the query algorithm know their values). For simplicity, we
assume that the query algorithm is allowed to access lookup tables that depend only on U
and n. The idea is to recursively construct data structures for smaller universes, and then
merge them using concatenation and fusion. Suppose S has i elements in [U/2], the first half
of the universe, and it has n − i elements in the second half. We first recursively construct
(fractional-length) data structures for both halves, using space ≈ lg

(
U/2
i

)
and ≈ lg

(
U/2
n−i

)
respectively. Next, we concatenate two data structures using Proposition 4.10, and obtain one
single data structure Si, which has length ≈ lg

((
U/2
i

)(
U/2
n−i

))
. Note that the data structure

Si encodes an input set S with exactly i elements in the first half (and n − i in the second
half), assuming the value of i is known. Finally, we fuse i into Si, and obtain one single data
structure S . Proposition 4.14 guarantees that S has length roughly

lg

(
n∑

i=0

2|Si|

)
≈ lg

(
n∑

i=0

(
U/2

i

)(
U/2

n− i

))
= lg

(
U

n

)
bits.

This recursion terminates at sets of size n = 0 or n = U , in which case there is nothing
to store (again n does not need encoding, so it is clear which case we are in). The propositions
guarantee that both concatenation and fusion are implemented such that each operation only
causes an overhead of no more than O(1/U2) bits, by setting κ = 3 lgU . Therefore, the
overall space is no more than lg

(
U
n

)
+O(1/U). For the final (fractional-length) data structure

(M,K), we simply write K in its binary representation and append it to M . This gives us an
integral-length data structure using at most ⌈lg

(
U
n

)
⌉+ 1 bits.
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It is then straightforward to answer a rank query on this data structure. Given a query x,
we first recover the value of i, and decode Si (again, decoding Si does not mean reconstruct-
ing it). Then we further decode Si into the two data structures for the two halves. This can be
done in constant time using a lookup table. Next, if x < U/2, we recurse into the first half.
If x ≥ U/2, we recurse into the second half (and add i to the final answer). Since each time
U decreases by a factor of two, the query time is O(lgU).

In [23], it is also shown that when U is small, we can do a B-way divide-and-conquer,
as long as B lgU ≤ O(w) (recall that w is the word size). Therefore when U ≤ wO(1), we
can afford to set B = w1/2 and have only constant depth of recursion (rather than O(lgU)).
This gives us a rank data structure with constant query time for small U . As we will see
in Section 8.1, we show that it is possible to further improve this result, and we design a
constant-query-time data structure when only n is bounded by wO(1) (and U could be still as
large as 2Θ(w)). This will be the starting point of our new data structure.

5.2. Overview of data interpretation. Now, we give a high-level description on de-
signing a data interpretation algorithm, i.e., converting a (fractional-length) string to a set.
The idea is similar to the rank data structure described in the previous subsection, with all
steps done in the opposite direction.

Given a string D of length ≈ lg
(
V
m

)
, to interpret it as a set of size m, we first extract an

integer i from D such that i ∈ {0, . . . ,m} and Di has length si ≈ lg
(
V/2
i

)(
V/2
m−i

)
. Then we

split Di of length si into two substrings Da and Db of lengths ≈ lg
(
V/2
i

)
and ≈ lg

(
V/2
m−i

)
respectively. The integer i will represent the number of keys in the first half of the universe,
and m − i is the number of keys in the second half. We recursively construct sets Sa, Sb ⊆
[V/2] from Da and Db of sizes i and m−i respectively. Then the final set S is Sa∪(V/2+Sb).

To access w consecutive bits of D given a rankS(·) oracle, we first ask the oracle
rankS(V/2), i.e., the number of keys in the first half. This determines the value of i, and
hence the lengths of Da and Db, which in turn determines whether the w consecutive bits are
entirely in Da, or entirely in Db, or split across the two substrings. If it is entirely contained
in one substring, we simply recurse into the corresponding half of the universe. On the other
hand, it is possible to show that splitting across the two substrings does not happen more than
once, and when it happens, we recurse into both halves. The recursion has depth O(lg V ),
and so is the query time. The formal argument can be found in Section 8.2.

5.3. Storing a sequence. The following lemma by Dodis, Pǎtraşcu and Thorup [7]
shows that a sequence in [σ]n can be stored using almost optimal space such that each sym-
bol can be retrieved in constant time. Their construction requires a lookup table of Θ(lg n)
words. Here, we show that using fractional-length strings, the lookup table can be made more
explicit, i.e., knowing σi for all i = O(w/ lg σ). When σ = 2Θ(w), it completely removes
the lookup table.

LEMMA 5.1 (see also [7]). Fix integer κ = O(w). There is an algorithm that pre-
processes a given sequence (x1, . . . , xn) ∈ [σ]n for σ ≤ 2κ into a data structure of length
at most n lg σ + (n − 1)2−κ+5, such that given any i, xi can be retrieved in constant time,
assuming the query algorithm knows σi for all i ≤ 2κ/ lg σ.

Proof. Let b = ⌈2κ/ lg σ⌉. We partition the sequence into n/b chunks of b symbols each,
then combine each chunk into one single character in [σb] (if n is not a multiple of b, then the
last group will have between b+ 1 and 2b− 1 symbols). Since σb = 2O(κ) = 2O(w), each xi

can be decoded in constant time given the character and σi. Then compute m = ⌊lg σb⌋ − κ
and R = ⌈σb · 2−m⌉, and view each character in [σb] as a data structure of size m + lgR.
Note that m+ lgR− b lg σ ≤ lg(σb +2m)− b lg σ ≤ lg(1+2−κ) ≤ 2−κ+1. Then we apply
Proposition 4.9 to concatenate all n/b data structures. Since m and R can both be computed
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in constant time, m + lgR can be approximated in constant time, hence Proposition 4.9
guarantees that there is a data structure of size

(m+ lgR) · (n/b) + (n/b− 1) · 2−κ+4 ≤ n lg σ + (n− 1) · 2−κ+5,

supporting symbol retrieval in constant time. This proves the lemma.

6. Reductions to Perfect Hashing. In this section, we show how to design a succinct
dictionary and compress a low entropy sequence with local decodability using the 2-PHM
data structure in Theorem 1.3.

6.1. Succinct dictionary. Assuming Theorem 1.3, we can prove Theorem 1.1 using
Lemma 5.1.

Proof of Theorem 1.1. To store a set of n key-value pairs for keys in [U ] and values
in [σ], we first apply Theorem 1.3 on the set of keys. It produces a data structure of size
lg
(
U
n

)
+ poly lg n + O(lg lgU) bits, which determines a 2-PHM 2-hq. In particular, 2-hq

restricted to the n keys can be viewed as a bijection h between the keys and [n]. Next, we
apply Lemma 5.1 to store the values. Specifically, we construct the sequence (v1, . . . , vn)
such that if (x, u) is an input key-value pair, then vh(x)+1 = u. This sequence can be stored
in space n lg σ +O(1) by Lemma 5.1. Hence, the total space of the data structure is

lg

(
U

n

)
+ n lg σ + poly lg n+O(lg lgU) = OPT+ poly lg n+O(lg lgU),

as claimed in the theorem statement.
To answer a query valRet(x), we first query the perfect hashing data structure. If x

is not a key, we return ⊥. Otherwise, we retrieve and return the (h(x) + 1)-th value in the
sequence. The total query time is constant in expectation. This proves the theorem.

6.2. Compression to zeroth order entropy with local decodability. Next, we prove
Theorem 1.4 assuming Theorem 1.3.

Proof of Theorem 1.4. Given a sequence (x1, . . . , xn) ∈ Σn such that each σ ∈ Σ ap-
pears fσ times, we construct a data structure recursively on Σ. We first arbitrarily partition
Σ into Σ1 ∪ Σ2 such that |Σ1| = ⌊|Σ|/2⌋ and |Σ2| = ⌈|Σ|/2⌉. For any set Γ ⊆ Σ, define
SΓ := {i ∈ [n] : xi ∈ Γ}. Then we apply Theorem 1.3 to construct a 2-PHM for SΣ1 , which
uses space

lg

(
n

|SΣ1
|

)
+ poly lg n = lg

(
n!

|SΣ1
|! · |SΣ2

|!

)
+ poly lg n,

and defines a bijection h that maps all coordinates in SΣ1 to [|SΣ1 |], and a bijection h that
maps all SΣ2 to [|SΣ2 |]. We recursively construct a data structure for Σ1 over h(SΣ1), and a
data structure for Σ2 over h(|SΣ2

|).
In general, each node in the recursion tree corresponds to a subset Γ of the alphabet such

that Γ1 and Γ2 are the subsets corresponding to the left and the right child respectively. In
this node, we store

• the size of subset of its left child |Γ1|,
• the perfect hashing data structure for SΓ1 ,
• two pointers to the data structures in its left and its right children.

For Γ of size one, we store nothing. Thus, we obtain a final data structure of size

lg

(
n!

fσ1 !fσ2 ! · · ·

)
+ |Σ| · poly lg n.
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To answer a query i, we first retrieve the size of Σ1 and query if i ∈ SΣ1
. If i ∈ SΣ1

,
we go to the left child and recursively query h(i). If i /∈ SΣ1

, we go to the right child and
recursively query h(i). Finally, when the current subset |Γ| = 1, we return the only element
in Γ. Since in each level of the recursion, the perfect hashing data structure takes constant
query time in expectation, and the size of Γ reduces by a factor two, the total query time is
O(lg |Σ|) in expectation. This proves the theorem.

7. Perfect Hashing for Medium-Sized Sets. In this section, we present the 2-PHM
data structure when the number of keys n is neither too large nor too small, focusing on the
case where n ≥ U1/12 and n ≤ U − U1/12. Generalizing to all n involves fewer new ideas,
and we defer the proof of the main theorem to Section 9.

7.1. Block pairs. As we mentioned in Section 2.2, to construct a 2-PHM for input set
S, we partition the universe [U ] into pairs of blocks. For each pair, we construct a main data
structure and an auxiliary data structure, such that the main data structure contains “most” of
the information in the block and has fixed length, and the auxiliary data structure stores the
remaining information (which unavoidably has variable length). Finally, we concatenate all
data structures for all blocks.

Below is our main technical lemma, which constructs such two (fractional-length) data
structures for a pair of blocks of sizes V and Vsec. Roughly speaking, given a set S of size
between κ2c−3 +κc/3 and κ2c−3 +2κc/3 in the block [V ], and a set Ssec of size O(κc+1) in
the second block V +[Vsec], we can preprocess them into two data structures Dmain and Daux

using a randomized algorithm such that the two data structures together define a 2-PHM 2-hq
for S ∪ Ssec. The total size of the two data structures is very close to the optimal space:

|Dmain|+ |Daux| ≈ lg

(
V

|S|

)
+ lg

(
Vsec

|Ssec|

)
,

while |Dmain| does not depend on the actual set sizes |S|, |Ssec|. Moreover, a query algorithm
can access only Dmain and output 2-hq(x) in O(1) time without knowing |S| , |Ssec|, for
“most” queries x ∈ [V ]; otherwise, it outputs “unknown”. All “unknown” queries in [V ] and
the queries in V + [Vsec] can be answered in κO(1) time by accessing both data structures.

LEMMA 7.1 (main technical lemma). Let κ be the fineness parameter for fractional-
length strings, and c be a constant positive integer. Let V ∈ [2κ2c−3, 2κ/2] and Vsec ≥ 4κc+1.
For any constant ϵ > 0, there is a preprocessing algorithm perfHashBlk, query algorithms
qalgBlkmain, qalgBlk and lookup tables tableBlkV,Vsec

of size Õ(2ϵκ). Given
• a set S ⊆ [V ] such that m := |S| ∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3],
• a set Ssec ⊆ V + [Vsec] and msec := |Ssec| ∈ [κc+1, 3κc+1],
• a random string R of κc+1 bits,

perfHashBlk preprocesses S and Ssec into a pair of two (fractional-length) data structures
Dmain and Daux, such that

(i) Dmain has length at most

lg

(
V

κ2c−3, κc

)
+ κ2c−3 · 2−κ/2+1;

(ii) Daux has length at most

lg

(
V

m

)
+ lg

(
Vsec

msec

)
− lg

(
V

κ2c−3, κc

)
+ κc+12−κ/2+2;

(iii) Dmain and Daux together define a bijection h between

S ∪ Ssec and [m+msec],
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and a bijection h between

[V + Vsec] \ (S ∪ Ssec) and [(V + Vsec)− (m+msec)],

such that h(S) ⊃ [κ2c−3] and h([V ] \ S) ⊃ [V − κ2c−3 − κc]; let

2-hq(x) :=

{
(0, h(x)) if x ∈ S ∪ Ssec,
(1, h(x)) if x /∈ S ∪ Ssec;

(iv) given any x ∈ [V ], qalgBlkmain(V, x) outputs 2-hq(x) when x ∈ S and h(x) ∈
[κ2c−3], or when x /∈ S and h(x) ∈ [V −κ2c−3−κc], otherwise it outputs “unknown”;
moreover, it only accesses Dmain, R and the lookup table tableBlkV,Vsec

, and it runs
in constant time in the worst case;

(v) for any x ∈ [V ], the probability that qalgBlkmain(V, x) outputs “unknown” is at most
O(κ−c+3) over the randomness of R;

(vi) given any x ∈ [V + Vsec], qalgBlk(V,m, Vsec,msec, x) computes 2-hq(x); it accesses
Dmain, Daux, R and the lookup table tableBlkV,Vsec

, and it runs in O(κ4) time.

Remark 7.2. The size of Dmain is close to the optimum, as qalgBlkmain has to identify
a set of κ2c−3 keys and V − κ2c−3 − κc non-keys by only accessing Dmain, which takes
exactly lg

(
V

κ2c−3,V−κ2c−3−κc

)
= lg

(
V

κ2c−3,κc

)
bits.

The proof of the lemma is deferred to Section 8.

7.2. Basic setup. The rest of this entire section is devoted to the construction of the
2-PHM for U1/12 ≤ n ≤ U − U1/12, assuming Lemma 7.1. Formally, we will prove the
following theorem (recall that OPTV,m = lg

(
V
m

)
is the information theoretical optimal

space for storing m keys over [V ]).

THEOREM 7.3. For any constant ϵ > 0 and constant integer c > 0, there is a prepro-
cessing algorithm perfHash, a query algorithm qAlg and lookup tables tableU,n of size nϵ,
such that given

• a set S of n keys over the key space [U ], where n ≥ U1/12 and n ≤ U − U1/12,
• a uniformly random string R of length O(lgc+1 n),

perfHash preprocesses S into a data structure D of (worst-case) length

⌈OPTU,n + U−1⌉,

such that D defines 2-hq, a 2-PHM for S. Given access to D, R and tableU,n, for any key
x ∈ [U ], qAlg(U, n, x) outputs 2-hq(x) on a RAM with word size w = Ω(lgU), in time

• O(1) with probability 1−O(lg−c+4 U) and
• O(lg7 U) in worst case,

where the probability is taken over the randomness in R. In particular, the query time is
constant in expectation and with high probability by setting c = 11.

Remark 7.4. When n < U1/12, we could use a hash function to map the keys to n2

buckets with no collisions. We could apply this theorem with the new key space being all
buckets, and the keys being the non-empty buckets. By further storing for each non-empty
bucket, the key within it (using Lemma 5.1), it extends the membership query to n < U1/12,
using O(lg n + lg lgU) extra bits. We will see a more generic approach in Section 9 (which
works for perfect hashing and improves the lg lgU term).

Without loss of generality we may assume n ≤ U/2, since otherwise we could simply
take the complement of S (note that this assumption can only be made for the problem of
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Theorem 7.3, but not for the general dictionary problem). Let κ := ⌈4 lgU⌉ be the fineness
parameter, and c be a (large) constant positive integer to be specified later. We partition
the universe [U ] into pairs of blocks. Each block pair consists of a larger primary block
containing roughly κ2c−3 + κc/2 keys, and a smaller secondary block containing roughly
2κc+1 keys. Formally, let

Vpri :=

⌊
(κ2c−3 + κc/2)U

n

⌋
,

Vsec :=

⌊
2κc+1U

n

⌋
and Vbl = Vpri + Vsec. Every primary block has size Vpri and every secondary block has size
Vsec. Every block pair has size Vbl. For simplicity, let us first consider the case where U is a
multiple of Vbl, and U = Vbl ·Nbl. We will show how to handle general U later.

Thus, we partition U into Nbl block pairs in the natural way, where the i-th primary
block

Bi
pri := {x ∈ [U ] : (i− 1)Vbl ≤ x < Vpri + (i− 1)Vbl}

and the i-th secondary block

Bi
sec := {x ∈ [U ] : Vpri + (i− 1)Vbl ≤ x < iVbl} .

We call the i-th block pair good, if the numbers of keys in the primary and secondary
blocks are close to the average:

|S ∩ Bi
pri| ∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3],

and
|S ∩ Bi

sec| ∈ [κc+1, 3κc+1].

The pair is bad if the number of keys in at least one of the two blocks is outside the prescribed
range.

In Section 7.3, we show that we can construct a data structure for inputs S with no bad
blocks. The goal is to design a data structure using space close to OPTNblVbl,n. Then in
Section 7.4, we handle inputs with at least one bad block. Finally, we put together the two
cases and handle general U (not necessarily a multiple of Vbl) in Section 7.5.

7.3. No bad block pair. We prove the following lemma in this subsection.

LEMMA 7.5. If U is a multiple of Vbl, then there is a data structure with the guarantees
as in Theorem 7.3, for all sets S with no bad block pair. Moreover, the size of the data
structure is

OPTU,n + n · 2−κ/2+2.

Proof. As a preparatory step in the preprocessing (i.e. the construction of the data struc-
ture), we take the last O(lgU) bits of the random bits R, interpret them as a (random) number
∆ ∈ [U ], and shift the entire universe according to ∆, i.e., x 7→ (x +∆) mod U . This shift
is applied to input S, and will be applied to the queries too (which guarantees that the query
is in a primary block with good probability).

The preprocessing algorithm is based on recursion. The following preprocessing algo-
rithm dict prep rec preprocesses S restricted to the i-th to j-th blocks Bi

pri, Bi
sec, . . ., Bj

pri,
Bj
sec, and outputs j − i+ 2 data structures Di

main, . . . ,D
j
main and Daux. We will inductively

prove upper bounds on the sizes of the data structures: the length of each Di
main is at most

(7.1) SIZEmain := lg

(
Vpri

κ2c−3, κc

)
+ κ2c−3 · 2−κ/2+1,
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and the length of Daux generated from i, . . . , j-th block pair is at most

(7.2) OPT(j−i+1)Vbl,m − (j − i+ 1)SIZEmain + (m− 1)2−κ/2+2,

where m is the number of keys in blocks i to j. In the base case with only one block pair, we
simply apply Lemma 7.1.

preprocessing algorithm dict prep rec(i, j,m, S,R):
1. if i = j
2. let Spri ⊆ S be the set of keys in the i-th primary block
3. let Ssec ⊆ S be the set of keys in the i-th secondary block
4. mpri := |Spri| and msec := |Ssec|
5. (Di

main,D
′
aux) := perfHashBlk(Vpri,mpri, Vsec,msec, Spri, Ssec,R)

(from Lemma 7.1)
6. apply Proposition 4.14 to fuse mpri into D′

aux, and obtain Daux

7. return (Di
main,Daux)

(to be cont’d)

CLAIM 7.6. If i = j, |Di
main| ≤ SIZEmain and |Daux| ≤ OPTVbl,m − SIZEmain +

(m− 1) · 2−κ/2+2.

To prove the claim, note that the premises of Lemma 7.1 are satisfied: since 2n ≤ U , Vpri ≥
2κ2c−3 and Vpri ≤ U ≤ 2κ/2; Vsec ≥ 4κc+1; by assumption, every primary block has
between κ2c−3 + κc/3 and κ2c−3 + 2κc/3 keys, and every secondary block has between
κc+1 and 3κc+1 keys. Therefore, by Lemma 7.1, the size of Di

main is at most SIZEmain, and
the size of D′

aux is at most

lg

(
Vpri

mpri

)
+ lg

(
Vsec

m−mpri

)
− SIZEmain + κ2c−3 · 2−κ/2+2.

By fusing the value of mpri ∈ {0, . . . ,m} into the data structure, the size of Daux is at most

OPTVbl,m − SIZEmain + (m− 1) · 2−κ/2+2,

due to the fact that
∑

mpri
lg
((

Vpri

mpri

)(
Vsec

m−mpri

))
= lg

(
Vbl

m

)
= OPTVbl,m and m ≥ κ2c−3 +

κc+1. Di
main and Daux both have sizes as claimed in (7.1) and (7.2). Also, note that we give

the same random string R to all block pairs. Thus, the total number of random bits needed is
κc+1 by Lemma 7.1.

Next, when i < j, the set of block pairs is split evenly, the algorithm is applied to both
parts recursively, and for the result, the lists of the main structures are simply written one
after the other, the auxiliary structures are merged into one (by concatenation).

8. k := ⌊(i+ j)/2⌋
9. let m1 be the number of keys in the i-th, . . . , k-th block pair

10. let m2 be the number of keys in the (k + 1)-th, . . . , j-th block pair
11. recurse on the two halves:

(Di
main, . . . ,D

k
main,Daux,1) := dict prep rec(i, k,m1, S,R)

(Dk+1
main, . . . ,D

j
main,Daux,2) := dict prep rec(k + 1, j,m2, S,R)

12. apply Proposition 4.9 to concatenate Daux,1 and Daux,2, and obtain D′
aux

13. apply Proposition 4.13 to fuse the value of m1 into D′
aux for m1 ∈ {0, . . . ,m}, and obtain

Daux

14. return (Di
main, . . . ,D

j
main,Daux)

CLAIM 7.7. We have |Di
main| ≤ SIZEmain for all i, and

|Daux| ≤ OPT(j−i+1)Vbl,m − SIZEmain + (j − i+ 1)(m− 1) · 2−κ/2+2.
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We have already shown that each |Di
main| ≤ SIZEmain above. To prove the bound on |Daux|,

by inductive hypothesis, we know that Daux,1 has size at most

OPT(k−i+1)Vbl,m1
− (k − i+ 1)SIZEmain + (m1 − 1)2−κ/2+2

and Daux,2 has size at most

OPT(j−k)Vbl,m2
− (j − k)SIZEmain + (m2 − 1)2−κ/2+2.

To apply Proposition 4.9 in line 12, we need to approximate the data structure sizes. The
following claim implies that the premises can be satisfied.

CLAIM 7.8. Both s1 := OPT(k−i+1)Vbl,m1
− (k− i+1)SIZEmain+(m1−1)2−κ/2+2

and s2 := OPT(j−k)Vbl,m2
− (j − k)SIZEmain + (m2 − 1)2−κ/2+2 can be approximated

with an additive error of at most 2−κ in O(1) time.

Assuming Claim 7.8, Proposition 4.9 concatenates Daux,1 and Daux,2 into a data structure
D′

aux of length at most

s′aux,m1
:= OPT(k−i+1)Vbl,m1

+OPT(j−k)Vbl,m−m1

− (j − i+ 1)SIZEmain + (m− 2)2−κ/2+2 + 2−κ+4.

The following claim implies that the premises of Proposition 4.13 from line 13 can be satis-
fied, because −(j − i + 1)SIZEmain + (m − 2)2−κ/2+2 + 2−κ+4 does not depend on m1,
and can be computed efficiently.

CLAIM 7.9. For any V1, V2,m ≥ 0, and 0 ≤ l ≤ m,

l∑
i=0

2OPTV1,i+OPTV2,m−i

can be approximated up to an additive error of at most 2−κ−3 ·
∑m

i=0 2
OPTV1,i+OPTV2,m−i

in O(κ5) time.

The proofs of both claims are deferred to Appendix A. Assuming Claim 7.9, Proposition 4.13
fuses m1 into D′

aux, and obtains Daux of length at most

lg

(
m∑

m1=0

2s
′
aux,m1

)
+ (m+ 1) · 2−κ+4

≤ lg

(
m∑

m1=0

2OPT(k−i+1)Vbl,m1
+OPT(j−k)Vbl,m−m1

)
− (j − i+ 1)SIZEmain + (m− 2)2−κ/2+2 + 2−κ+4 + (m+ 1) · 2−κ+4

≤OPT(j−i+1)Vbl,m − (j − i+ 1)SIZEmain + (m− 1)2−κ/2+2.

This proves Claim 7.7.
Thus, by induction, dict prep rec outputs D1

main, . . . ,D
Nbl

main of length SIZEmain and
Daux of length

OPTNblVbl,n −Nbl · SIZEmain + (n− 1)2−κ/2+2.

Finally, we apply Proposition 4.9 again to concatenate all Nbl + 1 data structures. By
storing approximations of sizes of Di

main and Daux in the lookup table, we obtain a data
structure of length at most

Nbl · SIZEmain + (OPTNblVbl,n −Nbl · SIZEmain + (n− 1)2−κ/2+2) +Nbl · 2−κ+3
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≤OPTNblVbl,n + n · 2−κ/2+2.

This proves the space bound in Lemma 7.5. Next, we define 2-hq and show that it can be
evaluated in constant time in expectation.

2-PHM. Let hi and hi be the bijections obtained by Lemma 7.1 for blocks Bi
pri and Bi

sec.
We define the bijections h and h as follows:

• for key x ∈ S ∩ (Bi
pri ∪ Bi

sec), if hi(x) < κ2c−3, let h(x) := (i− 1)κ2c−3 + hi(x),
otherwise, let h(x) := (Nbl − i) · κ2c−3 +

∑
j<i |(B

j
pri ∪ Bj

sec) ∩ S|+ hi(x);
• for non-key x /∈ S, if hi(x) < Vpri−κ2c−3−κc, let h(x) := (i−1)(Vpri−κ2c−3−

κc) + hi(x),
otherwise, let h(x) := (Nbl−i)·(Vpri−κ2c−3−κc)+

∑
j<i |(B

j
pri∪Bj

sec)\S|+hi(x).
Essentially, the smallest hash values will be those with hi(x) < κ2c−3 or hi(x) < Vpri −
κ2c−3−κc, ordered according to i and hi(x) or hi(x). Then the rest take larger values ordered
according to i and hi(x) or hi(x) (note that h(x) and h(x) depend on the number of keys in
the first i − 1 block pairs, which will be recovered by the query algorithm from Daux). By
definition, they are both bijections. Finally, let

2-hq(x) :=

{
(0, h(x)) if x ∈ S,
(1, h(x)) if x /∈ S.

Lookup tables. We store the following information in the lookup table.
lookup table tbl:

1. tableBlkVpri,Vsec from Lemma 7.1
2. the lookup table for line 6 from Proposition 4.14 for all valid values mpri and msec

3. approximated value of SIZEmain and the (final) size of Daux, up to O(κ) bits of precision

By Lemma 7.1, the lookup table size is 2ϵκ. Since κ = O(lgU) and n ≥ U1/12, by readjust-
ing the constant ϵ, the lookup table size is at most nϵ.

Query algorithm. Now, we show how to answer 2-hq queries. Given a query x ∈ [U ],
we first shift it according to ∆, as we did at preprocessing, x 7→ (x + ∆) mod U . If x
is in a primary block, we query the corresponding main data structure. If the main data
structure does not return the answer, or x is not in a primary block, we recursively decode the
corresponding auxiliary data structure, and run qalgBlk.

query algorithm qalgG(U, n, x):
1. if x is in the i-th primary block
2. apply Proposition 4.9 to decode Di

main
3. if (b, v) := Di

main.qalgBlkmain(Vpri, x) ̸= “unknown” (from Lemma 7.1)
4. if b = 1, return (1, (i− 1)κ2c−3 + v)
5. if b = 0, return (0, (i− 1)(Vpri − κ2c−3 − κc) + v)
6. decode Daux and return Daux.qalg rec(1, Nbl, 0, n, x)

Since Vpri/Vsec = O(κc−4) and we randomly shifted the universe, x is in a primary block
with probability 1 − O(κ−c+4). Also, by Lemma 7.1, qalgBlkmain runs in constant time.
It returns “unknown” with probability at most O(κ−c+3) for a uniformly random R, and
returns 2-hq(x) otherwise. Therefore, the probability that qalgG terminates before reaching
the last line is 1−O(κ−c+4). Since κ = Θ(lgU), it computes 2-hq(x) in constant time with
probability 1−O(lg−c+4 U).

Next, we show how to implement qalg rec(i, j, s,m, x), which takes as parameters
• (i, j): a range of blocks,
• s: the total number of keys before block i,
• m, the total number of keys in blocks i to j, and
• x, the element being queried.

We will prove that its worst-case running time is O(lg7 U).
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query algorithm qalg rec(i, j, s,m, x):
1. if i = j
2. apply Proposition 4.14 to decode mpri and D′

aux
3. (b, v) := (Di

main,D
′
aux).qalgBlk(Vpri,mpri, Vsec,m − mpri, x − (i − 1)(Vpri +

Vsec))
(from Lemma 7.1)

4. if b = 1, return (1, (Nbl − i) · κ2c−3 + s+ v)
5. if b = 0, return (0, (Nbl − i) · (Vpri − κ2c−3 − κc) + ((i− 1) · Vbl − s) + v)

(to be cont’d)

In the base case with only one block, we simply decode the value of mpri as well as the
corresponding D′

aux from the i-th block pair. By running qalgBlk from Lemma 7.1 to query
within the block pair, we compute 2-hq(x) according to its definition in O(κ4) time.

6. k := ⌊(i+ j)/2⌋
7. apply Proposition 4.13 and Claim 7.9 to decode m1 and D′

aux
8. apply Proposition 4.9 and Claim 7.8 to decode Daux,1 and Daux,2

9. if x is in i-th, . . . , k-th block pair
10. return Daux,1.qalg rec(i, k, s,m1, x)
11. else
12. return Daux,2.qalg rec(k + 1, j, s+m1,m−m1, x)

In general, we decode m1, the number of elements in the first half of the blocks. Then we
decode the data structures for the two halves. Depending on where the query is, we recurse
into one of the two data structures. Proposition 4.9, Proposition 4.13, Claim 7.8 and Claim 7.9
guarantee that the decoding takes O(κ6) time. The recursion has at most O(lg n) ≤ κ levels.
Thus, the total running time of qalg rec is at most O(κ7). This proves the claim on the
query time, and hence, it proves Lemma 7.5.

7.4. At least one bad block pair. Now, let us show how to handle sets with at least one
bad block. We will show that the space usage for such sets is OPTU,n − Ω(κ3).

LEMMA 7.10. If U is a multiple of Vbl, then there is a data structure with guarantees as
in Theorem 7.3, for all sets with at least one bad block pair. Moreover, the size of the data
structure is at most

OPTU,n − Ω(κ3).

Note that storing all such sets using less than OPTU,n space is possible, because by a Cher-
noff bound, at most 2−Ω(κ3) fraction of the sets have at least one bad block pair. The optimal
space for this case is only OPTU,n − Ω(κ3).

Proof. The first ⌈lgNbl⌉ bits are used to encode the number of bad block pairs Nbad. It
turns out that the fraction of input sets with Nbad bad pairs is 2−Ω(κ3Nbad), as we mentioned
in Section 2.1. By the argument there, we can afford to use O(κ3Nbad) extra bits.

The idea is to construct a mapping which maps all good block pairs to the first Nbl−Nbad

pairs, construct a data structure using the above algorithm for good blocks, and finally handle
the bad pairs separately.

To construct such a mapping, observe that the following two numbers are equal:
(a) the number of good pairs among the last Nbad pairs, and
(b) the number of bad pairs among the first Nbl −Nbad pairs.
Hence, in the mapping, we map all the good pairs among the last Nbad to all bad pairs
among the first Nbl −Nbad. The good pairs in the first Nbl −Nbad pairs will be mapped to
themselves. To store such a mapping, we spend O(Nbad · lgNbl) bits to store a hash table
of all the bad pairs using the FKS hashing. Then we spend O(Nbad · lgNbl) bits to store for
each pair in the last Nbad pairs, whether it is a good pair and if it is, which bad pair it will be
mapped to. The mapping takes O(Nbad · lgNbl) bits to store in total (which is much smaller
than κ3Nbad). It takes constant time to evaluate.
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This mapping maps all good pairs to the first Nbl − Nbad pairs. Then we apply pre-
processing algorithm dict prep rec from Lemma 7.5 for good pairs to construct a data
structure using

OPT(Nbl−Nbad)Vbl,n−nbad
+ (n− nbad) · 2−κ/2+2 ≤

⌈
OPT(Nbl−Nbad)Vbl,n−nbad

⌉
+ 1

bits, where nbad is the number of keys in the bad block pairs.
Next, the preprocessing algorithm constructs data structures for the bad pairs. Consider

a bad pair with mpri keys in the primary block and msec keys in the secondary block. Thus,
either mpri /∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3], or msec /∈ [κc+1, 3κc+1]. We construct two
separate data structures, one for the primary block and one for secondary block (note that it
might be the case that the number of keys in the primary block is within the above range, but
the block pair is bad due to the secondary block, or vice versa, we still construct two separate
data structures for both of them using the following argument). It turns out that if the number
of keys in the block is at most κO(1), then there is a data structure using only O(1) extra bits,
answering queries in constant time.

LEMMA 7.11. Let c be any constant positive integer and ϵ be any positive constant.
There is a preprocessing algorithm perfHashS, query algorithm qalgS and lookup tables
tableSV,m of sizes Õ(2ϵκ), such that for any V ≤ 2κ/2 and m ≤ κc, given a set S ⊂ [V ] of
m keys, perfHashS preprocesses S into a data structure of size at most

OPTV,m + (m− 1) · 2−κ/2+1,

such that it defines a bijection h between S and [m] and a bijection h between [V ] \ S and
[V −m]. Given any x ∈ [V ], qalgS answers 2-hq(x) in constant time, by accessing the data
structure and tableSV,m.

In particular, the size is at most OPTV,m + O(1). The lemma is an immediate corollary of
Lemma 8.1 in Section 8.1 (see Remark 8.2).

On the other hand, sets that have a block with more than κ3c keys are even more rare.
By a Chernoff bound, we can estimate that the fraction of sets with at least one block with
m > κ3c keys is at most 2−Ω(m lgm). This suggests that for every (bad) block with m > κ3c

keys, we can afford to spend O(m lgm) extra bits. A simple modification to [21] gives such
a data structure.

LEMMA 7.12. Given a set S ⊂ [V ] of m keys, there is a data structure of size

OPTV,m +O(m+ lg lg V ),

such that it defines a bijection h between S and [m] and a bijection h between [V ] \ S and
[V −m]. It supports 2-hq queries in constant time.

Note that lg lg V ≤ lg κ, and m ≥ κ3c. The number of extra bits is simply O(m). We prove
this lemma in Appendix B.

For each bad block pair, we write down the two numbers mpri and msec using O(lg n)
bits. Then if mpri ≤ κ3c, we apply Lemma 7.11, and obtain a data structure with

OPTVpri,mpri
+O(1)

bits. If mpri > κ3c, we apply Lemma 7.12, and obtain a data structure with

OPTVpri,mpri
+O(mpri)
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bits. Likewise for the secondary block, we obtain a data structure with

OPTVsec,msec
+O(1)

bits if msec ≤ κ3c, and
OPTVsec,msec +O(msec)

bits if msec > κ3c.
Finally, we concatenate all data structures for bad pairs (which all have integer lengths).

For each bad pair, we further store a pointer pointing to its corresponding data structure, as
well as the total number of keys in all bad blocks prior to it (which helps us compute the hash
values).

Space usage. Let us first bound the space usage for the data structures for a bad block
pair. Consider the i-th bad block pair, suppose it has mpri,i keys in the primary block and
msec,i keys in the secondary block. Then note that we have

lg

(
Vpri

mpri,i

)
= lg

Vpri!

mpri,i!(Vpri −mpri,i)!

which by Stirling’s formula, is at most

≤ Vpri lg
Vpri

e
−mpri,i lg

mpri,i

e
− (Vpri −mpri,i) lg

Vpri −mpri,i

e
+O(lg Vpri)

= Vpri lg Vpri −mpri,i lgmpri,i − (Vpri −mpri,i) lg (Vpri −mpri,i) +O(lg Vpri).(7.3)

In the following, we are going to compare (7.3) with

(7.4) Vpri lg Vpri −mpri,i lgmpri − (Vpri −mpri,i) lg (Vpri −mpri) +O(lg Vpri),

where mpri = κ2c−3 + κc/2 is the average number of keys in a primary block. First observe
that f(x) = m lg x+(V −m) lg(V −x) achieves its maximum at x = m, thus, (7.3) ≤ (7.4).
On the other hand, if mpri,i /∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3], i.e., mpri,i is far from mpri,
(7.3) is even smaller.

CLAIM 7.13. We have (7.4) ≥ (7.3). Moreover, if mpri,i /∈ [κ2c−3 + κc/3, κ2c−3 +
2κc/3],

(7.4) − (7.3)

{
= Ω(κ3) mpri,i ≤ κ3c,

≥ mpri,i lg κ mpri,i > κ3c.

Proof.

(7.4) − (7.3)

= −mpri,i lg
mpri

mpri,i
− (Vpri −mpri,i) lg

Vpri −mpri

Vpri −mpri,i

= −mpri,i lg

(
1 +

mpri −mpri,i

mpri,i

)
− (Vpri −mpri,i) lg

(
1 +

mpri,i −mpri

Vpri −mpri,i

)
.

By the facts that ln(1 + x) ≤ x for x > −1, ln(1 + x) ≤ x − 1
4x

2 for |x| ≤ 1, and
ln(1 + x) ≤ 3x/4 for x > 1, when mpri,i ≤ mpri/2, we have

(7.4) − (7.3)

= −mpri,i lg

(
1 +

mpri −mpri,i

mpri,i

)
− (Vpri −mpri,i) lg

(
1 +

mpri,i −mpri

Vpri −mpri,i

)
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≥ −mpri,i ·
3

4
· mpri −mpri,i

mpri,i
lg e− (Vpri −mpri,i) ·

mpri,i −mpri

Vpri −mpri,i
lg e

=
lg e

4
(mpri −mpri,i)

= Ω(κ2c−3).

If mpri,i ≥ mpri/2 and mpri,i ≤ κ3c, we have

(7.4) − (7.3)

= −mpri,i lg

(
1 +

mpri −mpri,i

mpri,i

)
− (Vpri −mpri,i) lg

(
1 +

mpri,i −mpri

Vpri −mpri,i

)
≥ −mpri,i

(
mpri −mpri,i

mpri,i
− 1

4

(
mpri −mpri,i

mpri,i

)2
)
lg e

− (Vpri −mpri,i) ·
mpri,i −mpri

Vpri −mpri,i
lg e

=
lg e

4
· (mpri,i −mpri)

2

mpri,i

= Ω(κ3),

where the last inequality uses the fact that mpri,i /∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3].
If mpri,i ≥ κ3c, we have

(7.4) − (7.3)

= −mpri,i lg

(
1 +

mpri −mpri,i

mpri,i

)
− (Vpri −mpri,i) lg

(
1 +

mpri,i −mpri

Vpri −mpri,i

)
≥ −mpri,i lg

mpri

mpri,i
− (mpri,i −mpri) lg e

≥ mpri,i lg
mpri,i

e ·mpri

≥ mpri,i lg κ.

Combining the three cases, we obtain the claim.

Since Vpri = U · mpri

n ±O(1), we have

(7.4) = Vpri lgU −mpri,i lg n− (Vpri −mpri,i) lg(U − n) +O(lg Vpri).

Thus, Claim 7.13 implies that if mpri,i /∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3], i.e., the primary
block is bad, then the data structure size for the primary block is at most

Vpri lgU −mpri,i lg n− (Vpri −mpri,i) lg(U − n)− Ω(κ3)

(since O(mpri,i) ≪ mpri,i lg κ and O(1) ≪ κ3), and otherwise, it is at most

Vpri lgU −mpri,i lg n− (Vpri −mpri,i) lg(U − n) +O(lg Vpri).

By applying the same argument to the secondary blocks, we conclude that if msec,i /∈
[κc+1, 3κc+1], i.e., the secondary block is bad, then the data structure size for the secondary
block is at most

Vsec lgU −msec,i lg n+ (Vsec −msec,i) lg(U − n)− Ω(κ3),
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and otherwise, it is at most

Vsec lgU −msec,i lg n+ (Vsec −msec,i) lg(U − n) +O(lg Vpri).

Summing up the two bounds, and using the fact that at least one of the primary and
secondary block is bad, the data structure size for the i-th bad block pair is at most

Vbl lgU − (mpri,i +msec,i) lg n− (Vbl −mpri,i −msec,i) lg(U − n)− Ω(κ3),

since κ3 ≫ lg Vpri.
Now we sum up the sizes for all Nbad bad blocks, which in total contain nbad keys. The

total size is at most

Nbad · Vbl lgU − nbad lg n− (Nbad · Vbl − nbad) lg(U − n)− Ω(Nbad · κ3).

Therefore, summing up the sizes of all parts of the data structure: the values of Nbad and
nbad, the mapping from all good pairs to [Nbl−Nbad], the data structure for the good blocks,
all data structures for the bad blocks and the pointers to them, the total size is at most

OPT(Nbl−Nbad)Vbl,n−nbad
+O(Nbad lgNbl) +Nbad · Vbl lgU

− nbad lg n− (Nbad · Vbl − nbad) lg(U − n)− Ω(Nbad · κ3)

= (Nbl −Nbad)Vbl lg((Nbl −Nbad)Vbl)− (n− nbad) lg(n− nbad)

− ((Nbl −Nbad)Vbl − (n− nbad)) lg((Nbl −Nbad)Vbl − (n− nbad))

+Nbad · Vbl lgU − nbad lg n− (Nbad · Vbl − nbad) lg(U − n)− Ω(Nbad · κ3),

which by Claim 7.13 and the fact that Nbad ≥ 1, is at most

=(Nbl −Nbad)Vbl lgU − (n− nbad) lg n− ((Nbl −Nbad)Vbl − (n− nbad)) lg(U − n)

+Nbad · Vbl lgU − nbad lg n− (Nbad · Vbl − nbad) lg(U − n)− Ω(κ3),

=U lgU − n lg n− (U − n) lg(U − n)− Ω(κ3)

≤ lg

(
U

n

)
− Ω(κ3)

=OPTU,n − Ω(κ3),

as we claimed.
Hash functions. For all x in the good blocks, we simply use their hash value according

to Lemma 7.5, for which h takes values in [n − nbad] and h takes values in [Vbl · (Nbl −
Nbad)− (n− nbad)]. For x in the i-th bad pair with hash value v, let si be the total number
of keys in first i− 1 bad pairs (which is explicitly stored in the data structure), then if x ∈ S,
we set h(x) := n− nbad + si + v; if x /∈ S, we set h(x) := Vbl · (Nbl −Nbad + (i− 1))−
(n− nbad + si) + v.

That is, all elements in good blocks take the smallest values, and elements in bad blocks
take the rest according to the order of the blocks. By definition, they are both bijections.
Similarly, let

2-hq(x) :=

{
(0, h(x)) if x ∈ S,
(1, h(x)) if x /∈ S.

Lookup tables. We include the lookup table from the data structure for no bad blocks, as
well as all tables tableSV,m from Lemma 7.11 for V = Vpri or V = Vsec, and 1 ≤ m ≤ κ3c.
The total lookup table size is Õ(2ϵκ). It is at most nϵ by readjusting the constant ϵ.
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Query algorithm. Given a query x, suppose x is in the i-th block pair. We first query
the hash table to check if it is one of the bad pairs. If the block pair is bad, we follow the
pointer and query the data structure for the primary block or the secondary block depending
on which block x is in. Its hash value can be computed according to the definition. It takes
constant time.

If the block pair is good, we spend constant time to find out where the i-th block pair is
mapped to, in the first Nbl − Nbad pairs. Then we run qalgG for good blocks, which takes
constant time in expectation. This completes the proof of Lemma 7.10.

7.5. Complete data structure for medium size sets. Now, we are ready to prove The-
orem 7.3.

Proof of Theorem 7.3. Consider the following preprocessing algorithm for general U
and U1/12 ≤ n ≤ U/2 (U not necessarily a multiple of Vbl). We first construct a data
structure for the block pairs, and fuse the two cases (with or without bad blocks) together.

preprocessing algorithm perfHash(U, n, S,R):
1. compute Vpri, Vsec and κ
2. compute Nbl := U div Vbl and V := U mod Vbl

3. divide the universe [U ] into Nbl block pairs and a last block of size V
4. if all Nbl block pairs are good
5. set i := 0, apply Lemma 7.5 on the Nbl block pairs, and obtain a data structure D0

6. else
7. set i := 1, apply Lemma 7.10 on the Nbl block pairs, and obtain a data structure D1

8. apply Proposition 4.14 to fuse i into Di, and obtain a data structure Dbl

(to be cont’d)

Suppose there are nbl keys in the first Nbl block pairs. By Lemma 7.5, D0 has length at most

OPTNblVbl,nbl
+ nbl · 2−κ/2+2.

By Lemma 7.10, D1 has length at most

OPTNblVbl,nbl
− Ω(κ3).

Thus, by Proposition 4.14, Dbl has length at most

OPTNblVbl,nbl
+ lg(2nbl·2−κ/2+2

+ 2−Ω(κ3)) + 2−κ+2

≤OPTNblVbl,nbl
+ lg(1 + nbl · 2−κ/2+2 + 2−Ω(κ3)) + 2−κ+2

≤OPTNblVbl,nbl
+ nbl · 2−κ/2+3

=OPTU−V,nbl
+ nbl · 2−κ/2+3.

Then we construct a separate data structure for the last block using Lemma 7.11 or
Lemma 7.12 based on the number of keys in it.

9. if n− nbl ≤ κ3c

10. construct Dlast for the last block using Lemma 7.11
11. apply Proposition 4.10 to concatenate Dbl and Dlast, and obtain D′

12. let n′
bl = nbl

13. else
14. construct Dlast for the last block using Lemma 7.12
15. spend ⌈lgn⌉ bits to store nbl,
16. round both Dbl and Dlast to integral lengths and concatenate them
17. spend ⌈lgn⌉ bits to store a pointer to Dlast, let the resulting data structure be D′

18. let n′
bl = n− κ3c − 1

19. apply Proposition 4.14 to fuse the value of n′
bl into D′ for n′

bl ∈ [n−κ3c−1, n], and obtain
D

20. return D
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We do not fuse the whole value of nbl into D′, as its range is large and Proposition 4.14
requires a large lookup table to do this. Instead, we only fuse its value if nbl ≥ n− κ3c, and
otherwise only indicate that it is smaller than n− κ3c (by setting n′

bl to n− κ3c − 1). This is
fine because we spend extra lg n bits to explicitly store its value in this case. We will show in
the following that the total space is close to the optimum.

There are n− nbl keys in the last block. If n− nbl ≤ κ3c, Dlast has size at most

OPTV,n−nbl
+ (n− nbl − 1) · 2−κ/2+1.

In this case, the length of D′ is at most

OPTU−V,nbl
+OPTV,n−nbl

+ nbl · 2−κ/2+3 + (n− nbl − 1) · 2−κ/2+1 + 2−κ+2

≤OPTU−V,nbl
+OPTV,n−nbl

+ n · 2−κ/2+3

= lg

(
U − V

nbl

)(
V

n− nbl

)
+ n · 2−κ/2+3.

(7.5)

If n− nbl > κ3c, Dlast has size at most

OPTV,n−nbl
+O(n− nbl + lg n).

The length of D′ is at most

(7.6) lg

(
U − V

nbl

)(
V

n− nbl

)
+O(n− nbl + lg n).

By Stirling’s formula, the first term is

lg

(
U − V

nbl

)(
V

n− nbl

)
= lg

(U − V )!V !

nbl!(U − V − nbl)!(n− nbl)!(V − n+ nbl)!

≤ (U − V ) lg(U − V )− nbl lg nbl − (U − V − nbl) lg(U − V − nbl)

+ V lg V − (n− nbl) lg(n− nbl)− (V − n+ nbl) lg(V − n+ nbl) +O(lgU).

By the fact that f(x) = m lg x+ (V −m) lg(V − x) is maximized at x = m, it is at most

(U − V ) lg(U − V )− nbl lg
(U − V )n

U
− (U − V − nbl) lg(U − V − (U − V )n

U
)

+ V lg V − (n− nbl) lg(n− nbl)− (V − n+ nbl) lg(V − n+ nbl) +O(lgU)

= (U − V ) lgU − nbl lg n− (U − V − nbl) lg(U − n)

+ V lg V − (n− nbl) lg
V n

U
− (V − n+ nbl)

(
V − V n

U

)
− (n− nbl) lg

U(n− nbl)

V n
− (V − n+ nbl) lg

V − n+ nbl

V − V n
U

+O(lgU)

= U lgU − n lg n− (U − n) lg(U − n)

− (n− nbl) lg
U(n− nbl)

V n
+ (V − n+ nbl) lg

(
1 +

n− nbl − V n
U

V − n+ nbl

)
+O(lgU).
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By Stirling’s formula and the fact that ln(1 + x) ≤ x, it is at most

lg

(
U

n

)
− (n− nbl) lg

U(n− nbl)

V n
+ (n− nbl) lg e+O(lgU)

which by the fact that n− nbl > κ3c, is

≤ lg

(
U

n

)
− (n− nbl) lg

Uκ3c

eV n
+O(lgU)

which by the fact that U/(eV n) ≥ κ−2c and c ≥ 1, is

≤ lg

(
U

n

)
− (n− nbl) lg κ+O(lgU).

Therefore, when n− nbl > κ3c, the size of D′ is at most

(7.6) ≤ lg

(
U

n

)
− Ω((n− nbl) lg κ) +O(lgU + lg n)

≤ OPTU,n − Ω(κ3).

Finally together with Equation (7.5), by Proposition 4.14, the size of D is at most

lg

2OPTU,n−Ω(κ3) +

n∑
nbl=n−κ3c

(
U − V

nbl

)(
V

n− nbl

)
· 2n·2

−κ/2+3

+ n · 2−κ+2

≤ lg

(
2OPTU,n−Ω(κ3) +

n∑
nbl=0

(
U − V

nbl

)(
V

n− nbl

)
· 2n·2

−κ/2+3

)
+ n · 2−κ+2

= lg

(
2OPTU,n−Ω(κ3) +

(
U

n

)
· 2n·2

−κ/2+3

)
+ n · 2−κ+2

=OPTU,n + lg
(
2−Ω(κ3) + 2n·2

−κ/2+3
)
+ n · 2−κ+2

≤OPTU,n + lg
(
2−Ω(κ3) + 1 + n · 2−κ/2+3

)
+ n · 2−κ+2

≤OPTU,n + 2−Ω(κ3) + n · 2−κ/2+4 + n · 2−κ+2

≤OPTU,n + U−1.

This proves that perfHash outputs a data structure with U−1 bits of redundancy. Next, we
describe the 2-PHM that the data structure defines.

Hash functions. For all x in the first Nbl block pairs, we simply use their hash values
defined by Dbl (from Lemma 7.5 or Lemma 7.10), for which, h takes values from [nbl] and h
takes values from [Vbl ·Nbl − nbl]. For all x in the last block, let v be its hash value defined
by Dlast. If x ∈ S, let h(x) := nbl + v; if x /∈ S, let h(x) := Vbl · Nbl − nbl + v. By
definition, h and h are both bijections.

Lookup table. We include the lookup tables in Section 7.3 and in Section 7.4, which
both have size nϵ. Then we include the lookup tables needed by Proposition 4.10 and Propo-
sition 4.14 in line 8, 11 and 19. The total size is nϵ.
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Query algorithm. Given a query x, we decode all the components, and query the part
based on the value of x.

query algorithm qAlg(x):
1. compute Vpri, Vsec, Nbl and V
2. apply Proposition 4.14 to recover n′

bl and decode D′ from D
3. if n′

bl > n− κ3c − 1
4. let nbl := n′

bl
5. apply Proposition 4.10 to decode Dbl and Dlast

6. else
7. recover nbl from D′

8. decode Dbl and Dlast

9. if x ≥ U − V
10. query x in Dlast, and obtain (b, v)
11. if b = 1, then return (1, nbl + v)
12. if b = 0, then return (0, Vbl ·Nbl − nbl + v)
13. else
14. apply Proposition 4.14 to recover i and decode Di from Dbl

15. query x in Db using the corresponding query algorithm, and return the outcome

All subroutines run in expected constant time, the overall expected query time is constant.
This completes the proof of Theorem 7.3.

8. Data Structure Pair for One Block Pair. In this section, we prove our main tech-
nical lemma (Lemma 7.1), which constructs a pair of data structures for a pair of blocks. In
Section 8.1, we construct a succinct rank data structure for sets of size κO(1) with constant
query time. Then we study data interpretation and show that a string can be represented as a
set in Section 8.2. Finally, we prove Lemma 7.1 in Section 8.3.

8.1. Improved rank data structure for small sets. We first improve the rank data
structure of Pǎtraşcu [23]. We show that if a block has κc keys, then there is a rank data
structure with constant query time and negligible extra space. Recall that the rank problem
asks to preprocess a set S of m keys into a data structure, supporting

• rankS(x): return the number of keys that are at most x.
In particular, by computing both rankS(x) and rankS(x − 1), one can decide if x ∈ S.
Formally, we will prove the following lemma.

LEMMA 8.1. Let c be any constant positive integer and ϵ be any positive constant.
There is a preprocessing algorithm prepRank, query algorithm qAlgRank and lookup ta-
bles tableRankV,m of sizes Õ(2ϵκ), such that for any integers V ≤ 2κ/2,m ≤ κc, given a
set S ⊂ [V ] of size m, prepRank(V,m, S) outputs a data structure D of length

lg

(
V

m

)
+ (m− 1) · 2−κ/2.

Given x ∈ [V ], qAlgRank(V,m, x) computes rankS(x) in constant time, by accessing D and
tableRankV,m. The algorithms run on a random access machine with word size w = Ω(κ).

Remark 8.2. Note that a rank data structure easily defines hash functions that map the
keys to [m], and the non-keys to [V − m]: For each key x, we set h(x) := rank(x) − 1;
for each non-key x, we set h(x) := x − rank(x) − 1. Hence, Lemma 7.11 is an immediate
corollary.

To prove the lemma, we first show that the fusion trees [12] can be implemented suc-
cinctly. This gives us a data structure for small sets with a sublinear, although large, redun-
dancy.

LEMMA 8.3. Let c be any constant positive integer and ϵ be any positive constant. There
is a preprocessing algorithm prepRankL, a query algorithm qAlgRankL and lookup tables
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tableRankLV,m of sizes 2ϵκ such that for any integers V,m such that V ≤ 2κ and m ≤ κc,
given a set S ⊆ [V ] of size m, prepRankL preprocesses it into a data structure using

lg

(
V

m

)
+

1

8
m lg κ

bits of space. Given any x ∈ [V ], qAlgRankL compute rankS(x) in constant time, by access-
ing the data structure and tableRankLV,m. The algorithms run on a random access machine
with word size w = Ω(κ).

Since the main ideas are similar, we may omit the proof of a few claims in the construction,
and refer the readers to the original fusion trees for details ([12]).

Proof. (sketch) Let S = {y1, . . . , ym} and y1 < y2 < · · · < ym. Let us first show how
to construct such a data structure using

m⌈lg V ⌉+m⌈lg κ⌉

bits when m ≤ κ1/4. We view each yi as a ⌈lg V ⌉-bit binary string, and consider the first bit
where yi and yi+1 differ, for every i = 1, . . . ,m − 1. Let W be this set of bits, i.e., j ∈ W
if and only there exists some i such that j-th bit is the first bit where yi and yi+1 differ. Then
|W | ≤ m − 1. Similar to fusion trees, let sketch(y) be y restricted to W . Observe that we
must have sketch(y1) < sketch(y2) < · · · < sketch(ym).

The data structure first stores W using m⌈lg κ⌉ bits. Then it stores sketch(y1), . . .,
sketch(ym). Finally, the data structure stores the remaining bits of each yi, for i = 1, . . . ,m
and from the top bits to the low bits. It is clear that the data structure occupies m⌈lg V ⌉ +
m⌈lg κ⌉ bits of space.

To answer a query x ∈ [V ], qAlgRankL first breaks x into sketch(x) and the remaining
bits. That is, it generates two strings: x restricted to W (a |W |-bit string), and the remaining
bits (a (⌈lg V ⌉− |W |)-bit string). It can be done in constant time using a lookup table of size
2O(ϵκ), e.g., we divide the bits of x into chunks of length ϵκ, and store in tableRankLV,m
for each chunk, every possible set W and every possible assignment to the bits of x in
the chunk, their contribution to sketch(x) and the remaining bits (note that there are only
2o(κ) different sets W ). Summing over all chunks gives us sketch(x) and the remaining
bits. The query algorithm then finds the unique i such that sketch(yi) ≤ sketch(x) <

sketch(yi+1). This can be done by using a lookup table of size at most 2(m+1)|W | ≤ 2κ
1/2

,
since (sketch(y1), . . . , sketch(ym)) has only m|W | bits, and sketch(x) has |W | bits.
However, we might not necessarily have yi ≤ x < yi+1, but similar to the arguments in fu-
sion trees, x has the longest common prefix (LCP) with either yi or yi+1 (among all y ∈ S).
qAlgRankL next computes the LCP between x and yi and the LCP between x and yi+1. Both
can be done in constant time, since to compute the LCP between x and yi, it suffices to com-
pute the LCP between sketch(x) and sketch(yi) and the LCP between their remaining bits.
Suppose x and yi∗ have a longer LCP (i∗ = i or i + 1). If x = yi∗ , then rankS(x) = i∗.
Otherwise, let their common prefix be x′. If x > yi∗ , then let j be the unique index such
that sketch(yj) ≤ sketch(x′111 · · · 11) < sketch(yj+1). The argument from fusion trees
shows that we must have yj < x < yj+1, i.e., rankS(x) = j. Likewise, if x < yi∗ , then let
j be the unique index such that sketch(yj) < sketch(x′000 · · · 00) ≤ sketch(yj+1). We
must have yj < x < yj+1. By computing the value of j using the lookup table again, we find
the number of elements in S that is at most x. Note that this data structure also allows us to
retrieve each yi in constant time.
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Next, we show that the above data structure generalizes to any m ≤ κc, and uses space

m(lg V + (c+ 3) lg κ) ≤ lg

(
V

m

)
+ (2c+ 3)m lg κ.

When m > κ1/4, let B = ⌊κ1/4⌋, we take B evenly spaced elements from S, i.e., y⌈im/B⌉
for i = 1, . . . , B. Denote the set of these B elements by S′ = {y′1, . . . , y′B}, where y′i =
y⌈im/B⌉. We apply the above data structure to S′, using space

B⌈lg V ⌉+B⌈lg κ⌉ < B(lg V + lg κ+ 2).

We recurse on all B subsets between elements in S′, where the i-th subset has ⌈im/B⌉ −
⌈(i− 1)m/B⌉ − 1 elements. Then the final data structure stores

• the data structure for S′;
• B data structures for all subsets between elements in S′;
• an array of B pointers, pointing to the starting locations of the above B data struc-

tures.
We assign (c+ 3/2) lg κ bits to each pointer.

Suppose for each subset, we are able to (recursively) construct a data structure using

(⌈im/B⌉ − ⌈(i− 1)m/B⌉ − 1)(lg V + (c+ 3) lg κ)

bits of space. The total space usage is

B(lg V + lg κ+ 2) + (m−B)(lg V + (c+ 3) lg κ) +B(c+ 3/2) lg κ

≤ m(lg V + (c+ 3) lg κ).

On the other hand, assigning (c+ 3/2) lg κ bits to each pointer is sufficient, because

lg (m(lg V + (c+ 3) lg κ)) ≤ lg (mκ+ (c+ 3)m lg κ) ≤ (c+ 1) lg κ+ 1.

To answer query x, we first query the data structure for S′, and find the i such that
y′i ≤ x < y′i+1. Then we recurse into the i-th subset. The query time is constant, because the
size of the set reduces by a factor of B = Θ(κ1/4) each time. Note that for any given i, this
data structure can also return yi in constant time.

Finally, we show that the redundancy (2c + 3)m lg κ can be reduced to 1
8m lg κ. To

this end, let S′ be the subset of S with gap 16(2c + 3), i.e., S′ = {y′1, y′2, . . .} such that
y′i = y16(2c+3)·i. Then |S′| = ⌊ m

16(2c+3)⌋. We construct a data structure for S′ using space

|S′|(lg V + (c+ 3) lg κ).

Naturally, S′ partitions S into chunks of 16(2c + 3) − 1 elements. We simply write them
down using

(16(2c+ 3)− 1)⌈lg(y′i+1 − y′i − 1)⌉

bits for chunk i. The final data structure consists of
1. the data structure for S′,
2. all other elements in S encoded as above,
3. |S′|+ 1 pointers to each chunk.
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We assign ⌈(c+3/2) lg κ⌉ bits to each pointer. By the concavity of lg x, the total space usage
is

|S′|(lg V + (c+ 3) lg κ) +
∑
i

(16(2c+ 3)− 1)⌈lg(y′i+1 − y′i − 1)⌉

+ (|S′|+ 1)⌈(c+ 3/2) lg κ⌉

≤ |S′| lg V

m
+ |S′|(3c+ 5) lg κ+

∑
i

(16(2c+ 3)− 1) lg
V

|S′|+ 1
+m

≤ |S′| lg V

m
+

(3c+ 5)m

16(2c+ 3)
lg κ+

∑
i

(16(2c+ 3)− 1) lg
V

m
+O(m)

≤m lg
V

m
+

(3c+ 5)m

16(2c+ 3)
lg κ+O(m)

≤ lg

(
V

m

)
+

m

8
lg κ.

To answer query x, we first query the data structure for S′, and find i such that y′i ≤ x <
y′i+1. Then we go over the 16(2c + 3) elements between y′i and y′i+1, and compare each of
them with x. This finishes the proof of Lemma 8.3.

Next, we show that if the sets are very small (m ≤ O(κ/ lg κ)), then there is a data
structure with constant query time and negligible extra bits.

LEMMA 8.4. Let c ≥ 2, ϵ be two positive constants. There is a preprocessing algo-
rithm prepRankS, a query algorithm qAlgRankS and lookup tables tableRankSV,m of sizes
O(2ϵκ), such that for any integers V ≤ 2κ and m ≤ c ·κ/ lg κ, such that given a set S ⊂ [V ]
of size m, prepRankS preprocesses S into a data structure using lg

(
V
m

)
+2−κ/2 bits of space.

Given any x ∈ [V ], qAlgRankS computes rankS(x) in constant time by accessing the data
structure and tableRankSV,m.

Proof. Consider the binary trie over {0, . . . , V }.12 Every element in {0, . . . , V } corre-
sponds to a root-to-leaf path. Consider all paths corresponding to an element in S ∪ {V }
(V is included for technical reasons). Their union forms a subtree T (S) of the binary trie
with m + 1 leaves. In the following, we construct a data structure assuming the topological
structure of T (S) is known, then apply Proposition 4.14 to fuse the topological structure into
the data structure.

Roughly speaking, the topological structure of a subtree T is the tree T without speci-
fying for each node with only one child, whether it is a left or a right child (see Figure 1a).
Formally, it is defined by partitioning the set of such subtrees into equivalence classes, mod-
ulo the flip operation. Let v be a node in T with only a left [resp. right] child, let flip(v, T )
be T relocating v’s entire left [resp. right] subtree to its right [resp. left] child. We say two
trees T ∼ T ′ if there is a (finite) sequence of flip operations that modifies T to T ′. It is easy
to verify that ∼ is an equivalence relation, hence it partitions the set of all T into equivalence
classes.

We call an edge in T (S) a shared edge if it has more than one leaf in its subtree. Equiv-
alently, a shared edge is shared between at least two root-to-leaf paths. Note that if an edge
is shared, then all edges on the path from root to it are shared. It turns out that the number of
shared edges in T (S) is an important parameter, which is also invariant under flip. Thus, for
each equivalence class T , all T ∈ T have the same number of shared edges (see Figure 1b).

12We write every integer in the set as a ⌈lg(V + 1)⌉-bit string, then construct a trie over these V + 1 binary
strings. Note that S is a subset of {0, . . . , V − 1}, while the trie has V + 1 leaves.
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Fig. 1: (b) is the topological structure of (a), by getting rid of the information that for each
single child, whether it is a left or a right child. The thick edges are shared. Query x branches
off the tree along the dotted edge.

Intuitively, for a typical set S, the corresponding T ∋ T (S) should have most of its
degree-two nodes close to the root, i.e, it should have very few shared edges. Indeed, if we
sample a uniformly random S, the number of shared edges is at most O(κ) with probabil-
ity at least 1 − 2−Ω(κ). As we will see below, on the inputs with few shared edges, it is
relatively easy to construct data structures and answer queries. However, for the rare inputs
with more than Ω(κ) shared edges, we can afford to use a different construction with a larger
redundancy. Since they are sufficiently rare, the overall redundancy turns out to be small.

Few shared edges. Let us fix an equivalence class T , assume T is known and consider
all inputs S such that T (S) ∈ T . Furthermore, assume the trees in T have at most (2c+ 1)κ
shared edges. For each such T , we are going to construct a lookup table tableRankSV,m,T ,
and preprocess S into a data structure using about lg |T | bits such that if the query algorithm
is given access to this particular lookup table (specific for T ), it answers rank queries in
constant time.

Since the tree T (S) uniquely determines S, to construct the data structure for S, it suf-
fices to encode for each edge in T (S) that connects a single child and its parent, whether the
child is left or right. The preprocessing algorithm constructs T (S), then goes through all such
edges in a fixed order, and uses one bit to indicate whether the corresponding edge in T (S)
connects to a left child or a right child. To facilitate the queries (which we will describe in the
next paragraph), all shared edges are encoded first in the depth-first-search order, followed
by all other edges encoded in the depth-first-search order. This ensures that

1. if a shared edge e1 is on the path from root to shared edge e2, then e1 is encoded
before e2;

2. for each yi, its non-shared edges (which is a suffix in the root-to-leaf path) are con-
secutive in the data structure.

Note that this encoding is a one-to-one mapping: Every S such that T (S) ∈ T is encoded to
a different string; Every string has a corresponding S with T (S) ∈ T encoded to it. Thus,
the algorithm constructs a data structure using exactly

lg |{S : T (S) ∈ T }|

bits of space.
Let S = {y1, . . . , ym} such that y1 < y2 < · · · < ym, and let y0 = −1 and ym = V .
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Given a query x ∈ {0, . . . , V − 1}, the goal is to compute i such that yi ≤ x < yi+1. Let
us consider the process of walking down the tree T (S) following the bits in x. That is, we
write x also as a ⌈lg(V + 1)⌉-bit string, and walk down the tree from the root: if the current
bit in x is 0, we follow the left child, otherwise we follow the right child. The process stops
when either the current node in T (S) does not have a left (or right) child to follow, or we
have reached a leaf. The location where it stops determines the answer to the query, in the
same way for all T ∈ T . See Figure 1c and 1d for a concrete example. Note that in the
example, x branches off the tree from left, which may not be possible at the same location
for all T ∈ T , as some T may have a left child there. But given that x branches off the tree
at this location from left, all T (S) ∈ T must have the same answer to rankS(x). Thus, we
store in tableRankSV,m,T , for all nodes v in the tree, ansv,0 and ansv,1, the answer to the
query when the process branches off the tree from v due to the lack of its left child (i.e., from
left), and the answer when it branches off from v due to the lack of its right child (i.e., from
right) respectively. It takes O(κ2) words, since m ≤ κ.

Now the task is reduced to efficiently simulating this walk. To this end, the query algo-
rithm needs to compare the bits in x with the corresponding bits of T (S), which are stored
in the data structure. It turns out that the difficult part is to compare x with the shared edges,
which are stored in the first (at most) (2c + 1)κ bits. The first step is to simulate the walk,
and check if x branches off T (S) at a shared edge. We create lookup tables of size 2ϵκ to
compare ϵκ bits at once. For now, let us focus on the first ϵκ bits x≤ϵκ. These bits determine
for all the degree-two nodes in the first ϵκ levels, which child x follows (note we have fixed
T ). Thus, it determines for all other bits, which bits in the data structure they should compare
with. In the lookup table, we store for each of the 2ϵκ possible values,

• a (2c+1)κ-bit string, which permutes x≤ϵκ to the same location as the bits they are
comparing with;

• a (2c+ 1)κ-bit string, indicating for each shared edge in the data structure, whether
they are being compared.

With these two strings, the query algorithm is able to compare x≤ϵκ with the first ϵκ
levels of T (S). If they do not match, we could find the first edge where they differ (since
edges are encoded in the DFS order), which is the location where x branches off T (S). If
they all equal, we proceed and compare the next ϵκ bits. Note that we may start the next
chunk of the walk from different nodes depending on the value of x≤ϵκ, and we will need a
different lookup for each starting location. However, T can have at most m nodes in each
level, thus, only m tables are needed for each chunk. We repeat the above process until we
find a different bit, or we find out that x matches all shared edges from the root. In the former
case, as we argued above, the answer to the query can be found in the lookup table. In the
latter case, by the definition of shared edges, we identified one yi which is the only element
in S that matches the prefix of x. Thus, it suffices to retrieve the remaining bits of yi, which
are stored consecutively in the data structure and take constant retrieval time, and compare yi
with x. If yi ≤ x, then the query algorithm returns i, otherwise, it returns i − 1. The query
time is constant.

So far for every T with at most (2c+1)κ shared edges, we have designed a data structure
that works for all inputs S such that S ∈ T using space lg |{S : T (S) ∈ T }| bits, constant
query time and lookup table of size 2ϵκ. Next, we fuse T into the data structure and merge
all lookup tables, obtaining a single data structure that works for all S such that T (S) has
at most (2c + 1)κ shared edges, which uses lookup table tableRankSV,m,few. To this end,
we fix an arbitrary ordering of all such equivalence classes T : T1, . . . , TC , where C is the
number of equivalence classes. Let si = lg |{S : T (S) ∈ Ti}| be the size of the data structure
for Ti. Then, C ≤ 22m ·

(
(2c+1)κ+1

m−1

)
≤ 2m lg(κ/m)+O(m). This is because there are at most
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22m rooted binary trees with m + 1 nodes (corresponding to the degree-two nodes). Each
such tree can be extended to a class T by specifying the distance from each child to its parent
(adding the degree-one nodes). However, there are only (2c + 1)κ shared edges, thus, the
sum of distances of all internal edges is at most (2c + 1)κ, and there are m − 1 internal
edges.13 Hence, there are at most

(≤(2c+1)κ
m−2

)
≤
(
(2c+1)κ+1

m−1

)
choices. Once the distances on

all internal edges are determined, the distance on each edge connecting to a leaf is also fixed,
because all leaves are at depth ⌈lg(V + 1)⌉.

Given an input set S such that T (S) has at most (2c+1)κ shared edges, the preprocess-
ing algorithm computes T (S) and finds the index i such that Ti ∋ T (S). Then it runs the
preprocessing algorithm for class Ti on S, and computes a data structure Di of at most si bits.
Next, we use Proposition 4.14 to store the pair (i,Di), using space at most

lg

C∑
i=1

2si + C · 2−κ+2 ≤ lg

(
C∑
i=1

|{S : T (S) ∈ Ti}|

)
+ 2m lg(κ/m)+O(m)−κ+2

< lg

(
V

m

)
+ 2m lg(κ/m)+O(m)−κ+2

< lg

(
V

m

)
+ 2−

3
4κ.

The lookup table tableRankSV,m,few is the collection of all tables tableRankSV,m,Ti

for i = 1, . . . , C, as well as the O(C)-sized table from Proposition 4.14. Thus, the total size
is at most 2ϵκ · C +O(C) = 2(ϵ+o(1))κ.

To answer a query x, Proposition 4.14 allows us to decode i and Di in constant time by
using a lookup table of size O(C). Then, we find the corresponding tableRankSV,m,Ti

and
run the query algorithm for Ti on query x and data structure Di. The query time is constant.

Many shared edges. Next, we construct a data structure that works for all S such that
T (S) has more than (2c+ 1)κ shared edges, using

lg

(
V

m

)
− κ

bits of space. Note that this is possible, because there are very few such sets S (a tiny fraction
of all

(
V
m

)
sets). We find the largest k such that T (S≤k) has at most (2c+ 1)κ shared edges,

where S≤k = {y1, . . . , yk}. Note that every element can introduce no more than κ shared
edges, thus, T (S≤k) has at least 2cκ shared edges. The data structure stores the (index of)
equivalence class T ∋ T (S≤k), then we run the preprocessing algorithm on S≤k. This
encodes the first k elements of S. For the next m− k elements, we simply apply Lemma 8.3.

More specifically, for k elements, there are at most 2k lg(κ/k)+O(k) equivalence classes,
as we showed earlier. We construct the data structure as follows:

1. write down the index k using ⌈lgm⌉ bits;
2. write down the index i such that Ti ∋ T (S≤k) using ⌈k lg(κ/k) +O(k)⌉ bits;
3. run the preprocessing algorithm on S≤k and obtain a data structure of size

lg |{S≤k : T (S≤k) ∈ Ti}|;

4. run prepRankL on {yk+1, . . . , ym} and obtain a data structure of size

lg

(
V

m− k

)
+

1

8
(m− k) lg κ.

13An edge is internal if it does not connect to a leaf.
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Observe that Step 3 uses at most
k⌈lg V ⌉ − 2cκ

bits, because for any such Ti,
• by construction, each bit of the data structure stores an input bit, i.e., one of the bits

representing {y1, . . . , yk};
• each of the ≥ 2cκ shared edges corresponds to at least two input bits (since given
T , these two input bits are always the same);

• each input bit is stored only once.
Therefore, the preprocessing algorithm outputs a data structure using

lgm+ k lg(κ/k) +O(k) + (k lg V − 2cκ)

+

(
lg

(
V

m− k

)
+

1

8
(m− k) lg κ

)
+ k + 2

≤ lgm+ k lg(κ/k) + (k lg V − 2cκ) + (m− k) lg V +
1

8
m lg κ+O(k)

≤ m lg V − 2cκ+ lgm+ k lg(κ/k) +
1

8
m lg κ+O(k)

≤ lg

(
V

m

)
+m lgm− 2cκ+ lgm+m lg(κ/m) +

1

8
m lg κ+O(m)

≤ lg

(
V

m

)
− 2cκ+

9

8
m lg κ+O(m).

By the fact that m ≤ cκ/ lg κ and c ≥ 2, it is at most

lg

(
V

m

)
− κ.

The lookup table includes tableRankSV,k,few for all k ≤ m, and has 2(ϵ+o(1))κ size.
To answer query x, the query algorithm reads k and i. Then it runs the query algorithm

for Ti for query x on the data structure for S≤k, as well as qAlgRankL for x on the data
structure for {yk+1, . . . , ym}. Both algorithms run in constant time. The answer to the query
is simply the sum of the two answers.

Combining the two cases. Finally, we combine the two cases using Proposition 4.14,
and construct a data structure that works for all sets S. Given set S, prepRankS computes
T (S) and the number of shared edges. If it has no more than (2c + 1)κ shared edges, it sets
b := 1, runs the preprocessing algorithm for “many shared edges” and obtains a data structure
D1. Otherwise, it sets b := 2, runs the preprocessing algorithm for “few shared edges” and
obtains a data structure D2. At last, it applies Proposition 4.14 to store the pair (b,Db). The
space usage is

lg

((
V

m

)
· 22

− 3
4
κ

+

(
V

m

)
· 2−κ

)
+ 2−κ+2

≤ lg

(
V

m

)
+ 2−

3
4κ + lg(1 + 2−κ−2−

3
4
κ

) + 2−κ+2

≤ lg

(
V

m

)
+ 2−

1
2κ.

To answer query x, we simply decode b and Db using Proposition 4.14, and use the
corresponding query algorithm based on b.
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The lookup table tableRankSV,m also includes all tableRankSV,k for k ≤ m, which
has size 2O(ϵκ). This proves Lemma 8.4.

Finally, we are ready to prove Lemma 8.1, which constructs a rank data structure for
m ≤ κc.

Proof of Lemma 8.1. The data structure construction is based on recursion. As the base
case, if m ≤ 16κ/ lg κ, we simply use the data structure from Lemma 8.4, and the statement
holds. Otherwise for m > 16κ/ lg κ, we divide V into B blocks of equal size, for B =
⌈κ1/2⌉. For a typical set S, we would expect each block to contain roughly m/B elements. If
it indeed happens, the size of S would be reduced by a factor of B. Hence, we will reach the
base case in a constant number of rounds. On the other hand, input sets S which have at least
one block with significantly more than m/B elements are very rare. If such blocks occur, we
are going to apply Lemma 8.3 on them. Although Lemma 8.3 introduces a large redundancy,
such cases occur sufficiently rarely, so that the overall redundancy is still small.

More specifically, we partition the input set S into B subsets S1, . . . , SB such that Si

contains all elements of S between ⌈(i− 1)V/B⌉ and ⌈iV/B⌉ − 1. Let Vi := ⌈iV/B⌉ −
⌈(i− 1)V/B⌉ be the size of the i-th block. By definition, |S1| + · · · + |SB | = m and
V1 + · · · + VB = V . We construct a data structure for each Si, over a universe of size
Vi. Then we apply Proposition 4.10 to concatenate the B data structures given the sizes of
S1, . . . , SB . Finally, we apply Proposition 4.14 to union all combinations of sizes. We present
the details below.

Preprocessing algorithm. Given a set S of size m, if 2m ≥ V , we take the complement.
Note that the space bound stated in the lemma becomes smaller after taking the complement.
It is also easy to derive the answer from the data structure for the complement. Then if m = 1,
we simply write down the element; if m ≤ 16κ/ lg κ, we apply Lemma 8.4.

preprocessing algorithm prepRank(V,m, S):
1. if V ≤ 2m
2. m := V −m and S := [V ] \ S
3. if m = 1
4. return the only element in S
5. if m ≤ 16κ/ lg κ
6. return D := prepRankS(V,m, S) using Lemma 8.4

(to be cont’d)

If m > 16κ/ lg κ, we divide [V ] into κ1/4 chunks, and construct a data structure for each
chunk.

7. B := ⌊κ1/4⌋
8. compute Si := S ∩ [(i− 1)V/B, iV/B) and mi := |Si|
9. let Vi := ⌈iV/B⌉ − ⌈(i− 1)V/B⌉

10. for i = 1, . . . , B
11. if mi > max{m · κ−1/4, 16κ/ lg κ}
12. compute Di := prepRankL(Vi,mi, Si) using Lemma 8.3
13. else
14. compute Di := prepRank(Vi,mi, Si) recursively

(to be cont’d)

If the chunk has too many elements, we apply Lemma 8.3 to construct a data structure with
larger redundancy. Otherwise, the size of the set at least decreases by a factor of κ1/4, and
we recurse.

Next, we concatenate the data structures for all chunks, and fuse the tuple (m1, . . . ,mB)
into the data structure.
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15. apply Proposition 4.10 to concatenate D1, . . . ,DB , and obtain Dcat
16. let C :=

(m+B−1
B−1

)
be the number of different tuples (m1, . . . ,mB) such that mi ≥ 0 and

m1 + · · ·+mB = m
17. let 1 ≤ j ≤ C be the index such that the current (m1, . . . ,mB) is the j-th in the lexico-

graphic order
18. apply Proposition 4.14 to fuse j into Dcat, and obtain D
19. return D

Space analysis. We will prove by induction that prepRank(V,m, S) outputs a data
structure of size at most

lg

(
V

m

)
+ (m− 1)2−κ/2.

The base case when m ≤ 16κ/ lg κ is a direct implication of Lemma 8.4 (or if m = 1, the
space usage is lg V = lg

(
V
1

)
). Now, let us consider larger m.

To prove the inductive step, let us fix a B-tuple (m1, . . . ,mB), and consider the size of
Dcat from line 15. By Proposition 4.10, when all mi ≤ max{m · κ−1/4, 16κ/ lg κ}, its size
is at most

s(m1, . . . ,mB) := lg

B∏
i=1

(
Vi

mi

)
+ (m−B) · 2−κ/2 + (B − 1)2−κ+4;

otherwise, its size is at most

(8.1) s(m1, . . . ,mB) := lg

B∏
i=1

(
Vi

mi

)
+

∑
i:mi>max{m·κ−1/4,16κ/ lg κ}

1

8
mi lg κ+B.

It turns out that in the latter case, (8.1) is significantly smaller than lg
(
V
m

)
.

CLAIM 8.5. If at least one mi > max{m · κ−1/4, 16κ/ lg κ}, then s(m1, . . . ,mB) is at
most lg

(
V
m

)
− κ.

To focus on the space analysis, we defer the proof of the claim to the end of this subsection.
Assuming the claim, by Proposition 4.14, the size of D from line 18 is at most

(8.2) lg

 ∑
m1,...,mB :∑

i mi=m

2s(m1,...,mB)

+ C · 2−κ+2.

To bound the sum in the logarithm, we first take the sum only over all tuples such that mi ≤
max{m · κ−1/4, 16κ/ lg κ}, the sum is at most

∑
2s(m1,...,mB) ≤

∑ B∏
i=1

(
Vi

mi

)
· 2(m−B)·2−κ/2+(B−1)2−κ+4

≤
(
V

m

)
· 2(m−B)·2−κ/2+(B−1)2−κ+4

.

The second inequality uses the fact that
∑

m1,...,mB :
∑

mi=m

∏B
i=1

(
Vi

mi

)
=
(∑B

i=1 Vi

m

)
, and

we are taking this sum over a subset of all such B-tuples. By Claim 8.5, s(m1, . . . ,mB) ≤
lg
(
V
m

)
− κ for all other tuples. Thus, the sum in the logarithm is at most(

V

m

)
· 2(m−B)·2−κ/2+(B−1)2−κ+2

+

(
V

m

)
· C · 2−κ.
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Finally, since C ≤ mB and m ≤ κc, (8.2) is at most

(8.2) ≤ lg

((
V

m

)
· 2(m−B)·2−κ/2+(B−1)2−κ+4

+

(
V

m

)
·mB · 2−κ

)
+mB · 2−κ+2

≤ lg

(
V

m

)
+ (m−B)2−κ/2 + (B − 1)2−κ+4 + lg(1 + 2−κ+B lgm) + 2−κ+B lgm+2

≤ lg

(
V

m

)
+ (m−B)2−κ/2 + (B − 1)2−κ+4 + 2−κ+cκ1/4 lg κ+3

≤ lg

(
V

m

)
+ (m− 1)2−κ/2.

By induction, it proves the data structure uses space as claimed.
Lookup table. We store the following information in the lookup table.
lookup table tableRankV,m:

1. if m ≤ 16κ/ lg κ, include tableRankSV,m from Lemma 8.4
2. the value of C =

(m+B−1
B−1

)
3. for j = 1, . . . , C
4. the j-th B-tuple (m1, . . . ,mB) in lexicographic order
5. for i = 1, . . . , B
6. m1 + · · ·+mi

7. lookup table for Proposition 4.10 in line 15, for all possible B-tuples (m1, . . . ,mB)
8. lookup table for Proposition 4.14 in line 18
9. include all tables tableRankV ′,m′ and tableRankLV ′,m′ for V ′ = ⌊V/Bi⌋ or ⌈V/Bi⌉

for i ≥ 1 and m′ ≤ m

Since C =
(
m+B−1
B−1

)
≤ 2o(κ), line 2 to 8 all have size 2o(κ). Finally, we are only

including κO(1) other tables in line 1 and 6, each taking at most Õ(2ϵκ) bits by Lemma 8.3
and 8.4. The total size of tableRankV,m is Õ(2ϵκ).

Query algorithm. Given a query x, if V ≤ 2m, we retreat the data structures as storing
the complement of S, and use the fact that rankS(x) = x + 1 − rank[V ]\S(x). Then if
m = 1, we simply compare it with x. If m ≤ 16κ/ lg κ, we invoke the query algorithm from
Lemma 8.4.

query algorithm qAlgRank(V,m, x):
1. if V ≤ 2m
2. m := V −m
3. in the following, when about to return answer r, return x+ 1− r
4. if m = 1
5. retrieve the element, compare it with x, and return 0 or 1
6. if m ≤ 16κ/ lg κ,
7. return qAlgRankS(V,m, x) (from Lemma 8.4)

(to be cont’d)

If m > 16κ/ lg κ, we decode j, which encodes the tuple (m1, . . . ,mB) and Dcat. Then
if x is in the i-th chunk, we decode mi and the corresponding Di.

8. apply Proposition 4.14 to decode j and Dcat
9. let i be the chunk that contains x

10. apply Proposition 4.10 to decode Di

11. retrieve m1 + · · ·+mi−1 and mi for j-th tuple from the lookup table
(to be cont’d)

Then depending on the value of mi, we invoke the query algorithm from Lemma 8.3 or
recurse.

12. if mi > max{m · κ−1/4, 16κ/ lg κ}
13. return (m1+· · ·+mi−1)+Di.qAlgRankL(Vi,mi, x−⌈(i−1)V/B⌉) (from Lemma 8.3)
14. else
15. return (m1 + · · ·+mi−1) +Di.qAlgRank(Vi,mi, x− ⌈(i− 1)V/B⌉)

The query algorithm recurses only when mi ≤ m · κ−1/4. In all other cases, the query
51



is answered in constant time. On the other hand, m ≤ κc. The level of recursion must be
bounded by a constant. Thus, the data structure has constant query time, proving Lemma 8.1.

In order to complete the proof, we now prove the remaining claim.

Proof of Claim 8.5. To prove the claim, let us first compare the first term with lg
(
V
m

)
.

We have

lg

(
V

m

)
− lg

B∏
i=1

(
Vi

mi

)

= lg
V !

m!(V −m)!
+

B∑
i=1

lg
mi!(Vi −mi)!

Vi!
,

which, by Stirling’s formula, is

≥ lg

√
2πV (V/e)V√

2πm(m/e)m ·
√

2π(V −m)((V −m)/e)V−m

+

B∑
i=1

lg

√
2πmi(mi/e)

mi ·
√
2π(Vi −mi)((Vi −mi)/e)

Vi−mi

√
2πVi(Vi/e)Vi

−O(B)

≥ lg
V V

mm · (V −m)V−m
− lg V +

B∑
i=1

lg
mmi

i · (Vi −mi)
Vi−mi

V Vi
i

−O(B)

=

B∑
i=1

(
Vi lg

V

Vi
−mi lg

m

mi
− (Vi −mi) lg

V −m

Vi −mi

)
−O(B)− lg V,

which by the fact that f(ε) = ε log 1/ε is concave and hence V · f(Vi

V ) ≥ m · f(mi

m )+ (V −
m) · f(Vi−mi

V−m ) (i.e., all summands are nonnegative), is

≥
∑

i:mi>max{m·κ−1/4,16κ/ lg κ}

(
Vi lg

V

Vi
−mi lg

m

mi
− (Vi −mi) lg

V −m

Vi −mi

)
(8.3)

−O(B)− lg V.

For each term in this sum, we have

Vi lg
V

Vi
= Vi lgB − Vi lg

(
1 +

Vi − V/B

V/B

)
≥ Vi lgB −O(1),

since |Vi − V/B| ≤ 1; and

(Vi −mi) lg
V −m

Vi −mi
= (Vi −mi)

(
lgB + lg

(
1 +

mi −m/B + (V/B − Vi)

Vi −mi

))
≤ (Vi −mi) lgB + (Vi −mi) ·

mi −m/B + 1

Vi −mi
· lg e

≤ (Vi −mi) lgB + 2mi.

Plugging it into (8.3), we have

lg

(
V

m

)
− lg

B∏
i=1

(
Vi

mi

)
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≥
∑

i:mi>max{m·κ−1/4,16κ/ lg κ}

(
Vi lgB −mi lg

m

mi
− (Vi −mi) lgB − 2mi

)
−O(B)− lg V

=
∑

i:mi>max{m·κ−1/4,16κ/ lg κ}

mi

(
lg

Bmi

m
− 2

)
−O(B)− lg V

≥
∑

i:mi>max{m·κ−1/4,16κ/ lg κ}

mi

(
1

4
lg κ− 2

)
−O(B)− lg V.

Therefore, we have

(8.1) ≤ lg

(
V

m

)
−

∑
i:mi>max{m·κ−1/4,16κ/ lg κ}

mi

(
1

4
lg κ− 2

)
+O(B) + lg V

+
∑

i:mi>max{m·κ−1/4,16κ/ lg κ}

1

8
mi lg κ

≤ lg

(
V

m

)
−

∑
i:mi>max{m·κ−1/4,16κ/ lg κ}

mi

(
1

8
lg κ− 2

)
+O(B) + lg V

≤ lg

(
V

m

)
− κ.

The last inequality is due to the fact that there is at least one mi that is larger than max{m ·
κ−1/4, 16κ/ lg κ} (in particular, mi > 16κ/ lg κ), B = Θ(κ1/2) and lg V ≤ κ/2.

8.2. Data interpretation. Now, we show how to represent a string as a set which allows
us to locally decode the string given access to a rank oracle of the resulting set. Formally,
we will prove the following lemma.

LEMMA 8.6. Let c ≥ 2 be a constant positive integer. There is a preprocessing algo-
rithm prepIntoSet, a query algorithm request and lookup tables tableIntV,m of sizes
O(κc+2), such that for any integers V and m where V ≤ 2κ/2 and m ≤ κc, given a (double-
ended) string D = (Kh,M,Kt) of length

s ≤ lg

(
V

m

)
−m(V − 1)2−κ+2,

prepIntoSet(V,m,D) outputs a set S ⊆ [V ] of size m with the following properties: For
any −1 ≤ a1 ≤ a2 ≤ |M | and a2 < a1 + κ,

request(0, V,m, range[Kh], |M |, range[Kt], a1, a2, 0)

computes D[a1, a2] in O(κ4) time using O(κ2) rank queries to S, assuming it can make
random accesses to the lookup table tableIntV,m.

Proof. To construct set S from the input string D, the main idea is to apply Proposi-
tion 4.23 and 4.20, and then recurse on the two halves of [V ]. Roughly speaking, we extract
an integer m1 ∈ [m + 1] from D using Proposition 4.23, which encodes the number of ele-
ments in the first half of [V ]. Then we split D into two data structures D1 and D2 such that
the length of D1 is approximately lg

(
V/2
m1

)
and the length of D2 is approximately lg

(
V/2

m−m1

)
.

Then the set S is recursively constructed in the two halves. When the m gets sufficiently
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small and D has length O(κ2), we continue the recursion without applying the two propo-
sitions about fraction-length strings. Instead, we take the whole string as an integer smaller
than 2O(κ2), and use the integer to encode a set (also decode the whole integer at the decoding
time).

Transforming an integer to and from a set. We first show given an integer Z ≤
(
V
m

)
, how

to turn it into a subset of [V ] of size m, such that Z can be recovered using rank queries.
encoding algorithm encSet(V,m,Z):

1. if m = 0, return ∅
2. if m = V , return [V ]
3. V1 := ⌊V/2⌋ and V2 := ⌈V/2⌉
4. compute the largest 0 ≤ j ≤ m such that Z ≥

∑j−1
i=0

(V1
i

)( V2
m−i

)
5. Y := Z −

∑j−1
i=0

(V1
i

)( V2
m−i

)
6. Z1 := Y div

( V2
m−j

)
and Z2 := Y mod

( V2
m−j

)
7. return encSet(V1, j, Z1) ∪ (encSet(V2,m− j, Z2) + V1)

To construct the set, the algorithm is a standard recursion. All possible sets are listed in in-
creasing order of the number of elements in [V1]. We compute this number, and then recurse
into the two halves. Z can be recovered by the following algorithm, assuming the set gener-
ated is in the universe X +[V ]. For technical reasons that we will encounter later, sometimes
we may only have access to the complement of the set. The bit b indicates whether we should
take the complement.

decoding algorithm decSet(X,V,m, b):
1. if m = 0 or m = V , return 0
2. V1 := ⌊V/2⌋ and V2 := ⌈V/2⌉
3. j := rankS(X + V1 − 1)− rankS(X − 1)
4. if b, then j := V1 − j
5. Z1 := decSet(X,V1, j, b) and Z2 := decSet(X + V1, V2,m− j, b)

6. return Z :=
∑j−1

i=0

(V1
i

)( V2
m−i

)
+ Z1 ·

( V2
m−j

)
+ Z2

We will store the sums
∑j−1

i=0

(
V1

i

)(
V2

m−i

)
and the binomial coefficients

(
V2

m−j

)
in the lookup

table. Since V decreases by a factor of two during the recursion, the depth of the recursion is
at most lg V . The size m is split into j and m− j, and the algorithm terminates when m = 0,
hence, there are at most m branches in total at each level of the recursion. The size of the
recursion tree is O(m lg V ). Thus, we have the following claim.

CLAIM 8.7. decSet uses O(m lg V ) arithmetic operations on O(lg
(
V
m

)
)-bit integers,

as well as O(m lg V ) rank queries.

Preprocessing into a set. Given a string D = (Kh,M,Kt) of length at most lg
(
V
m

)
−

m(V − 1)2−κ+2, we preprocess it into a set S ⊆ [V ] of size m using two algorithms
prepIntoSet and prepIntoTwo, which are mutually recursive.

preprocessing algorithm prepIntoSet(V,m,D = (Kh,M,Kt)):
1. if 2m > V
2. return [V ] \ prepIntoSet(V, V −m,D)
3. if m ≤ 24κ
4. rewrite D as an nonnegative integer Z < range[Kh] · range[Kt] · 2|M|

5. return encSet(V,m,Z)
6. if |D| ≤ 24κ
7. return prepIntoSet(48κ, 24κ,D) ∪ {V − (m− 24κ), . . . , V − 1}

(to be cont’d)

If m is larger than V/2, we simply work on the complement. If m is O(κ), we view the entire
string D as an integer, and call encSet. If the string is too short while m (and V ) are still
large, we decrease m and V , and reduce it to the m = O(κ) case. Note that

(
V
m

)
may be at

most 2O(κ2), Z occupies O(κ) words (as κ = Θ(w)).
Otherwise, we extract an integer j from D.
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8. V1 := ⌊V/2⌋ and V2 := ⌈V/2⌉
9. compute sj := lg

(V1
j

)
+ lg

( V2
m−j

)
−m(V − 2)2−κ+2

10. apply Proposition 4.23 for j ∈ {⌊m/3⌋+1, . . . , 2⌊m/3⌋} and C = ⌊m/3⌋, extract j from
D and obtain a pair (j,Dj) such that Dj has length at most sj

11. let (S1, S2) := prepIntoTwo(V1, V2, j,m− j,Dj)
12. return S1 ∪ (S2 + V1)

prepIntoTwo transforms Dj into two sets of sizes j and m − j over the two halves of the
universe (see below). Then we return their union. Proposition 4.23 requires that the length of
D is at least 3κ + 2 and at most lg(

∑
j 2

sj ) − (C − 1)2−κ+2. This is true, because on one
hand, the length of D is at least 24κ; on the other hand,

2s1 + · · ·+ 2sC

=

2⌊m/3⌋∑
j=⌊m/3⌋+1

(
V1

j

)
·
(

V2

m− j

)
· 2−m(V−2)2−κ+2

≥ 2−m(V−2)2−κ+2

·
((

V

m

)
− 2m

3

(
V1

⌊m/3⌋

)(
V2

⌈2m/3⌉

))
= 2−m(V−2)2−κ+2

·
((

V

m

)
− 2m

3

(
V1

⌊m/2⌋

)(
V2

⌈m/2⌉

)

·
⌊m/2⌋∏

j=⌊m/3⌋+1

j(V2 −m+ j)

(V1 − j + 1)(m− j + 1)


≥ 2−m(V−2)2−κ+2

·
(
V

m

)
·

1− 2m

3
·

⌊m/2⌋∏
j=⌊m/3⌋+1

j

m− j + 1


≥ 2−m(V−2)2−κ+2

·
(
V

m

)
·
(
1− 2m

3
· e−

∑⌊m/2⌋
j=⌊m/3⌋+1

m−2j+1
m−j+1

)
≥ 2−m(V−2)2−κ+2

·
(
V

m

)
·
(
1− 2m

3
· e−m/24

)
.

Therefore, by the fact that m ≥ 24κ, we have

lg(2s1 + · · ·+ 2sC ) ≥ lg

(
V

m

)
−m(V − 2)2−κ+2 −m2−κ

≥ s+m2−κ+2 −m2−κ

≥ s+ (C − 1) · 2−κ+2.

Thus, the premises of Proposition 4.23 are also satisfied. Next, we describe prepIntoTwo.
procedure prepIntoTwo(V1, V2,m1,m2,D):

1. let s1 := lg
(V1
m1

)
−m1(V1 − 1)2−κ+2 and s2 := lg

(V2
m2

)
−m2(V2 − 1)2−κ+2

2. apply Proposition 4.20, split D into D1 and D2 of lengths at most s1 and s2 respectively
3. let S1 := prepIntoSet(V1,m1,D1) and S2 := prepIntoSet(V2,m2,D2)
4. return (S1, S2)

Proposition 4.20 requires that the length of D is at most s1 + s2 − 2−κ+2 (and at least 3κ),
and s1, s2 ≥ 3κ. It is easy to verify the former. For the latter, because m1 + m2 ≤ V/2,
m2/2 ≤ m1 ≤ 2m2 and m1 + m2 > 24κ, and in particular, we have V1 ≥ 24κ and
m1 ∈ [V1/3, 2V1/3]. Hence, we have (

V1

m1

)
≥ 38κ,
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and it implies s1 ≥ 8κ. Similarly, we also have s2 ≥ 8κ.
Lookup table. We store the following lookup table.
lookup table tableIntV,m:

1. if m ≤ 24κ
2.

∑j−1
i=0

(V1
i

)( V2
m−i

)
for j = 0, . . . ,m

3.
(V2

j

)
for all j = 0, . . . ,m

4. else
5. lookup table from Proposition 4.23 for line 10 of prepIntoSet
6. include all tables tableIntV ′,m′ for V ′ = ⌊V/2i⌋ or V ′ = ⌈V/2i⌉ for i ≥ 1, and

0 ≤ m′ ≤ m

The lookup table tableIntV,m itself has size at most O(κ) words for m > 24κ and O(κ2)
words for m ≤ 24κ. Including the smaller tables, its total size is at most O(κ2m + κ4) ≤
O(κc+2) words for m ≤ κc and c ≥ 2.

Accessing string D by rank queries to S. Suppose S is the set generated from a string D
using the above preprocessing algorithm. In the following, we show how to access D[a1, a2]
for a2 − a1 < κ, assuming rank queries can be computed efficiently on S. We will
have two procedures request and reqFromTwo, which are mutually recursive. Assum-
ing the set S restricted to X + [V ] (with m elements in this range) is generated from a
string D = (Kh,M,Kt), request(X,V,m, range[Kh], |M |, range[Kt], a1, a2, b) recovers
D[a1, a2], where b indicates if we take the complement of S.

accessing algorithm request(X,V,m, range[Kh], |M |, range[Kt], a1, a2, b):
1. if 2m > V
2. m := V −m and b := ¬b
3. if m ≤ 24κ
4. Z := decSet(x, V,m, b)
5. rewrite Z as a string D = (Kh,M,Kt)
6. return D[a1, a2]
7. if lg(range[Kh]) + |M |+ lg(range[Kt]) ≤ 24κ
8. return request(X, 48κ, 24κ, range[Kh], |M |, range[Kt], a1, a2, b)

(to be cont’d)

If S has small size, we recover the whole data structure using decSet. If D is too short, we
reduce m and V .

9. V1 := ⌊V/2⌋, V2 := ⌈V/2⌉
10. ask rank queries and compute j := rankS(X + V1 − 1)− rankS(X − 1)
11. if b, then j := V1 − j
12. find the size of Dj = (Kj,h,Mj ,Kj,t) in the lookup table

(to be cont’d)

We compute j, the integer extracted from D, which encodes the number of elements in the
first half. We recover the size of Dj , and use the fact that (Mj ,Kj,t) is a suffix of D (by
Proposition 4.23) to recurse.

13. if a1 ≥ |M | − |Mj |
14. return reqFromTwo(X,V1, V2, j,m− j, range[Kj,h], |Mj |, range[Kj,t], a1 − (|M | −

|Mj |), a2 − (|M | − |Mj |), b)
15. else
16. recover Dj [−1, a2 − (|M | − |Mj |)] :=

reqFromTwo(X,V1, V2, j,m− j, range[Kj,h], |Mj |, range[Kj,t],−1, a2 − (|M | −
|Mj |), b)

17. compute D[a1, a2] using Proposition 4.23

reqFromTwo recovers the requested substring of D assuming rank queries to the set gener-
ated from prepIntoTwo. Since (Mj ,Kj,t) is a suffix of D, if D[a1, a2] is entirely contained
in this range, we simply recursive on Dj . Otherwise, Proposition 4.23 guarantees that the
remaining bits can be recovered from j and Kj,h. Note that in either case, the difference
a2 − a1 does not increase.

Next, we describe reqFromTwo.
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procedure reqFromTwo(X,V1, V2,m1,m2, range[Kj,h], |Mj |, range[Kj,t], a1, a2, b):
1. compute the sizes of D1 = (K1,h,M1,K1,t) and D2 = (K2,h,M2,K2,t), which D is

split into
(to be cont’d)

Suppose S restricted to [X,X + V1) and [X + V1, X + V1 + V2) is generated from D using
prepIntoTwo. Then by Proposition 4.20, (K1,h,M1) is a prefix of D and (M2,K2,t) is a
suffix.

2. if a1 ≥ |M | − |M2|
3. return request(X + V1, V2,m2, range[K2,h], |M2|, range[K2,t], a1 − (|M | −

|M2|), a2 − (|M | − |M2|), b)
4. if a2 < |M1|
5. return request(X,V1,m1, range[K1,h], |M1|, range[K1,t], a1, a2, b)

(to be cont’d)

If the requested bits D[a1, a2] are entirely contained in D1 or D2, we simply recurse on the
corresponding substring. In this case, the difference a2 − a1 does not change either.

6. recover D1[a1, |M1|] :=
request(X,V1,m1, range[K1,h], |M1|, range[K1,t], a1, |M1|, b)

7. recover D2[−1, a2 − (|M | − |M2|)] :=
request(X+V1, V2,m2, range[K2,h], |M2|, range[K2,t],−1, a2−(|M |−|M2|), b)

8. reconstruct D[a1, a2] using Proposition 4.20

Finally, if the requested bits D[a1, a2] split across both substrings, then we make two recursive
calls.

Accessing time. First observe that request has at most O(lgm) levels of recursion
before we call decSet. This is because each time m is reduced at least by a factor of 1/3
by the preprocessing algorithm. The only place where the algorithm makes more than one
recursive calls is line 6 and line 7 in reqFromTwo. In all other cases, the algorithm makes at
most one recursive call with the same (or smaller) difference a2 − a1. Moreover, we claim
that those two lines can only be executed at most once throughout the whole recursion.

CLAIM 8.8. Line 6 and line 7 in reqFromTwo can at most be executed once throughout
the whole recursion.

To see this, observe that when these two lines are executed, the two recursive calls will both
request either a prefix or a suffix of the substring. Also, as we observed above, the difference
a2−a1 never increases throughout the recursion. The recursive call that requests a prefix will
have a1 = −1 and a2 < κ−1. Thereafter, any subsequence recursive calls in this branch will
have a1 = −1 and a2 < κ−1. Since Proposition 4.20 always generates two strings of length
at least 3κ, line 4 in reqFromTwo is always true (as |M1| ≥ κ − 1). Line 6 and line 7 will
hence not be executed in this branch. The recursive branch that requests a suffix is similar, in
which line 2 in reqFromTwo is alway true. Hence, the claim holds.

Claim 8.8 implies that the whole recursion tree has at most O(lgm) nodes, and at most
two leaves. In each node, the algorithm spends constant time, and makes two rank queries.
In each leaf, the algorithm makes one call to decSet. As we argued earlier, the integer
Z ≤ lg

(
V
m

)
has at most O(κ2) bits (and O(κ) words). Since m ≤ O(κ) when decSet is

called, by Claim 8.7, each decSet takes O(κ4) time (O(κ)-word numbers take O(κ2) time to
multiply or divide), and makes O(κ2) rank queries. Combining the above facts, we conclude
that request runs in O(κ4) time, and it makes at most O(κ2) rank queries. This completes
the proof of Lemma 8.6.

8.3. Proof of Lemma 7.1. Finally, we are ready to prove Lemma 7.1.
To construct the two data structures, we first apply Lemma 8.1 to construct a rank data

structure for the secondary block Ssec ⊆ V +[Vsec]. Denote this data structure by Dsec. Then
we pick a set of κ2c−3 keys from S, as well as V − κ2c−3 − κc non-keys from [V ] \ S, and
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construct a rank data structure for them, which will be the main data structure. The remaining
κc elements in [V ] will correspond to the “unknowns.” We pick the two sets based on the bits
in Dsec. That is, we apply Proposition 4.20 and split Dsec into a string of length ≈ lg

(
m

κ2c−3

)
,

a string of length ≈ lg
(

V−m
V−κ2c−3−κc

)
and the remaining bits. Then we apply Lemma 8.6 to

interpret the first string as a subset of S and the second string as a subset of [V ] \ S. The
final auxiliary data structure consists of the remaining bits of Dsec, as well as a data structure
for the “unknowns.” Then Lemma 8.6 guarantees that even if the original string is not stored
explicitly as part of the final data structure, it can still be accessed implicitly assuming rank
queries to the sets, which the data structures support naturally.

Proof of Lemma 7.1. We begin by presenting the preprocessing algorithm.
Preprocessing algorithm. In the preprocessing algorithm, we first construct a rank data

structure for the secondary block, and split it into three substrings.
Preprocessing algorithm perfHashBlk(V,m, Vsec,msec, S, Ssec,R):

1. run Dsec := prepRank(Vsec,msec, Ssec) (from Lemma 8.1) to construct a rank data struc-
ture for Ssec using

ssec ≤ lg
(Vsec

msec

)
+ (msec − 1) · 2−κ/2

bits
2. apply Proposition 4.20 twice to split Dsec into

• Dsec,1: length ≤ lg
( m
m−κ2c−3

)
− κc(m− 1)2−κ+2

• Dsec,2: length ≤ lg
( V −m
κ2c−3+κc−m

)
− κc(V −m− 1)2−κ+2

• Dsec,3: length ≤ ssec − lg
( m
m−κ2c−3

)
− lg

( V −m
κ2c−3+κc−m

)
+ κcV 2−κ+2

(to be cont’d)

Note that m− κ2c−3 ≥ κc/3 and κ2c−3 + κc −m ≥ κc/3, therefore, both Dsec,1 and Dsec,2

have length at least 4κ. For Dsec,3, we have ssec ≥ lg
(
Vsec

msec

)
≥ κc+1, and thus,

ssec − lg

(
m

m− κ2c−3

)
− lg

(
V −m

κ2c−3 + κc −m

)
+ κcV 2−κ+2

≥κc+1 − (m− κ2c−3) lg V − (κ2c−3 + κc −m) lg V

≥κc+1 − κc lg V

≥ 4κ.

The premises of Proposition 4.20 are satisfied. In order to store two random subsets in the
main data structure, we “XOR” Dsec,1 and Dsec,2 with the random string R.14

3. compute Dsec,1 ⊕R and Dsec,2 ⊕R
(to be cont’d)

For double-ended string D = (Kh,M,Kt), D⊕R is defined as follows: compute the bitwise
XOR of M and R[1, |M |], treat R[|M | + 1, |M | + 2κ] and R[|M | + 2κ + 1, |M | + 4κ]
as two 2κ-bit integers, and compute (Kh + R[|M | + 1, |M | + 2κ]) mod range[Kh] and
(Kt + R[|M | + 2κ + 1, |M | + 4κ]) mod range[Kt]; D ⊕ R is the double-ended string
(with the same length as D), formed by the outcomes. In particular, since range[Kh] and
range[Kt] are both smaller than 2κ+1 ≪ 22κ, when R is uniformly random, D ⊕R is very
close to uniform. We have the following claim by standard information theory.

CLAIM 8.9. For any fixed D = (Kh,M,Kt) and uniformly random R, we have

H(D ⊕R) ≥ (lg(range[Kh]) + |M |+ lg(range[Kt]))(1− 2−κ+2)

14We wish to “XOR” Dsec,1 and Dsec,2 with R, because on one hand, we want to ensure that the subsets stored
in the main data structure are random, and on the other hand, we want to ensure that which subsets are stored also
encode information about the input (hence, we cannot simply use R).
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≥ (|D| − 2−κ+2)(1− 2−κ+2).

Proof. When R is uniformly random, by construction, the bitwise XOR of M and
R[1, |M |] has entropy |M |. (Kh + R[|M | + 1, |M | + 2κ]) can take 22κ different val-
ues, each with 2−2κ probability. Hence, at most ⌈22κ/range[Kh]⌉ values can be congru-
ent modulo range[Kh]. The maximum probability of any value (Kh + R[|M | + 1, |M | +
2κ]) mod range[Kh] can take is at most

2−2κ · ⌈22κ/range[Kh]⌉ ≤ 1/range[Kh] + 2−2κ.

Since range[Kh] ≤ 2κ+1, this is at most (1 + 2−κ+1)/range[Kh]. In particular,

H((Kh +R[|M |+ 1, |M |+ 2κ]) mod range[Kh])

≥ lg(range[Kh])− lg(1 + 2−κ+1)

≥ lg(range[Kh])− 2−κ+2

≥ (1− 2−κ+2) lg(range[Kh]).

Similarly, we have

H((Kt +R[|M |+ 2κ+ 1, |M |+ 4κ]) mod range[Kt]) ≥ (1− 2−κ+2) lg(range[Kt]).

Since the three components are independent, we prove the claim by summing up the bounds
on their entropy.

Also, Kh,Kt and any O(κ) consecutive bits of M can be computed in constant time, given
random access to D ⊕ R and R. Next, we interpret the Dsec,1 ⊕ R and Dsec,2 ⊕ R as two
subsets using Lemma 8.6.

4. run S1 := prepIntoSet(m,m − κ2c−3,Dsec,1 ⊕ R) (from Lemma 8.6) to interpret
Dsec,1 ⊕R as a set S1 ⊆ [m] of size m− κ2c−3

run S2 := prepIntoSet(V −m,κ2c−3 + κc −m,Dsec,2 ⊕R) to interpret Dsec,2 ⊕R
as a set S2 ⊆ [V −m] of size κ2c−3 + κc −m

5. compute Sunk ⊆ S according to S1

compute Sunk ⊆ [V ] \ S according to S2

(to be cont’d)

More specifically, for each i ∈ [m], Sunk contains the (i+ 1)-th smallest element in S if and
only if i ∈ S1. Similarly, Sunk contains the (i+1)-th smallest element in [V ] \ S if and only
if i ∈ S2. They are the keys and non-keys that are not to be stored in the main data structure,
i.e., the “unknowns.”

Then, we compute the main data structure Dmain.
6. apply Proposition 4.10 to concatenate the following two data structures, and obtain Dmain:

• Dmain,1 := prepRank(V, κ2c−3, S\Sunk) (from Lemma 8.1), a rank data structure
• Dmain,2 := prepRank(V − κ2c−3, κc,“Sunk ∪ Sunk”) a rank data structure for

Sunk ∪ Sunk over [V ] \ (S \ Sunk) (see below)
(to be cont’d)

For Dmain,2, before running prepRank, we first remove all κ2c−3 elements in S \ Sunk

from both the universe [V ] and Sunk ∪ Sunk, and keep the order of the remaining elements.
Thus, the new universe becomes [V − κ2c−3]. In the other words, Dmain,2 supports queries
of form “return # of elements in Sunk ∪ Sunk that are no larger than i-th smallest element in
[V ] \ (S \ Sunk)”.

Finally, we compute the auxiliary data structure Daux.
7. apply Proposition 4.10 to concatenate the following two data structures and obtain Daux:

• Daux,1 := prepRank(κc,m− κ2c−3,“Sunk”), a rank data structure for Sunk over
Sunk ∪ Sunk

• Daux,2 := Dsec,3
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Similarly, Daux,1 supports queries of form “return # of elements in Sunk that are no larger
than the i-th smallest element in Sunk ∪ Sunk.”

Space analysis. Next, we analyze the length of Dmain and Daux. Dmain is the concate-
nation of Dmain,1 and Dmain,2. For Dmain,1, its length is at most

lg

(
V

κ2c−3

)
+ (κ2c−3 − 1)2−κ/2

by Lemma 8.1. For Dmain,2, its length is at most

lg

(
V − κ2c−3

κc

)
+ (κc − 1)2−κ/2.

By Proposition 4.10, the length of Dmain is at most

lg

(
V

κ2c−3

)
+ (κ2c−3 − 1)2−κ/2 + lg

(
V − κ2c−3

κc

)
+ (κc − 1)2−κ/2 + 2−κ+4

≤ lg

(
V

κ2c−3, κc

)
+ κ2c−32−κ/2+1.

Daux is the concatenation of Daux,1 and Daux,2. For Daux,1, its length is at most

lg

(
κc

m− κ2c−3

)
+ (m− κ2c−3 − 1)2−κ/2.

For Daux,2, which is Dsec,3, its length is at most

ssec − lg

(
m

m− κ2c−3

)
− lg

(
V −m

κ2c−3 + κc −m

)
+ κcV 2−κ+2

≤ lg

(
Vsec

msec

)
− lg

(
m

m− κ2c−3

)
− lg

(
V −m

κ2c−3 + κc −m

)
+ 3κc+12−κ/2,

since V ≤ 2κ/2 and msec ≤ 3κc+1. Summing up the lengths and by Proposition 4.10, the
length of Daux is at most

lg

(
κc

m− κ2c−3

)
+ (m− κ2c−3 − 1)2−κ/2 + lg

(
Vsec

msec

)
− lg

(
m

m− κ2c−3

)
− lg

(
V −m

κ2c−3 + κc −m

)
+ 3κc+12−κ/2 + 2−κ+4

≤ lg
κc!κ2c−3!(V − κ2c−3 − κc)!

m!(V −m)!
+ lg

(
Vsec

msec

)
+ (m− κ2c−3 + 3κc+1)2−κ/2

≤ lg

(
V

m

)
+ lg

(
Vsec

msec

)
− lg

(
V

κ2c−3, κc

)
+ κc+12−κ/2+2,

as we claimed. This proves item (i) and (ii) in the statement.
Hash functions. For x ∈ S ∪ Ssec, we define h(x) as follows.
• For x ∈ S \ Sunk, let h(x) := rankS\Sunk

(x)− 1; they are mapped to [κ2c−3].
• For x ∈ Sunk, let h(x) := κ2c−3 + rankSunk

(x) − 1; they are mapped to {κ2c−3,
. . ., m− 1}.

• For x ∈ Ssec, let h(x) := m + rankSsec
(x) − 1; they are mapped to {m, . . . ,m +

msec − 1}.
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Similarly, for x /∈ S ∪ Ssec, we define h as follows.
• For x ∈ ([V ] \ S) \ Sunk, let h(x) := rank[V ]\S\Sunk

(x) − 1; they are mapped to
[V − κ2c−3 − κc].

• For x ∈ Sunk, let h(x) := V − κ2c−3 − κc + rankSunk
(x)− 1; they are mapped to

{V − κ2c−3 − κc, . . . , V −m− 1}.
• For x ∈ {V, . . . , V +Vsec−1}\Ssec, let h(x) := V −m+rank(V+[Vsec])\Ssec

(x)−1;
they are mapped to {V −m, . . . , V + Vsec −m−msec − 1}.

Overall, h is a bijection between S ∪ Ssec and [m + msec], and h is a bijection between
[V +Vsec]\(S∪Ssec) and [V +Vsec−m−msec]. Moreover, h(S) ⊃ [κ2c−3] and h([V ]\S) ⊃
[V − κ2c−3 − κc]. This proves item (iii) in the statement.

Lookup table. We store the following information in the lookup table.
lookup table tableBlkV,Vsec :

1. lookup table for line 6 from Proposition 4.10
2. tableRankV,κ2c−3 , tableRankV −κ2c−3,κc from Lemma 8.1
3. for all m ∈ [κ2c−3 + κc/3, κ2c−3 + 2κc/3] and msec ∈ [κc+1, 2κc+1]

• lookup tables for line 7 from Proposition 4.10
• tableRankκc,m−κ2c−3 and tableRankVsec,msec from Lemma 8.1
• tableIntm,m−κ2c−3 and tableIntV −m,κ2c−3+κc−m from Lemma 8.6

Each tableRank has size Õ(2ϵκ) and each tableInt has size O(κc+2). The total size
of tableBlkV,Vsec

is Õ(2ϵκ).
The main query algorithm. We show how to answer each query x in constant time with

high probability, by querying only the main data structure (and without knowing m). We be-
gin by decoding the two data structures Dmain,1 and Dmain,2 from Dmain, and query Dmain,1.

query algorithm qalgBlkmain(V, x):
1. decode Dmain,1 and Dmain,2 from Dmain using Proposition 4.10
2. xr := Dmain,1.qAlgRank(V, κ

2c−3, x) (from Lemma 8.1)
3. if xr > Dmain.1.qAlgRank(V, κ

2c−3, x− 1)
4. return (1, xr − 1)

(to be cont’d)

xr is the number of elements in S \ Sunk that are at most x. Line 3 checks if x ∈ S \ Sunk.
If it is, then x is the xr-th element in S \ Sunk, and we return its hash value according by the
definition of h.

5. xunk := Dmain,2.qAlgRank(V − κ2c−3, κc, x− xr)
6. if xunk > Dmain,2.qAlgRank(V − κ2c−3, κc, x− xr − 1)
7. return “unknown”
8. return (0, x− xr − xunk)

If x /∈ S \ Sunk, we query Dmain,2 to check if x ∈ Sunk ∪ Sunk in line 6. Note that x is
the (x − xr + 1)-th element in [V ] \ (S \ Sunk). If it is, we return “unknown”. Otherwise,
we know that x /∈ S, and it is the (x − xr − xunk + 1)-th element in [V ] \ (S ∪ Sunk), we
return its h-value. Since qAlgRank has constant query time, qalgBlk also runs in constant
time. Clearly, qalgBlk outputs 2-hq(x) when x ∈ S and h(x) ∈ [κ2c−3], or x /∈ S and
h(x) ∈ [V − κ2c−3 − κc], and otherwise it outputs “unknown”. This proves item (iv) in the
statement.

Next, we show that the probability that the query algorithm outputs “unknown” is small.
To this end, let us fix the input data S, Ssec and query x, and let R be uniformly random. We
will show that Sunk is close to a uniformly random subset of S of size m− κ2c−3, and Sunk

is close to a uniformly random subset of [V ] \ S of size κ2c−3 + κc − m. By Claim 8.9,
we have H(Dsec,1 ⊕R) ≥ (|Dsec,1| − 2−κ+2)(1 − 2−κ+2). Since the division operation in
Proposition 4.20 is an injection, we have

|Dsec,1| ≥ ssec − |Dsec,2| − |Dsec,3|
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≥ lg

(
m

m− κ2c−3

)
− κcV 2−κ+3.

Therefore, H(Dsec,1 ⊕ R) ≥ lg
(

m
m−κ2c−3

)
− κc2−κ/2+4. Furthermore, since the mapping

prepIntoSet(m,m−κ2c−3, ·) is an injection, we have H(S1) ≥ lg
(

m
m−κ2c−3

)
−κc2−κ/2+4,

which in turn implies that

H(Sunk) ≥ lg

(
m

m− κ2c−3

)
− κc2−κ/2+4,

for any fixed S and Ssec. By Pinsker’s inequality (see Section 3.3), the ℓ1 distance between
Sunk and a uniformly random subset U of S of size m− κ2c−3 is

∥Sunk − U∥1 ≤ O(
√
DKL(Sunk ∥U))

which by the fact that U is the uniform distribution, is

= O(
√
H(U)−H(Sunk))

≤ O(κc/22−κ/4).

In particular, it implies that for any fixed x ∈ S, the probability that x ∈ Sunk is at most

m− κ2c−3

m
+O(κc/22−κ/4) ≤ O(κ−c+3).

By applying the same argument to Dsec,2, S2 and Sunk, we conclude that for any fixed
x /∈ S, the probability that x ∈ Sunk is at most

κ2c−3 + κc −m

V −m
+O(κc/22−κ/4) ≤ O(κ−c+3).

This proves item (v) in the statement.
The general query algorithm. Finally, we describe the query algorithm for all x ∈

[V + Vsec]. We use two different algorithms for x ∈ [V ] and x ∈ {V, . . . , V + Vsec − 1}. We
begin by the x ∈ [V ] case (x is in the primary block).

query algorithm qalgBlk(V,m, Vsec,msec, x):
1. (if x < V )
2. (b, v) := qalgBlkmain(V, x)
3. if (b, v) is not “unknown”
4. return (b, v)
5. let xunk := rankSunk∪Sunk

(x) (already computed in qalgBlkmain(V, x))
(to be cont’d)

When qalgBlkmain returns “unknown”, x is the xunk-th element in Sunk ∪ Sunk. Next, we
query Daux,1 to find out whether x ∈ Sunk or x ∈ Sunk and its rank in the corresponding set.
Then we return its h or h value according to the definition.

6. apply Proposition 4.10 on Daux to decode Daux,1

7. xunk,r := Daux,1.qAlgRank(κc,m− κ2c−3, xunk − 1)
8. if xunk,r > Daux,1.qAlgRank(κc,m− κ2c−3, xunk − 2)
9. return κ2c−3 + xunk,r − 1

10. else
11. return V − κ2c−3 − κc + (xunk − xunk,r)− 1

Similarly to qalgBlkmain, we check if the xunk-th element is in Sunk. if it is, then it is the
xunk,r-th element in Sunk. Otherwise, it is the (xunk − xunk,r)-th element in Sunk. In this
case (x ∈ [V ]), the query algorithm runs in constant time.

Next, we show how to handle x ∈ {V, . . . , V +Vsec−1}. To this end, let us first assume
that we can make random access to Dsec.
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12. (if x ≥ V )
13. apply Proposition 4.10 on Daux to decode Daux,2

14. xr := Dsec.qAlgRank(Vsec,msec, x− V ) (from Lemma 8.1)
15. if xr > Dsec.qAlgRank(Vsec,msec, x− V − 1)
16. return m+ xr − 1
17. else
18. return V −m+ (x− V − xr)

If we had access to Dsec, then the query algorithm would be similar to the previous cases, and
it would run in constant time. However, Dsec is not stored in the data structure explicitly. In
the following, we show how qalgBlk accesses Dsec from its implicit representation.

More specifically, qalgBlk only needs to access Dsec when it runs the query algorithm
qAlgRank on Dsec. By Lemma 8.1, qAlgRank runs on a RAM with word-size Θ(κ), i.e., it
may request Θ(κ) consecutive bits of the data structure Dsec during its runtime. To implement
such access requests, we first apply Proposition 4.20 to reduce each access to O(1) accesses
to Dsec,1, Dsec,2 and Dsec,3. Dsec,3 is stored as Daux,2, which has been decoded. Each access
to it can be implemented in constant time. For Dsec,1, Dsec,1 ⊕ R is interpreted as a set
S1 ⊆ [m] of size m − κ2c−3. Lemma 8.6 guarantees that each access to Dsec,1 ⊕ R can be
implemented in O(κ4) time and O(κ2) rank queries to S1, which by the previous argument,
implies that each access to Dsec,1 can also be implemented in the same time and number of
rank queries.

On the other hand, the way the preprocessing algorithm “encodes” S1 guarantees that
rankS1

(k) queries can be implemented efficiently. To see this, recall that Sunk ⊂ S is
determined according to S1. rankS1

(k) is exactly the number of elements in Sunk that are
no larger than the (k + 1)-th smallest element in S. We first do a binary search to find the
(k + 1)-th smallest element in S.

implementing rank queries on S1 rank S1(k):
1. decode Dmain,1,Dmain,2 and Daux,1

2. binary search for (k + 1)-th element x∗ in S: given x ∈ [V ],
(i) xr := Dmain,1.qAlgRank(V, κ

2c−3, x)
(ii) xunk := Dmain,2.qAlgRank(V − κ2c−3, κc, x− xr)

(iii) rankS(x) := xr +Daux,1.qAlgRank(κc,m− κ2c−3, xunk − 1)

xr is the number of elements in S \ Sunk that are at most x. xunk is the number of el-
ements in Sunk ∪ Sunk that are at most x. Daux,1.qAlgRank(κ

c,m − κ2c−3, xunk − 1)
computes the number of elements in Sunk that are at most x. By summing up xr and
Daux,1.qAlgRank(κ

c,m − κ2c−3, xunk), we compute rankS(x), the number of elements
in S that are at most x, in constant time. Being able to compute rankS(x) for any given x
allows us to binary search for the (k + 1)-th smallest element x∗ in S in O(lg V ) = O(κ)
time, which then allows us to compute rankS1

(k).
3. x∗

r := Dmain,1.qAlgRank(V, κ
2c−3, x∗)

4. return rankS1 (k) := k − x∗
r + 1

This shows that rankS1(k) can be computed in O(κ) time, and thus, each access to Dsec,1

can be implemented in O(κ4 + κ · κ2) = O(κ4) time.
Similarly, each access to Dsec,2 can be implemented in O(κ4) time: Lemma 8.6 reduces

it to O(κ2) rank queries to S2 and O(κ4) processing time; For rankS2
(k), we do binary

search to find the (k + 1)-th element in [V ] \ S; By querying Dmain,1, Dmain,2 and Daux,1,
we compute rankS2(k).

Overall, the above algorithms allow us to access Dsec,1, Dsec,2 and Dsec,3 in O(κ4) time,
which in turn, allows us to access Dsec in O(κ4). Thus, qalgBlk runs in O(κ4) time. This
proves item (vi) in the statement, and completes the proof of Lemma 7.1.

9. Perfect Hashing for Sets of Any Size. In this section, we generalize the data struc-
ture from Section 7 to arbitrary universe sizes U and set sizes n, proving our main theorem
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(this is the formal version of Theorem 1.3).

THEOREM 9.1 (main theorem). For any constant ϵ > 0, there is a preprocessing algo-
rithm perfHash, a query algorithm qAlg and lookup tables tableU,n of size nϵ, such that
given

• a set S of n keys over the key space [U ],
• a uniformly random string R of length O(lg12 n),

perfHash preprocesses S into a data structure D of (worst-case) length

OPTU,n +O(lg lgU),

such that D defines 2-hq, a 2-PHM for S. Given access to D, R and tableU,n, for any key
x ∈ [U ], qAlg(U, n, x) outputs 2-hq(x) on a RAM with word-size w = Ω(lgU), in time

• O(1) with probability 1−O(lg−7 U) and
• O(lg7 U) in worst case,

where the probability is taken over the randomness in R. In particular, the query time is
constant in expectation and with high probability.

Recall that 2-hq(x) returns a pair (b, v) such that b indicates whether x ∈ S, and v = h(x)
when x ∈ S and v = h(x) when x /∈ S.

Proof. As in the proof of Theorem 7.3, we assume 2n ≤ U (otherwise, we take the
complement of S). Then if n ≥ U1/12, Theorem 7.3 already gives the desired result. From
now on, we assume n < U1/12.

We partition [U ] into n12 blocks. A typical set S has all the keys in different blocks.
In this case, we may view the universe size being only n12, and apply Theorem 7.3. On the
other hand, only roughly 1/n11-fraction of the inputs have at least one pair of keys in the
same block. Hence, the optimal space to store those inputs is OPT−11 lg n, which suggests
that we can afford 10 lg n extra bits.

No collision in blocks and last block empty. More specifically, given S such that n =
|S| < U1/12, let V := ⌈U · n−12⌉ be the block size. We partition U into blocks: (U div V )
blocks of size V and one last block of size (U mod V ). Let us first only consider inputs that
have at most one key in every block and no key in the last block. We apply Theorem 7.3 on
the universe of all blocks. That is, let the universe size Unew = U div V , number of keys
nnew = n. We construct the new set Snew such that i ∈ Snew if and only if block i contains a
key x ∈ S. By Theorem 7.3, we construct a data structure of size

lg

(
Unew

nnew

)
+ 1/Unew = lg

(
U div V

n

)
+ 1/(U div V ),

which defines hash functions hnew and hnew. Besides this data structure, we also apply
Lemma 5.1 to store for each i ∈ Snew, the key x within block i, according to hnew(i). That is,
we store x− (i− 1)V in coordinate hnew(i). Hence, this part takes

n lg V + (n− 1)2−κ+5

bits. Then we apply Proposition 4.10 to concatenate the two data structures. The total space
is at most

lg

(
U div V

n

)
+ 1/(U div V ) + n lg V + n · 2−κ+5

≤ lg
V n
∏n−1

i=0 (U div V − i)

n!
+O(1/n)
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≤ lg

∏n−1
i=0 (U − iV )

n!
+O(1/n)

≤ lg

∏n−1
i=0 (U − i)

n!
+O(1/n)

= lg

(
U

n

)
+O(1/n).

To define the hash functions in this case, for each x ∈ S, which is in block i, we simply
let h(x) := hnew(i), the hash value of the block. For x /∈ S in block i,

• if i ∈ Snew, let x∗ be the key in block i,
– if x < x∗, we let h(x) := (V − 1) · hnew(i) + (x− (i− 1)V ),
– if x > x∗, we let h(x) := (V − 1) · hnew(i) + (x− (i− 1)V − 1),

• if i /∈ Snew, we let h(x) := (V − 1)n+ V · hnew(i) + (x− (i− 1)V ).
• if x is in the last block, we let h(x) := (U div V ) · V − n+ (x− (U div V ) · V )

That is, we order all non-keys in block i for i ∈ Snew first, in the increase order of (hnew(i), x);
then we order all non-keys not in the last block, in the increasing order of (hnew(i), x); finally
we order all non-keys in the last block.

To answer a query x in block i, we first query if i ∈ Snew. If i /∈ Snew, then we know x is
not a key, calculate h(x) by its definition, and return. Otherwise, we query the (hnew(i) + 1)-
th value in the second data structure, using Lemma 5.1, to retrieve the key in block i. If x
happens to be this key, we return (1, hnew(i)). Otherwise, x /∈ S, and h(x) can be calculated
by its definition. Finally, for queries x in the last block, x is not a key, and we calculate h(x)
according to its definition.

Exist collision in blocks or keys in last block. Next, we consider the case where at least
one block contains more than one key, or the last block contains at least one key. We spend
the first 3⌈lg n⌉ bits to store

• N , the number of blocks with at least two keys (blocks with collisions, or simply
collision blocks),

• ncoll, the total number of keys in all collision blocks,
• nlast, the number of keys in the last block.

Next, we apply Lemma 7.12, and construct a membership data structure for N collision
blocks using

lg

(
U div V

N

)
+O(N)

bits, which defines a bijection hcoll between all collision blocks and [N ], and a bijection hcoll

between all other blocks (except for the last block) and [(U div V )−N ].
The final data structure has three more components:

1. store all keys in N collision blocks using Lemma 7.12, where each element x in
block i is stored as V · hcoll(i) + (x− (i− 1)V ), which uses at most

lg

(
NV

ncoll

)
+O(ncoll + lg lg V )

bits;
2. store all other (U div V )−N blocks using the data structure for no collisions, where

each element x in block i is stored as V · hcoll(i) + (x − (i − 1)V ), which uses at
most

lg

(
(U div V )V −NV

n− ncoll − nlast

)
+ 1

bits;
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3. store the last block using Lemma 7.12, which uses

lg

(
U mod V

nlast

)
+O(nlast + lg lg V )

bits.
Summing up the sizes of these three data structures, we get

lg

(
NV

ncoll

)(
(U div V )V −NV

n− ncoll − nlast

)(
U mod V

nlast

)
+O(ncoll + nlast + lg lg V ).

By the fact that
(
n
k

)
≤ (en/k)k and ncoll ≥ 2N , the first term is at most

ncoll lg
NV

ncoll
+ (n− ncoll − nlast) lg

(U div V )V −NV

n− ncoll − nlast
+ nlast lg

U mod V

nlast
+ n lg e

≤ ncoll lg
V

2
+ (n− ncoll − nlast) lg

U

n− ncoll − nlast
+ nlast lg V + n lg e

≤ n lg
eU

n
+ ncoll lg

nV

2U
+ (n− ncoll − nlast) lg

n

n− ncoll − nlast
+ nlast lg

nV

U

which by the fact that V ≤ 2U · n−12, is at most

≤ n lg
eU

n
+ ncoll lg n

−11 + (n− ncoll − nlast) lg

(
1 +

ncoll + nlast

n− ncoll − nlast

)
+ nlast lg(2n

−11)

≤ n lg
eU

n
+ ncoll lg n

−11 + (ncoll + nlast) lg e+ nlast lg(2n
−11)

≤ n lg
eU

n
− (ncoll + nlast)(11 lg n−O(1)).

On the other hand, by Stirling’s formula,

lg

(
U

n

)
= lg

U !

n!(U − n)!

≥ lg

√
UUU

√
nnn ·

√
U − n(U − n)U−n

−O(1)

≥ n lg
U

n
+ (U − n) lg

U

U − n
− 1

2
lg n−O(1)

which by the fact that ln(1 + x) ≥ x− x2/2 for x ≥ 0, is at least

n lg
U

n
+ (U − n)

(
n

U − n
− n2

2(U − n)2

)
lg e− 1

2
lg n−O(1)

= n lg
eU

n
− n2 lg e

2(U − n)
− 1

2
lg n−O(1)

which by the fact that n2 ≪ U , is

≥ n lg
eU

n
− 1

2
lg n−O(1).
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Thus, the total size of the data structure when N ≥ 1 is at most

lg

(
U

n

)
+

1

2
lg n− (ncoll + nlast)(11 lg n−O(1))

+ 3 lg n+ lg

(
U div V

N

)
+O(N + lg lgU)

≤ lg

(
U

n

)
+

1

2
lg n− (ncoll + nlast)(11 lg n−O(1))

+ 3 lg n+ 12N lg n+O(N + lg lgU)

which by the fact that ncoll ≥ 2N , is at most

≤ lg

(
U

n

)
+

1

2
lg n− (ncoll + nlast)(5 lg n−O(1)) + 3 lg n+O(lg lgU)

=OPTU,n − lg n+O(lg lgU).

In this case, the hash functions are defined as follows. For both h and h, we first order all
elements in the N collision blocks according to their hash values from component 1, which
are mapped to [ncoll] and [N · V − ncoll] respectively. Then we order all elements in the
(U div V )−N non-collision blocks according to their hash values from component 2, which
are mapped to

{ncoll, . . . , n− nlast − 1}

and
{N · V − ncoll, . . . , (U div V ) · V − (n− nlast)− 1}

respectively. Finally, we order all elements in the last block according to their hash values
from component 3, which are mapped to

{n− nlast, . . . , n− 1}

and
{(U div V ) · V − (n− nlast), . . . , U − n− 1}

respectively.
To answer a query x in block i, we retrieve N , ncoll and nlast, and query if i is a collision

block and h(i) (or h(i)). If i is a collision block, we query component 1; if i is not a collision
block, we query component 2; if i is the last block, we query component 3. In any case, the
hash value of x can be computed according to its definition in constant time.

Finally, we apply Proposition 4.14 to combine the two cases, by fusing a bit indicating
whether there is any collision block. The final data structure has space bounded by

lg
(
2OPTU,n+O(1/n) + 2OPTU,n−lgn+O(lg lgU)

)
+ 2−κ+2

= OPTU,n + lg(2O(1/n) + (lgO(1) U)/n) + 2−κ+2

≤ OPTU,n +O(lg lgU).

The query algorithm is straightforward. To answer a query x, we apply Proposition 4.14
to decode the data structure, and the bit indicating whether there is any collision block or
any element in the last block. Then we apply the corresponding query algorithm as described
above. This finishes the proof of Theorem 9.1.
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Remark 9.2. When the O(lg lgU) term is at most 0.5 lg n, the above data structure uses
OPT+ o(1) bits. To improve the O(lg lgU) term when U is large, we partition the universe
into lg10 U blocks, and check if any block has at least two keys. In this case, the fraction of
inputs with some block with at least two keys is only 1/ lg10 U fraction. Therefore, we can
afford to “waste” about 10 lg lgU bits, which dominates the O(lg lgU) term. This strategy
reduces the problem to storing n non-empty blocks among a total of lgO(1) U blocks, i.e.,
the universe size is reduced from U to lgO(1) U . Thus, repeatedly applying it improves the
O(lg lgU) term to O(lg lg · · · lgU) for logarithm iterated for an arbitrary (constant) number
of times.

10. Discussions and Open Problems. In this paper, we assumed that the word size w
is at least Ω(lgU + lg σ), i.e., each (key, value) pair fits in O(1) words. When either the key
or the value is larger than Θ(w) bits, it would take super-constant time to just read the query
or write the output on a RAM. The best query time one can hope for is O((lgU + lg σ)/w).

When lg σ ≫ w, the only place being affected is Lemma 5.1, where we need to retrieve
values longer than one word. Our data structure naturally supports such long answers in
optimal time. When lgU ≫ w, a similar strategy to Section 9 applies. We view the first
O(w) bits of an element in [U ] as its “hash value”. If it turns out that all keys have different
“hash values”, it suffices to add the remaining bits of the key into its value. Otherwise, if
multiple keys share the same prefix, then we will be able to save O(w) bits for every extra
key with the same prefix.

Our dictionary data structure supports each query in constant expected time. A major
open question is to design a deterministic succinct dictionary with similar bounds, or to prove
this is impossible.

OPEN PROBLEM 10.1. Is there a deterministic dictionary that uses OPT+poly lg n+
O(lg lgU) bits of space and can answer queries in constant time in worst case?

Our approach crucially relies on sampling a small set of keys to be the “hard queries”. There is
always a small portion of the data stored using the rank data structure of Pǎtraşcu, which takes
O(lg n) time to decode. “Derandomizing” this data structure seems to require a completely
different strategy. On the other hand, proving lower bounds may also be challenging, as the
common strategy of “designing a hard distribution and proving average-case lower bound” is
doomed to fail. For any fixed input distribution, we could always fix and hardwire the random
bits in the data structure, thus, our data structure uses only OPT+ 1 bits of space.

Our data structure only supports value-retrieval queries on a fixed set of (key, value)
pairs, i.e., it solves the static dictionary problem. The dynamic dictionary problem further
requires the data structure to support (key, value) insertions and deletions. The state-of-the-
art dynamic dictionary uses OPT+O(n lg(U/n) lg lgn

lg1/3 n
) bits of space and takes constant time

for updates and queries with high probability [1, 2].15 Another open question is whether we
can obtain dynamic dictionaries with significantly smaller redundancy, even with expected
constant time.

OPEN PROBLEM 10.2. Is there a dynamic dictionary that uses OPT + n/poly lg n +
O(lg lgU) bits of space and supports (key, value) insertions, deletions and value-retrieval
queries in constant time in expectation?

It seems non-trivial to extend our data structure to such updates to the data, even with good

15The data structures in [1, 2] fail with at most 1/polyn probability over any sequence of polyn operations.
As long as it does not fail, the operational time is constant. Therefore, by rebuilding the data structure entirely when
it fails, the expected time also becomes constant.
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amortized expected time. On the other hand, it turns out that our data structure has Õ(n)
preprocessing time, using a hash table to store a “buffer” of size n1−ϵ and using the technique
of global-rebuilding [20], one can get Õ(n1−ϵ) redundancy, nϵ update time and expected
constant query time. It is also possible to update a (key, value) pair to a new value in our data
structure, in O(1) expected time.

The dependence on U in the redundancy is intriguing. In the RAM model, the depen-
dence is very slow-growing, but still super constant. We believe it is not necessary, but it is
unclear how to remove this extra small term. On the other hand, note that in the cell-probe
model, it can actually be entirely removed (even for very large U ). This is because when U is
large enough so that lg lgU becomes unignorable, we could simply apply Lemma 7.11. This
strategy does not work on a word RAM, since it requires a large lookup table, which can only
be hardwired in a cell-probe data structure.

OPEN PROBLEM 10.3. Is there a dictionary that uses OPT+poly lg n bits of space on
a word RAM and can answer queries in constant time in expectation?

Finally, most of the lookup tables in the data structure in Theorem 9.1 have size no(1).
It turns out that the only two parts that require nϵ for some constant ϵ > 0 are Lemma 8.3
and Claim 7.8. In Lemma 8.3, the lookup table is used to aid the following operation: given
two w-bit strings a, b, output c such that ci = aj where j is the index of the i-th “1” in b. In
Claim 7.8, the lookup table is used to aid the approximation of k! for a given integer k.

OPEN PROBLEM 10.4. Is there a dictionary that uses OPT+poly lg n+O(lg lgU) bits
of space on a word RAM, can answer queries in constant time in expectation, and requires a
lookup table of only no(1) size?
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[26] M. PǍTRAŞCU AND E. VIOLA, Cell-probe lower bounds for succinct partial sums, in Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010, 2010, pp. 117–122.

[27] R. RAMAN, V. RAMAN, AND S. RAO SATTI, Succinct indexable dictionaries with applications to encoding
k-ary trees, prefix sums and multisets, ACM Trans. Algorithms, 3 (2007), p. 43.

[28] J. P. SCHMIDT AND A. SIEGEL, The spatial complexity of oblivious k-probe hash functions, SIAM J. Com-
put., 19 (1990), pp. 775–786.

[29] R. E. TARJAN AND A. C. YAO, Storing a sparse table, Commun. ACM, 22 (1979), pp. 606–611.
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Appendix A. Approximating Binomial Coefficients. In this section, Claim 7.8 and
Claim 7.9 from Section 7.3 are proved.

CLAIM 7.8 (RESTATED). Both s1 := OPT(k−i+1)Vbl,m1
− (k − i + 1)SIZEmain +

(m1 − 1)2−κ/2+2 and s2 := OPT(j−k)Vbl,m2
− (j − k)SIZEmain + (m2 − 1)2−κ/2+2 can

be approximated with an additive error of at most 2−κ in O(1) time.

Proof. (sketch) To approximate s1 and s2, we can store an approximation of SIZEmain

with up to O(κ) bits of precision in the lookup table. The task reduces to approximate the
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two OPT terms. Recall that

OPTV,m = lg

(
V

m

)
.

In the following, we show that for any given V,m ≤ 2κ, it is possible to approximate lg
(
V
m

)
in O(1) time.

lg
(
V
m

)
can be expanded to lg V ! − lgm! − lg(V − m)!. We approximate each term

separately. By Stirling’s formula,

ln k! = k ln

(
k

e

)
+

1

2
ln 2πn+

d∑
i=2

(−1)iBi

i(i− 1)ki−1
+O(k−d),

where Bi is the i-th Bernoulli number, and d ≥ 2. For any constant ϵ > 0, by setting
d = Ω(1/ϵ), the above approximation gives an error of 2−Ω(κ) for any k ≥ 2ϵκ. We store the
Bernoulli numbers in the lookup table, and the formula can be evaluated in constant time. On
the other hand, for all k < 2ϵκ, we simply store an approximation of lg k! in a global lookup
table, taking 2ϵκ size. Finally, by approximating lg V !, lgm! and lg(V −m)! independently
with additive error 2−2κ−2, we obtain an estimation of lg

(
V
m

)
with additive error smaller than

2−2κ.

CLAIM 7.9 (RESTATED). For any V1, V2,m ≥ 0, and 0 ≤ l ≤ m,

l∑
i=0

2OPTV1,i+OPTV2,m−i

can be approximated up to an additive error of at most 2−κ−3 ·
∑m

i=0 2
OPTV1,i+OPTV2,m−i

in O(κ5) time.

Proof. (sketch) The goal is to approximate

l∑
i=0

(
V1

i

)(
V2

m− i

)
up to additive error of 2−κ−3 ·

(
V1+V2

m

)
, because

2OPTV1,i+OPTV2,m−i =

(
V1

i

)(
V2

m− i

)
.

To this end, we shall use the following lemma from [34] to approximate binomial coeffi-
cients.

LEMMA A.1 ([34]). For any large integers V , d and 0 < a ≤ V/2, such that d ≤ c · a,
there is a polynomial PV,d of degree d, such that(

V

a+ x

)
≤
(
V

a

)
·
(
V − a

a

)x

· PV,d(x) ≤
(

V

a+ x

)
· (1 + 2−

√
d+8),

for all integers x ∈ [0, c ·
√
a], a (small) universal constant c > 0. Moreover, given V and d,

the coefficients of PV,d can be computed in O(d1.5) time.

This lemma allows us to approximate
∑b

l=a

(
V1

l

)(
V2

m−l

)
where b − a ≤ c ·

√
a, up to a mul-

tiplicative error of 1 ± 2−2κ in O(κ4) time: it reduces approximating the sum to computing∑
l α

l · P1(l)P2(l) for two degree-O(κ2) polynomials P1, P2.
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Let m = V1

V1+V2
· m. For l < m − 2

√
m · κ, we return 0 as the approximation; For

m − 2
√
m · κ ≤ l ≤ m + 2

√
m · κ, we divide the range into chunks of size O(

√
m), apply

Lemma A.1 to approximate
∑

l

(
V1

l

)(
V2

m−l

)
for each chunk in O(κ4) time, and return the sum;

For l > m + 2
√
m · κ, we return (an approximation of)

(
V1+V2

m

)
as the estimation. It is not

hard to verify that in all cases we return an approximation with desired error. The details are
omitted.

Appendix B. Dictionary with Linear Redundancy. In this section, we show a proof
sketch of Lemma 7.12, and present a dictionary data structure that uses a linear number of
extra bits. Recall that OPTV,m := lg

(
V
m

)
. For membership queries only, Pagh [21] already

obtained a better data structure. The data structure in this section is a generalization of Pagh’s
static dictionary.

LEMMA 7.12 (RESTATED). Given a set S ⊂ [V ] of m keys, there is a data structure of
size

OPTV,m +O(m+ lg lg V ),

such that it defines a bijection h between S and [m] and a bijection h between [V ] \ S and
[V −m]. It supports 2-hq queries in constant time.

Proof. We are going to use Pagh’s static dictionary as a subroutine. For this reason, let
us first give an overview of this data structure. The data structure uses a minimal perfect
hashing of Schmidt and Siegel [28]. The hashing has three levels. In the first level, each
key x is mapped to hk,p(x) = (kx mod p) mod m2 with no collisions, for a prime p =
Θ(m2 lg V ) and k ∈ [p]. A random pair (k, p) works with constant probability, and it takes
O(lgm+ lg lg V ) bits to encode the function. This level effectively reduces the universe size
from V to m2. Each key x ∈ S is then represented by a pair (x(1), x(2)) where x(1) ∈ [m2]
is the hash value, and x(2) = (x div p) · ⌈p/m2⌉ + (kx mod p) div m2 (called the quotient
function in [21]). Then x(2) ≤ O(V/m2) and (x(1), x(2)) uniquely determines x.

In the second level, we apply another hash function from the same family on x(1),
hk′,p′(x(1)) = (k′x(1) mod p′) mod m to map x(1) to m buckets. This time, we have
p′ = Θ(m2) and k′ ∈ [p′]. Let Ai be the number of keys mapped to bucket i. The hashing
guarantees that for a random pair (k′, p′), the expectation of each A2

i is bounded by O(1).
Similarly, we can represent x(1) further as a pair such that the first component is the hash
value in [m], and the second component is the quotient function value, which is at most
O(m).

The third level hashing then hashes all keys in the same bucket to different integers. It
is applied on x(1): gki,pi

(x(1)) = (kix
(1) mod pi) mod A2

i , for pi = Θ(m2) and ki ∈ [pi]
such that all keys in the bucket are mapped to different integers. It turns out that a random
pair (ki, pi) works with constant probability.

The data structure stores the following for the hash functions:
1. the top-level hash functions (k, p) and (k′, p′),
2. (k1, p1), (k2, p2), . . ., a list of O(lgm) (random) choices for the third-level hash

functions,
3. for each bucket i, the index πi of the first hash function in the list that works.

It turns out that it is possible to use only O(m) bits to store the indices πi. This is because
each second-level hash function works with constant probability, the entropy of each πi is
a constant. We can use the Huffman coding for each πi to achieve constant bits per index
(which turns out to be the unary representation of πi).

These hash functions map all m input keys to O(m) buckets with no collisions. By
storing a rank data structure (e.g., [23]) among the O(m) buckets using O(m) bits of space,
we further map all the non-empty buckets to [m]. Finally, we store for each bucket, the

72



quotient values of the input key mapped to it. Hence, it takes lg(V/m2) + lgm + O(1) =
lg(V/m) + O(1) bits to encode each key. Thus, the total space is m lg(V/m) + O(m +
lg lg V ) = lg

(
V
m

)
+O(m+ lg lg V ) bits.

This data structure supports membership queries, and naturally defines a bijection h be-
tween S and [m], namely h(x) simply being the bucket x is mapped to. To generalize the
data structure and define an efficiently computable bijection h between [V ] \ S and [V −m],
we apply an approach similar to Section 7.4. To this end, we first store the number of keys
m′ in [V −m]. This is also the number of non-keys in {V −m, . . . , V − 1}. We are going to
store a mapping that maps all m′ non-keys in {V −m, . . . , V − 1} to all m′ keys in [V −m].

We then store the above data structure for all keys in [V −m], using

m′ lg((V −m)/m′) +O(m′ + lg lg V ) ≤ lg

(
V

m

)
+O(m+ lg lg V )

bits, which defines a bijection h′ between S ∩ [V −m] and [m′]. Note that this data structure
also allows us to “randomly access” all keys. That is, given an index i ∈ [m′], it returns a key
xi, such that {x1, . . . , xm′} is the set of all m′ keys in [V −m]. Then, we store a rank data
structure for {V −m, . . . , V − 1}, such that given an x ∈ {V −m, . . . , V − 1}, the query
algorithm returns if x is a key, as well as its rank over the set of keys (or non-keys). Hence, it
maps all keys in {V −m, . . . , V − 1} to [m−m′] and all non-keys to [m′]. The total space
is OPTV,m +O(m+ lg lg V ).

For each x ∈ S, we define h(x) as follows.
• if x < V −m, let h(x) := h′(x);
• if x ≥ V −m, let h(x) be m′ − 1 plus the rank of x in S ∩ {V −m, . . . , V − 1}.

For x /∈ S, we define h(x) as follows.
• if x < V −m, let h(x) := x;
• if x ≥ V − m, suppose the rank of x in {V − m, . . . , V − 1} \ S is i, then let
h(x) := xi.

Having stored the above data structures, h(x) or h(x) can be computed in constant time.
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