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Abstract

Given an integer array A[1..n], the Range Minimum Query problem (RMQ) asks to pre-
process A into a data structure, supporting RMQ queries: given a, b ∈ [1, n], return the index
i ∈ [a, b] that minimizes A[i], i.e., arg mini∈[a,b]A[i]. This problem has a classic solution using
O(n) space and O(1) query time by Gabow, Bentley, Tarjan [GBT84] and Harel, Tarjan [HT84].
The best known data structure by Fischer, Heun [FH11] and Navarro, Sadakane [NS14] uses
2n + n/( logn

t )t + Õ(n3/4) bits and answers queries in O(t) time, assuming the word-size is
w = Θ(log n). In particular, it uses 2n + n/poly log n bits of space when the query time is a
constant.

In this paper, we prove the first lower bound for this problem, showing that 2n+n/poly log n
space is necessary for constant query time. In general, we show that if the data structure has

query time O(t), then it must use at least 2n + n/(log n)Õ(t2) space, in the cell-probe model
with word-size w = Θ(log n).
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1 Introduction

Given an array A[1..n] of integers, the Range Minimum Query (RMQ) problem asks to preprocess
A into a data structure, supporting query

• RMQ(a, b): return arg mini∈[a,b]A[i] (if multiple entries have the smallest A[i], return the one
with smallest i).

RMQ data structures have numerous applications in computer science, for instance, in text pro-
cessing [ALV92, Mut02, FHK06, Sad07a, Sad07b, VM07, CPS08, FMN09, HSV09, CIK+12], graph
problems [RV88, BV93, GT04, BFP+05, LC08] and other areas of computer science [Sax09, SK03,
CC07].

The RMQ problem has a classic “textbook” solution using O(n) space and answering each
RMQ query in constant time, due to Gabow, Bentley, Tarjan [GBT84] and Harel, Tarjan [HT84].
To build this data structure, one first constructs the Cartesian tree of the input array A. The
Cartesian tree is an n-node binary tree, where the nodes correspond to the entries of A. The root is
node i assuming the minimum value in A[1..n] is A[i], and its left and right subtrees are recursively
constructed on A[1..i − 1] and A[i + 1..n] respectively. It turns out that RMQ(a, b) is exactly the
lowest common ancestor (LCA) of nodes A[a] and A[b] in this tree. The LCA problem admits an
O(n) space and O(1) query time solution, based on a reduction to the ±1RMQ problem.

In terms of the space usage, this data structure is in fact suboptimal. The only information
needed to answer all RMQ queries on A is the Cartesian tree of A, which is a rooted binary tree
with n nodes. It is well known that the number of such binary trees is equal to the n-th Catalan
number Cn = 1

n+1

(
2n
n

)
. Hence, the information theoretical space lower bound for this problem is

in fact, log2Cn = 2n−Θ(log n) bits, whereas the above data structure uses O(n) words of space.
Sadakane [Sad07b] showed that it is possible to achieve “truly” linear space and constant query

time. He proposed a data structure using ∼ 4n bits of space and supporting RMQ queries in
O(1) time, assuming the word-size is Ω(log n).1 Later, the space is further improved to 2n +
O(n log log n/ log n) by Fischer and Heun [FH07, FH11]. The space bound matches the best possible
in the leading constant. Such data structures that use H + r bits, for problems that require H bits
of space2 and for r = o(H), are called the succinct data structures [Jac88]. The amount of the
extra space r is usually referred to as the redundancy. For succinct data structures, the main focus
is on the trade-off between the redundancy and query time [GM07, Pǎt08b, PV10].

The state-of-the-art3 RMQ data structure [Pǎt08b, FH11, NS14, DRS17] uses 2n+n/( logn
t )Ω(t)+

Õ(n3/4) bits of space and answers queries in O(t) time, for any parameter t > 1 and word-size
Θ(log n).4 In particular, one can achieve n/poly log n redundancy and constant query time for any
polynomial of log n. On the other hand, despite the fact that the Range Minimum Query problem
has drawn a significant amount of attention from the algorithm community, to the best of our
knowledge, no lower bound is known.

1It is a standard assumption that the word-size is at least Ω(logn), since the query answer is an index, which
requires logn bits to describe.

2We denote the information theoretical minimum space by H, since the minimum space is exactly the entropy of
the truth table for random database.

3Due to the wide application, special cases of the problem are also interesting. Researchers have designed
data structures that outperform the best worst-case solution on inputs with certain structures [ACN13, BLR+15,
GJMW19].

4Their data structure was originally stated as 2n + n/ logt n space and O(t) time for constant t. It naturally
generalizes to the above trade-off. See the appendix of the full version of this paper.
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Question. What is the lowest possible redundancy for RMQ data structures with constant query
time?

Our contribution. In this paper, we prove the first lower bound on the trade-off between re-
dundancy and query time for the Range Minimum Query problem. In particular, we prove that for
constant query time, one must use n/poly log n bits of redundancy, answering the above question.
Our lower bound also extends to the following full trade-off between the redundancy and query
time.

Theorem 1. Given an array A[1..n], for any data structure supporting RMQ queries using 2n + r
bits of space and query time t, we must have

r ≥ n/wO(t2 log2 t),

in the cell-probe model with word-size w ≥ Ω(log n).

Our proof technique is inspired by a lower bound of Pǎtraşcu and Viola [PV10], which asserts
a similar trade-off for a different data structure problem (see Section 1.3). Nevertheless, our proof
majorly deviates from [PV10], due to the nature of the differences in the two problems. In the
following, we briefly survey the known techniques for proving redundancy-query time trade-off,
and the difficulties in generalizing the proofs to our problem. In Section 2, we present a technical
overview of our proof. Finally, we prove our main theorem in Section 3 and Section 4.

1.1 The Cell-Probe Model

The cell-probe model [Yao81] is a classic computational model for studying the complexity of data
structures, which is similar to the well-known RAM model, except that all operations are free except
memory access. It is easy to see the practicality of the theoretical model: the time cost on memory
accessing is dominant over the time costs on all other operations in a typical modern computer. In
particular, a data structure that occupies s memory units on a machine with word size of w bits and
answers queries by accessing at most t memory units is described by a preprocessing algorithm and
a query algorithm. Given a database D, the preprocessing algorithm outputs a table consists s cells,
w bits per cell, which stands for our data structure. We emphasize that the preprocessing algorithm
can take arbitrarily long time and arbitrarily large space, but has to halt and output the table.
On the other hand, the query algorithm captures the interaction between CPU and data structure
when the CPU is trying to answer a query. Given a query q, the query algorithm makes cell-probes
(i.e. memory accesses) adaptively in following sense: the algorithm reads the query q, then chooses
a cell c1, makes a cell-probe to retrieve the content of c1; combining q and content of cell c1, the
algorithm chooses second cell c2, makes a cell-probe to retrieve the content of cell c2; and goes
on; after retrieved the content of cell ct, the algorithm outputs the answer by combining q and the
contents of cells c1, . . . , ct. There is a substantial body of notable works on the cell-probe complexity
of static data structure problems [MNSW98, CR10, PT06a, PTW08, PTW10, Lar12b, Yin16].

1.2 Related Work

One of the most widely used technique in proving data structure lower bounds is the cell-sampling.
It has applications to dynamic data structures [Lar12a, CGL15, LWY18], streaming lower bounds [LNN15],
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static data structures with low space usage [PTW10, Lar12b, GL16, Yin16], as well as succinct data
structures [GM07]. To prove a lower bound using cell-sampling, one samples a small fraction of the
memory cells, and argues that if the query time is low, then many queries can still be answered
using only the sampled cells. Finally, one proves that too much information about the input is
revealed by the answers to those queries, yielding a contradiction. In order to apply this technique,
the problem is usually required to have the property that the answers to a set of n1.1 random
queries almost determine the entire input data, which the RMQ problem does not have (as one
could keep getting indices with small values).

Golynski [Gol09] developed a different technique for proving succinct data structure lower
bounds, and proved lower bounds for several problems, including storing a permutation π support-
ing π, π−1 queries, and storing a string S supporting pattern matching (return the i-th occurrence
of P ) and substring access queries (return the substring S[i..i + p]). His technique mostly applies
to problems with two types of queries that “verifies” each other, e.g., π(i) = j and π−1(j) = i.

1.3 Pǎtraşcu and Viola’s Technique

Our proof uses a few important ideas from [PV10]. Pǎtraşcu and Viola proved a lower bound for
succinct rank data structures. The rank problem asks to preprocess a 0-1 array A[1..n] into a data
structure, supporting queries of form “return the number of ones in A[1..i].” They proved that in
the cell-probe model with word-size w ≥ Ω(log n), if a data structure uses at most n + n/wt bits
of space, then its query time must be at least Ω(t), which is known to be tight in the cell-probe
model [Pǎt08b, Yu19].

Pǎtraşcu and Viola’s proof uses a variant of round elimination. We first fix the input distribution
to be uniform. In each round of the argument, we are given a cell-probe data structure that uses
n bits of memory with additional p published bits, where the published bits can be accessed by
the query algorithm at no cost. In the other words, the data structure uses p more bits than the
information theoretical lower bound, and the p extra bits are given to the query algorithm for free.
Then, we create a new data structure with a factor of wO(1) more publish bits, and at the same
time, argue that its expected query time must decrease by some constant ε, where the expectation
is taken over a random input and a random query. To see why it already implies the above trade-off,
suppose we have a cell-probe data structure with n+n/wt bits of space, we first “publish” the last
n/wt bits, and then apply the above argument for Θ(t) rounds. Thereafter, a total of strictly less
than n bits are published, while the query time is decreased by Θ(t). If the initial query time was
much less than t, then we would have obtained a data structure with < n published bits and query
time 0, i.e., all queries can be answered by only reading the published bits, yielding a contradiction.

The key argument lies in choosing the extra bits to publish and proving the decay of the
query time. To this end, consider two sets of queries Q1 and Q2 of size O(p), comparable to the
number of published bits. We can show that for the rank problem, if both Q1 and Q2 are evenly
distributed over the n possible queries, then their answers are very correlated. In particular, the
mutual information between the answers to Q1 and Q2 is at least Ω(p). Roughly speaking, there
are Ω(p) bits of information about the input array that is both contained in Q1 and Q2. It implies
that in order to answer Q2, the query algorithm must probe many cells that are also probed when
answering Q1. This is because otherwise, most of the Ω(p) bits of “shared information” between
the answers would be stored in two separate locations in the memory, “wasting” Ω(p) bits of space.
It is unaffordable, as the data structure uses only p extra bits.

The above argument shows that if we publish all memory cells that are probed when answering
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Q1 (by publishing the bits encoding their addresses and contents), then for an average query q ∈ Q2,
Ω(1) cells that are probed when answering q get published, i.e., the query algorithm can now access
their contents for free (by reading the published bits), and the query time is reduced by Ω(1).
Moreover, this argument works for the same Q1 and every evenly distributed Q2. Therefore, by
publishing those cells, the expected query time of a random query must decrease by a constant.
On the other hand, the total number of published bits is at most O(|Q1| · tw) ≤ p · wO(1). This
completes the argument for one round, and by the earlier argument, it implies the lower bound.

The main obstacle in applying this strategy to the RMQ problem is to prove the correlation
lower bound between two sets of queries Q1 and Q2. More precisely, one needs to prove that for
two random sets of p queries Q1 and Q2, the mutual information between their answers (assuming
uniformly random input data) is at least Ω(p). Unfortunatly, this is not true for the RMQ problem,
because even the entropy of the answers to p random queries is significantly lower than Ω(p) – a
random query has Ω(n) length and the small entries are likely to appear in many answers. One
simple idea to resolve this particular issue is to only consider shorter queries, and prove lower
bounds on their query time. For instance, if we only consider queries of length O(n/p), then two
random sets Q1 and Q2 of p queries will both be spread out and significantly overlap. In this case,
one can show their mutual information is indeed Ω(p). However, our argument proceeds in rounds,
and the value of p increases by a factor of wO(1) each round. We must consider the same set of
queries and reduce their query time in all rounds. This simple “hack” of the proof does not solve
the problem.

2 Our Technique

In the previous section, we showed a concrete technical difficulty to apply [PV10] directly to our
problem. It turns out that the more inherent reason is that their technique is too “strong”: It
lower bounds the expected query time of a query on a random input database, i.e., proving an
average-case lower bound. For the RMQ problem, we believe much more efficient average-case
solutions exist (see also the next paragraph). In this case, the techniques from [PV10] would
become inapplicable for proving a high lower bound. This observation also suggests that the hard
queries should be chosen depending on the input database. This is one major modification in our
argument, which turns out to cause new issues. We will elaborate below.

To prove the RMQ lower bound, we first reduce RMQ from a variant of the predecessor search
problem. In the predecessor search problem, we are given a sorted list S = {s1, s2, · · · , sm} ⊂ [U ],
and asked to preprocess S into a data structure so that given a query x ∈ [U ], the largest element
in S that is at most x can be found efficiently. To see why RMQ is even related to predecessor
search, let us consider all queries of form RMQ(n/2, x). The only indices i that could become an
answer to (at least) one of such queries are the ones with a smaller value than all other entries in
A[n/2..i− 1]. Denote this set by S, then the answer to RMQ(n/2, x) is precisely the predecessor of
x in S. A more careful analysis shows that for a uniformly random Cartesian tree, |S| is likely to
be Θ(

√
n).5 A classic lower bound for predecessor search [PT06b] shows that for such instances,

5This might be counter-intuitive at the first glance, as a random array A would only generate an S of size
Θ(logn). However, note that the distribution of the Cartesian tree generated by a uniformly random A is in fact,
(very) different from a uniformly random Cartesian tree. The space benchmark of the RMQ problem is based on the
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any data structure must use at least Ω(log logn) query time, even with linear space (and not
in the succinct regime). However, the distribution of S induced by a random Cartesian tree is
different from the hard instances from [PT06b], which makes the instances easier and relevant for
the succinct regime, and at the same time, it requires a different argument to prove lower bounds.
For now, let us think of the space benchmark (the information theoretical lower bound) being the
entropy of the input H(S). Note that since S is non-uniform, this space benchmark could only be
achieved in expectation. See the next section for the formal definition of the problem, which allows
us to define the space benchmark in worst case. It turns out that this variant of predecessor search
has a cell-probe data structure with constant redundancy and constant average-case query time.
Therefore, as mentioned in the previous paragraph, in order to prove any non-trivial lower bound,
we must choose queries based on the data.

To prove the lower bound, we first observe that this average-case data structure has a very
slow query time on the exact input data points (all points in S). Thus, we will define the set of all
predecessor search queries pred(x) for x ∈ S (which returns x) to be our hard queries Q. The high-
level strategy is similar to [PV10], using round elimination: Given a data structure using optimal
space “H(S)” bits with p extra published bits, we find a set of queries Qpub of size Õ(p), and prove
that an average query in Q must probe ε cells that are also probed by Qpub in expectation; then
we publish all the cells probed by Qpub, which reduces the average query time of Q by ε. In each
round, we publish a factor of poly log n more bits while reducing the average query time of Q by
ε. On the other hand, we must have published at least Ω̃(|S|) bits before reducing the query time
to 0, which implies a lower bound on the initial average query time of Q. Hence, same as [PV10],
the key argument lies in finding such a set Qpub (and proving the decay of the query time).

To this end, let us fix a set Qpub, whose answers have entropy much higher than p. The goal is
to show ε-fraction of the queries in Q probe cells that are also probed by Qpub. It is actually not
hard to prove a weaker statement: at least one query in Q probe cells also probed by Qpub. If the
sets of cells probed by Q and Qpub were disjoint, then by deleting all cells probed by Qpub, we would
obtain a significantly smaller data structure that still encodes the whole database. To recover the
database, we go over all queries and try to answer each of them without using the deleted cells.
The whole database can be recovered, since all Q can be answered, and their answers determine S.
On the other hand, since Qpub’s answers have entropy much higher than p, it means that we must
have deleted much more than p bits from the data structure, yielding a contradiction.6 However,
this argument does not extend to proving ε-fraction of Q must probe the cells probed by Qpub.
Since assume for contradiction this is not the case, then after deleting all cells probed by Qpub, the
data structure can recover only up to (1− ε)-fraction of the data points (the ones that do not use
cells probed by Qpub), there will be no contradiction unless the entropy of Qpub is at least εH(S),
which can be significantly larger than p.

However, this (1 − ε)-fraction of Q may reveal a lot of information about Qpub, as the entire
Q completely determines the answers to Qpub. Intuitively, we should be able to compress the set
of the cells probed by Qpub, given the set of all the other cells, since the former determines the
answers to Qpub, the latter determines the answers to this (1 − ε)-fraction of Q, and they must
have high mutual information. That means we could compress the whole data structure by first
encoding the set of all other cells, then writing down the “compressed” encoding of set of cells

number of different n-node Cartesian trees Cn. Therefore, sampling a uniform Cartesian tree would maximize the
input entropy (matching the space benchmark), and is the right input distribution to keep in mind.

6The status of a cell being “deleted” still carries information, but as long as w ≥ 2 logn, this is not an issue.
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probed by Qpub. Such compression would yield a contradiction. However, there is a very subtle
issue in implementing this idea: it is possible that this mutual information comes from the addresses
of the two sets, but not their contents. That is, the queries in Qpub can be adaptive, and both sets
of cells determine which cells are probed by Qpub, which contains information. For example, this
will not be an issue when the query algorithm is non-adaptive, i.e. the set of probed cells depends
only on the query, but not the database. In this case, the addresses of the cells probed by Qpub are
fixed, and they have no information about the database. To obtain a contradiction, we compress
the memory of the data structure as follows: write down all published bits and the contents of all
cells that are not probed by Qpub, then encode the cells probed by Qpub conditioned on the cells
we have written down. From the first part of the compression, one can recover the (1− ε)-fraction
of Q that does not use cells probed by Qpub (since the data structure is non-adaptive, the decoding
algorithm knows which cells are not probed by Qpub and are encoded here). If they reveal more
than p bits of information about Qpub, then the last part of the compression saves more than p
bits, yielding a contradiction.

For general data structures, which can be adaptive, observe that the addresses of the `-th probe
of Qpub are determined by the contents of the previous `− 1 probes. We will choose an ` such that
the (1 − ε)-fraction of Q reveals sufficient information about the `-th probe of Qpub, conditioned
on the first ` − 1 probes. By the chain rule of mutual information, such ` exists. At the same
time, by conditioning on the first ` − 1 probes, the addresses of the `-th probes no longer carry
information. The final argument is similar to the non-adaptive case: write down the p published
bits, the contents of the first (`− 1) probes and the contents of all cells except the `-th probes; at
last, encode the contents of the `-th probes conditioned on the cells we have written down. One can
show that this encoding compresses the data structure below the input entropy if ε is too small,
which implies a lower bound on how much the average query time of Q must decrease in each
round, and in turn, it implies a query time lower bound. See Section 3.2 for the detailed argument.

3 Lower Bound for Succinct Range Minimum Query

In this section, we prove our main theorem, a lower bound for succinct RMQ.

Theorem 1 (restated). Given an array A[1..n], for any data structure supporting RMQ queries
using 2n+ r bits of space and query time t, we must have

r ≥ n/wO(t2 log2 t),

in the cell-probe model with word-size w ≥ Ω(log n).

To prove the lower bound, we will reduce RMQ from a variant of the predecessor search problem,
which we refer to as pred-z. In this problem, we are given d sets S1, . . . , Sd ⊆ [B] of size u for
u = Θ(

√
B),7 together with a positive integer z, such that

1 ≤ z ≤ Z ·
d∏
i=1

u∏
j=0

C
s
(i)
j+1−s

(i)
j −1

,

where Si = {s(i)
1 , . . . , s

(i)
u } such that s

(i)
j < s

(i)
j+1, s

(i)
0 is assumed to be 0 and s

(i)
u+1 is assumed to be

B + 1, and Cx = 1
x+1

(
2x
x

)
is the x-th Catalan number. Note that, d,B, u and Z are all parameters

7[B] := {1, ..., B}.
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of the problem, the only inputs are the d sets and the integer z. The goal is to construct a data
structure to store the sets and the integer, supporting

• pred(i, x): return largest element in Si that is at most x, and if no such element exists, return
0;

• query-z(): return z.

We are interested in two parameters of the data structure: the space usage and the query time
of pred. We emphasize that we do not care the query time of query-z, i.e. query-z could take
arbitrarily long time.

The reason we involve the z is that we would like to use a solution for RMQ as a black-box to
solve the predecessor search. However our version of predecessor search has low entropy, comparing
with RMQ. It turns out that the reduction will introduce a large redundancy for predecessor search,
which makes it impossible to prove any non-trivial lower bound. To avoid this, we move substantial
information (i.e. the z) of the reduced RMQ instance to our predecessor search. The reduced RMQ
instance becomes a function of of z and S’s. We then maximize the entropy of reduced RMQ
instance by properly choosing the joint distribution of Z and S’s, so that the reduction introduces
at most O(d logB) bits of redundancy. See the proof of Theorem 1 for more details.

One useful way to view the role of the integer z is that if we sample a uniformly random input
among all possible inputs, the existence of z distorts the distribution of {Si}. More specifically, all
Si will be mutually independent, while for each Si,

Pr[Si = {s1, . . . , su}] ∝
u∏
j=0

Csj+1−sj−1.

We will analyze this distribution more carefully in Section 4.
Since the set of all queries can recover the sets and the integer, the data structure must store

the entire input (and this is the purpose of having query-z). The total number of possible inputs
to the problem is

Z ·

 ∑
0<s1<···<su<B+1

u∏
j=0

Csj+1−sj−1

d

.

By the Catalan u-fold convolution formula, it is equal to

Z ·
(

u+ 1

2B − u+ 1

(
2B − u+ 1

B + 1

))d
.

Therefore, by the fact that u = Θ(
√
B), we obtain the following lemma on the information theo-

retical minimum space.

Lemma 2. The information theoretical minimum space for pred-z is

Hd,u,B,Z := d · (2B − u−Θ(logB)) + logZ.

In the following subsections, we will prove the following lower bound for pred-z.

Lemma 3. For any parameters d, u,B and Z satisfying u = Θ(
√
B), any data structure for the

pred-z problem that uses at most Hd,u,B,Z + O(d logB) bits of space and answers pred queries in
time t must have
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(wt logB)O(t2 log2 t) ≥ B,

in the cell-probe model with word-size w.

Before we proceed and prove the lemma, let us first show that it implies our main theorem.

Proof of Theorem 1. Suppose we have an RMQ data structure using space 2n+ r bits with query
time O(t). We will use it to solve pred-z for

d := 2r

B :=
⌊
n
d

⌋
− 1

u := b
√
Bc

Z :=
(

2u
u

)r
.

Roughly speaking, we will divide the array A into d = 2r blocks of length B each (with a gap of
one entry between the adjacent blocks), and embed one set Si into each block, e.g., S2 is embedded

into A[B + 2, . . . , 2B + 1]. Suppose S2 = {s(2)
1 , . . . , s

(2)
u }, then for each integer j ∈ [u], the element

s
(2)
j corresponds to the entry A[B + 1 + sj ]. We will ensure that

A[B + 1] > A[B + 1 + s
(2)
1 ] > · · · > A[B + 1 + s(2)

u ],

i.e., the entries corresponding to elements in {0} ∪ S2 have decreasing values, and they are all
smaller than other entries in A[B+1, . . . , 2B+1]. Hence, to answer the query pred(2, x), it suffices
to send the query RMQ(B + 1, B + 1 + x) to the RMQ data structure, and the predecessor of x is
equal to RMQ(B + 1, B + 1 + x) − (B + 1). All even Si are embedded likewise, and for technical
reasons, the odd Si are embedded with the universe reversed. Finally, z is used to encode other
parts of A. We elaborate below.

Given the inputs {S1, . . . , Sd} and z to the pred-z problem, we have

z ≤
(

2u

u

)r
·
d∏
i=1

u∏
j=0

C
s
(i)
j+1−s

(i)
j −1

,

where Si = {s(i)
1 , . . . , s

(i)
u }. We interpret z as a tuple of r + d(u+ 1) integers: k1, . . . , kr and {z(i)

j }
for i = 1, . . . , d and j = 0, . . . , u, such that ki ≤

(
2u
u

)
and z

(i)
j ≤ Cs(i)j+1−s

(i)
j −1

. Now we construct the

input A to the RMQ problem as follows:

1. let i ∈ [d] be an odd integer, we require

A[i(B + 1)] > A[i(B + 1)− s(i)
1 ] > · · · > A[i(B + 1)− s(i)

u ],

and
A[i(B + 1)] > A[i(B + 1) + s

(i+1)
1 ] > · · · > A[i(B + 1) + s(i+1)

u ],

they are all smaller than all other entries in A[(i− 1)(B + 1) + 1, . . . , (i+ 1)(B + 1)− 1];
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2. for odd i, the order of all elements in

{A[i(B + 1)− s(i)
j ] : j ∈ [u]} ∪ {A[i(B + 1) + s

(i+1)
j ] : j ∈ [u]}

is determined by the integer k(i+1)/2 (note that given the above requirement, there are exactly
(

2u
u

)
different orderings);

3. the Cartesian tree of the subarray A[i(B+1)−s(i)
j+1 +1, . . . , i(B+1)−s(i)

j −1] is determined by the

integer z
(i)
j , and the Cartesian tree of the subarray A[i(B+ 1) + s

(i+1)
j + 1, . . . , i(B+ 1) + s

(i+1)
j+1 − 1]

is determined by the integer z
(i+1)
j , for j = 0, . . . , u;

4. construct an arbitrary A that satisfies the above constraints.

Then we construct the RMQ data structure for A.

Space usage. By assumption, the RMQ data structure uses 2n + r bits of space. On the other
hand, by Lemma 2, we have

Hd,u,B,Z = d(2B − u−Θ(logB)) + logZ

= 2r(2n/(2r)− u−Θ(logB) + r · (2u−Θ(logB))

= 2n−Θ(d logB).

Thus, the space usage of the pred-z data structure is Hd,u,B,Z +O(d logB) bits, as r = O(d).

Query algorithm. To answer the query pred(i, x), if i is odd, we make the query RMQ(i(B +
1) − x, i(B + 1)) to the RMQ data structure, and return i(B + 1) − RMQ(i(B + 1) − x, i(B + 1)).
Similarly, if i is even, we return RMQ((i− 1)(B + 1), (i− 1)(B + 1) + x)− (i− 1)(B + 1). The query
time is O(t).

To see why query-z can be answered, it suffices to recover each of k1, . . . , kr and {z(i)
j }. We

first ask all pred(i, x) queries to recover the sets S1, . . . , Sd. Then each ki can be recovered by
asking all queries of form

RMQ((2i− 1)(B + 1)− s(2i−1)
j1

, (2i− 1)(B + 1) + s
(2i)
j2

),

for j1, j2 ∈ [u]. Since no entries in between can be the minimum, these queries directly compare

A[(2i− 1)(B + 1)− s(2i−1)
j1

] with A[(2i− 1)(B + 1) + s
(2i)
j2

] for all j1 and j2. By Item 2 above, their

answers determine ki. By Item 3, for odd i, z
(i)
j can be recovered by asking all RMQ queries in the

subarray

A[i(B + 1)− s(i)
j+1 + 1, . . . , i(B + 1)− s(i)

j − 1],

and for even i, z
(i)
j can be recovered by asking all queries in

A[(i− 1)(B + 1) + s
(i)
j + 1, . . . , (i− 1)(B + 1) + s

(i)
j+1 − 1].

Finally, by Lemma 3, we have (wt logB)O(t2 log2 t) ≥ B = Ω(n/r). Since w ≥ Ω(log n), we have
r ≥ n

wO(t2 log2 t)
. This proves the theorem.
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3.1 pred-z Lower Bound

In this subsection, we prove Lemma 3. The proof strategy is based on a variant of round elimination
of [PV10]. We will focus on the predecessor search queries on all input data points, which turn out

to be the hard queries. That is, let Q := {pred(i, s
(i)
j ) : i ∈ [d], j ∈ [u]}. We will prove a lower

bound on the expected average query time of all queries in Q, when the inputs {S1, . . . , Su} and z
are uniformly random. Note that the set of queries Q is also random, as it depends on the input.

During the round elimination, we will work with data structures with published bits. More
specifically, at the beginning of each round, we are given a data structure for pred-z using optimal
Hd,u,B,Z bits of memory, with extra p published bits. The query algorithm may access these
published bits for free, as well as probing the regular memory cells with standard cost of one per
probe. In each round, we will create a new data structure with more published bits, but faster
expected average query time of Q (probing fewer regular memory cells).

To this end, for any fixed data structure, we denote by Probe(q), the set of memory cells probed
in order to answer query q. Similarly for any set of queries Q, we define Probe(Q) :=

⋃
q∈Q Probe(q).

We have the following lemma.

Lemma 4. Given a pred-z data structure with p published bits for p ≥ d and p < du · log−4B and
worst-case pred query time t, there exists a set Qpub of p log4B pred(·, ·) queries, possibly random
and depending on the input, such that

E

 1

|Q|
∑
q∈Q
|Probe(q) ∩ Probe(Qpub)|

 ≥ Ω

(
1

t log2 t

)
,

where the expectation is taken over uniformly random input data {S1, . . . , Sd}, z and the choice of
Qpub.

The proof of lemma is deferred to the next subsection. Now, let us prove that it implies
Lemma 3.

Proof of Lemma 3. Suppose there is a pred-z data structure using O(d logB) bits of redundancy
and query time t. To initialize the round elimination argument, we simply publish the last
O(d logB) bits of the data structure, and keep the first Hd,u,B,Z bits in memory. Thus, we obtain
a data structure with p = O(d logB) publish bits, worst-case query time t and expected average
query time of Q also at most t.

In each round, we begin with a data structure D with p published bits, and will modify it to
a new data structure with a lower query time for Q. To this end, we first construct D given the
input data. Then, we apply Lemma 4 to find the set Qpub, possibly depending on the inputs, and
further publish all cells in Probe(Qpub). That is, we append the addresses and contents of all cells
in Probe(Qpub) to the published bits. Thereafter, when the query algorithm wants to probe a cell,
it first checks if the cell is already published, by reading the published bits. If it is, this probe can
be avoided, as the published bits already have the contents.

By the guarantee of Lemma 4, for an average query in Q, in expectation Ω(1/(t log2 t)) probes
are avoided, i.e., the expected average query time of Q is reduced by Ω(1/(t log2 t)). On the other
hand, publishing Probe(Qpub) takes O(p ·wt log4B) bits. If we were able to execute this argument
for more than O(t2 log2 t) rounds, the query time of Q would become a negative number, which is

10



a contradiction. Hence, p must have exceeded du log−4B before it happens, so that the premises
of Lemma 4 become unsatisfied. Therefore, we must have

O(d logB) · (wt log4B)O(t2 log2 t) ≥ du log−4B,

which by the fact that u = Θ(
√
B), simplifies to

(wt logB)O(t2 log2 t) ≥ B.

3.2 Selecting Queries Qpub

The main argument of the proof lies in finding such set of queries Qpub. The intuition is that we
want to select queries that reveal a lot of information (much more than p bits) about the inputs.
Then since all queries in Q determine the whole input, if the sets of cells Qpub and Q probe are
always very different and barely intersect, it would mean that more than p bits of information
must have been stored in two different locations in the data structure. However, the data structure
only uses p extra bits beyond the information theoretical minimum (since we assume the input is
uniformly random), we derive a contradiction. The formal argument is more complex, which we
elaborate below.

It turns out that Qpub can be selected by picking p/d evenly spaced (over the u elements)
elements from each set Si, then selecting poly log n evenly spaced (over [B]) queries between the

picked elements. More specifically, recall that Si = {s(i)
1 , . . . , s

(i)
u }, let m = ud/p be the gap between

the picked elements, and

S
(i)
pt :=

{
s(i)
m , s

(i)
2m, s

(i)
3m, . . . , s

(i)
u

}
be u/m = p/d evenly spaced elements in Si. S

(i)
pt partitions the universe [B] into p/d blocks, each

block has m elements from Si, but the blocks may have different lengths. In the following, we will
only focus on the blocks whose length is approximately m2. Let Sgood be the disjoint union of all
such blocks [x, y] from all Si:

Sgood :=

{
(i, [x, y]) : i ∈ [d],

1

2
m2 ≤ y − x ≤ 2m2,

∃l ∈ [p/d], s.t., x = s
(i)
lm + 1, y = s

(i)
(l+1)m − 1

}
.

Finally, we pick approximately log4B evenly spaced points in each block in Sgood, and the pred

queries on them will form the set Qpub (note that this is possible when p < du log−4B). Formally,
let L = m2 · log−4B, and ∆ ∈ [L] be uniformly random, we define

Qpub :=
⋃

(i,[x,y])∈Sgood

{
pred(i, x+ j · L+ ∆) :

j ≥ 1, x+ j · L+ ∆ < y
}
.

11



The size of Qpub is at most O(p log4B), since |Sgood| ≤ p and y − x ≤ 2L log4B. Note that Sgood,
together with ∆, determines Qpub. From now on, it is helpful to view each block (i, [x, y]) ∈ Sgood

as an independent universe, since x−1 is an input data point, any pred queries asked in this range
must also have its answer in it (or equal to x− 1).

As we argued above, we will need to show that the answers to Qpub reveal a lot of information
about the input. It turns out that the most “useful” information they reveal is whether there is
any input data point between two adjacent queries. Define the indicator variable

E
(i,[x,y])
j := 1pred(i,x+jL+∆) 6=pred(i,x+(j+1)L+∆),

indicating if there is an input point between them. We can show that for each block in Sgood, the

joint entropy of {E(i,[x,y])
j }j is large.

Lemma 5. Let the input (S1, . . . , Sd) and z be uniformly random, conditioned on (i, [x, y]) ∈ Sgood,
the joint entropy is large for a random offset ∆,

H
(
E

(i,[x,y])
1 , . . . , E

(i,[x,y])
(y−x)/L | (i, [x, y]) ∈ Sgood,∆

)
≥ Ω(log2B).

We can also show that most blocks are good.

Lemma 6. Let the inputs (S1, . . . , Sd) and z be uniformly random. For every i ∈ [d], l ∈ [p/3d, 2p/3d],
we have

Pr[(i, [x, y]) ∈ Sgood] ≥ Ω(1),

where x = s
(i)
lm + 1 and y = s

(i)
(l+1)m − 1.

On the other hand, {E(i,[x,y])
j }j can be described succinctly if we are given a large subset of the

m input points in a block.

Lemma 7. Let the input (S1, . . . , Sd) and z, as well as ∆ ∈ [L], be uniformly random, and condition
on (i, [x, y]) ∈ Sgood. Let S′i,[x,y] ⊆ Si ∩ [x, y] be an (arbitrarily) jointly distributed subset, there is

a prefix-free binary string ext∆,Si(S
′
i,[x,y]), such that ext∆,Si(S

′
i,[x,y]) and S′i,[x,y] together determine

{E(i,[x,y])
j }j. Moreover, we have the following bound on the length of ext∆,Si(S

′
i,[x,y]):

E
[∣∣∣ext∆,Si(S

′
i,[x,y])

∣∣∣ | (i, [x, y]) ∈ Sgood

]
≤O(
√
ε log2B log(1/ε) + logB log logB),

where ε := 1− 1
m E

[∣∣∣S′i,[x,y]

∣∣∣ | (i, [x, y]) ∈ Sgood

]
.

The proofs of the above three lemmas highly rely on the input distribution, especially on the
marginal of each Si. To focus on the main storyline, we defer them to Section 4. For now, the only
property we use about the uniform input distribution is that conditioned on Sgood, the data points
in different blocks are mutually independent, which can be seen easily from definition.

Claim 8. Let Spt := {S(i)
pt }i be the partitions. Spt determines Sgood, and given Spt, all p blocks{

(i, [s
(i)
lm + 1, s

(i)
(l+1)m − 1]) : i ∈ [d], l ∈ [p/d]

}
are mutual independent.
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Now, we are ready to prove Lemma 4.

Proof of Lemma 4. The proof uses an encoding argument. We will show that if the intersection
size in the lemma statement is too small, then there is a very efficient way to encode the entire
input data, using bits less than its entropy, which yields a contradiction.

To this end, a useful notion (following [PV10]) is the footprint of a query. Given a query q, its
footprint Foot(q) is a binary string obtained by concatenating the (w-bit) content of the first cell
the query algorithm probes when answering q, the content of the second cell, third cell, and so on.
This is a w · |Probe(q)|-bit binary string, encoding all contents in Probe(q). Note that it is not
necessary to write down the addresses, since by simulating the query algorithm, one automatically
knows what is the next cell to probe, given q. Therefore, Foot(q), together with q, determines the
answer to q.

Similarly, given a set of queries Q, its footprint Foot(Q) is obtained by concatenating the
contents of the first probes of all queries in Q (in the lexicographical order of corresponding query),
then the contents of the second probes of all queries, and so on. If a cell is already encoded, either
in the same l-th probe by a lexicographically smaller query or in an earlier probe, its content will
be skipped. Likewise, Foot(Q), together with Q, also determines the answers to all queries in Q.

Finally, for l ∈ [t], let Foot<l(Q) be the prefix of Foot(Q) that only encodes the cells in the
first (l − 1) probes of Q. Let Footl(Q) be the substring of Foot(Q) that encodes the l-th probes.
Note that given Footl(Q) alone, it might not be clear which cells it is encoding, since the location
of the l-th probe may depend on the contents of the previous probes. It may also not encode the
l-th probe of all queries in Q, as some of them may have appeared in Foot<l(Q), which are skipped
by the definition of Foot(Q).

Next, let E be the set of all indicator random variables {E(i,[x,y])
j : (i, [x, y]) ∈ Sgood, j ∈

[(y − x)/L]}. By Lemma 5, Lemma 6 and Claim 8, we have

H(E | Spt,∆) ≥ Ω(p log2B).

The answers to Qpub determine E , hence,

I(Foot(Qpub); E | Spt,∆) ≥ Ω(p log2B).

By the chain rule of mutual information, we have

t∑
l=1

I(Footl(Qpub); E | Spt, Foot<l(Qpub),∆) ≥ Ω(p log2B). (1)

Note that here it is clear which contents Footl(Qpub) is encoding, since we have conditioned on
Foot<l(Qpub), Sgood and ∆. Equivalently, it might be helpful to think Footl(Qpub) as a set of cells
with both contents and addresses encoded, however, the entropy of the addresses is zero conditioned
on Foot<l(Qpub).

Now, let us assume

E
∆,S1,...,Sd,z

 1

|Q|
∑
q∈Q
|Probe(q) ∩ Probe(Qpub)|

 = δ. (2)

The goal is to lower bound δ.
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Encoding. Consider the following encoding scheme that encodes the data structure:

1. write down the p published bits;

2. write down Spt;

3. sample a uniformly random ∆ ∈ [L] and l ∈ [t], write down ∆ and l;

4. write down Foot<l(Qpub);

5. write down the contents of all cells that are not in Foot<l(Qpub) or Footl(Qpub), in the
increasing order of their addresses;

6. for every block (i, [x, y]) ∈ Sgood, let S′i,[x,y] be the subset of Si ∩ [x, y] such that s ∈ S′i,[x,y] if

and only if pred(i, s) does not probe any cell in Footl(Qpub);

7. for each (i, [x, y]) ∈ Sgood, apply Lemma 7 and write down ext∆,Si(S
′
i,[x,y]);

8. encode Footl(Qpub) conditioned on E , Spt and Foot<l(Qpub) using the optimal expected

H(Footl(Qpub) | E , Spt, Foot<l(Qpub),∆) +O(1)

bits, and write down the encoding.

Decoding. Now, we show that one can recover the entire data structure from the above encoding,
hence, all the inputs.

Given the above encoding, we first read the p published bits, Spt, ∆ and l. From them, we know
the set Qpub. By simulating the query algorithm for (l − 1) steps on Qpub, we read Foot<l(Qpub)
and recover all their contents. At the same time, we know the addresses of all cells in Footl(Qpub)
(but not their contents). Next, we read the contents of all cells not in Foot<l(Qpub) or Footl(Qpub)
from Step 5.

So far, we have recovered contents of all cells not in Footl(Qpub), and we know their addresses.
We go over all possible pred(·, ·) queries, and simulate the query algorithm on them. This identifies
all queries that can be answered without probing cells in Footl(Qpub). In particular, we recover
the sets S′i,[x,y] for every (i, [x, y]) ∈ Sgood.

Next, we read ext∆,Si(S
′
i,[x,y]). By Lemma 7, together with S′i,[x,y], we recover all E

(i,[x,y])
j for all

(i, [x, y]) ∈ Sgood, i.e., we recover E . Finally, we read the encoding of Footl(Qpub) conditioned on
E , Sgood, and Foot<l(Qpub). This reconstructs the data structure, and thus, by making all queries
to it, we recover the entire input data. Therefore, the encoding must use at least Hd,u,B,Z bits in
expectation.

Analysis. Now let us analyze how many bits the above encoding scheme takes in expectation:

1. published bits take p bits;

2. Spt has p blocks, each taking O(logB) bits;

3. ∆ and l take O(logB + log t) bits;

4. Foot<l(Qpub) take |Foot<l(Qpub)| bits;

14



5. all other cells take Hd,u,B,Z − |Foot<l(Qpub)| − |Footl(Qpub)| bits;

6. by Equation (2) and Lemma 6, for a constant fraction of the queries q ∈ Q, the probability
that it is in a good block is at least a constant, and we choose l ∈ [t] uniformly at random,
in expectation at most O(δ/t) fraction of the hard queries in each good Si ∩ [x, y] probe cells
in Footl(Qpub), i.e.,

E
Spt,∆,l,{Si}|Spt

 1

|Sgood|
·

∑
(i,[x,y])∈Sgood

|S′i,[x,y]|

 ≥ (1−O(δ/t))m;

7. for each (i, [x, y]) ∈ Sgood, by Lemma 7, we have

|ext∆,Si(S
′
i,[x,y])| ≤ O((

√
εspt,(i,[x,y]) log 1/εspt,(i,[x,y])) log2B

+ logB log logB),

where εspt,(i,[x,y]) := 1 − E[|S′i,[x,y]| | Spt = spt]/m. Let εspt := E(i,[x,y])∈Sgood [εspt,(i,[x,y])], ε :=

E[εspt ] = O(δ/t). Writing down all ext∆,Si(S
′
i,[x,y]) takes∑

spt

Pr[Spt = spt]
∑

(i,[x,y])∈Sgood

E[|ext∆,Si(S
′
i,[x,y])| | Spt = spt]

= E
spt

[
|Sgood| E

(i,[x,y])∈Sgood
[|ext∆,Si(S

′
i,[x,y])| | Spt = spt]

]

= E
spt

[
|Sgood| E

(i,[x,y])∈Sgood
[O((

√
εspt,(i,[x,y]) log 1/εspt,(i,[x,y]))

log2B + logB log logB) | Spt = spt]

]
≤ p log2B · E

spt

[
O(
√
εspt log 1/εspt)

]
+O(p logB log logB)

≤ p log2B ·O(
√
ε log 1/ε) +O(p logB log logB)

= O(p log2B ·
√
δ/t log(t/δ) + p logB log logB)

bits in expectation, due to the concavity of
√
x log(1/x) for 0 < x < 1;

8. by Equation (1), encoding Footl(Qpub) takes
|Footl(Qpub)| − Ω((p log2B)/t) bits.

Summing up the cost of each step, the encoding uses in total

Hd,u,B,Z + p+O(p logB) +O(logB + log t)

+O(p(
√
δ/t log(t/δ)) log2B) +O(p logB log logB)

− Ω((p log2B)/t)

≤Hd,u,B,Z +O(p(
√
δ/t log(t/δ)) log2B) +O(p logB log logB)

− Ω((p log2B)/t)
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bits. Since t� logB/ log logB (otherwise the lower bound already holds), and thus, p logB log logB �
(p log2B)/t, we must have p(

√
δ/t log(t/δ)) log2B ≥ Ω((p log2B)/t), which simplifies to δ ≥

Ω(1/(t log2 t)). This proves the lemma.

4 Analyzing the Input Distribution

In this section, we analyze the input distribution and prove the three lemmas from the previous
section. Recall that the input to the pred-z problem is (S1, . . . , Sd) and z such that

1 ≤ z ≤ Z ·
d∏
i=1

u∏
j=0

C
s
(i)
j+1−s

(i)
j −1

.

Therefore, if we sample a uniformly random input, the marginal distribution of each Si is

Pr[Si = {s1, . . . , su}] =
1

M(B, u)

u∏
j=0

Csj+1−sj−1, (3)

where 0 = s0 < s1 < · · · < su < su+1 = B + 1, and

M(B, u) :=
∑

s1,...,su

u∏
j=0

Csj+1−sj−1

is the Catalan’s (u+ 1)-fold convolution. In general, we have the following equation.

Theorem 9 (Catalan’s m-fold convolution formula [Cat87, Reg12]). For m ≤ U ,∑
i1+···+im=U
i1,...,im≥1

Ci1−1 . . . Cim−1 =
m

2U −m

(
2U −m
U

)
. (4)

Thus, we have the following estimation for M .

Proposition 10. For super constant B and any u� B, it holds that

M(B, u) ≤ (1 + o(1))2u√
π/2(2B − u)1.5

· 22B−ue−u
2/(4B),

and when u3 � B2,

M(B, u) ≥ (1− o(1))2u√
π/2(2B − u)1.5

· 22B−ue−u
2/(4B−2u).

In particular, when u = O(
√
B),

M(B, u) = Θ(u22B−u/B3/2).
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Proof.

M(B, u) =
u+ 1

2B − u+ 1

(
2B − u+ 1

B + 1

)
=

u+ 1

2B − u+ 1

(
2B − u+ 1

B − b(u− 1)/2c

)
(B − u+ 1) · · · (B − d(u− 1)/2e)
(B − b(u− 1)/2c+ 1) · · · (B + 1)

=
(1± o(1))u22B−u+1√

π/2(2B − u)1.5
· (B − u+ 1) · · · (B − d(u− 1)/2e)

(B − b(u− 1)/2c+ 1) · · · (B + 1)
.

The last factor is upper bounded by

(B − u+ 1) · · · (B − d(u− 1)/2e)
(B − b(u− 1)/2c+ 1) · · · (B + 1)

≤
(
B − d(u− 1)/2e

B + 1

)b(u+1)/2c

≤
(

1− d(u+ 1)/2e
B + 1

)b(u+1)/2c

≤ (1 + o(1))e−u
2/(4B),

and when u3 � B2, it is lower bounded by

(B − u+ 1) · · · (B − d(u− 1)/2e)
(B − b(u− 1)/2c+ 1) · · · (B + 1)

≥
(

B − u
B − b(u− 1)/2c

)b(u+1)/2c

≥
(

1− u

2B − u− 1

)u/2
≥ (1− o(1))e−u

2/(4B−2u).

Now, let us first prove Lemma 6.

Lemma 6 (restated). Let the inputs (S1, . . . , Sd) and z be uniformly random. For every i ∈
[d], l ∈ [p/3d, 2p/3d], we have

Pr[(i, [x, y]) ∈ Sgood] ≥ Ω(1),

where x = s
(i)
lm + 1 and y = s

(i)
(l+1)m − 1.

Proof. Let us first fix i, and omit the superscript (i) in the following for convenience of notations.
Let c = lm, it suffices to prove that Pr[sc+m − sc ∈ [m2/2, 2m2]] ≥ Ω(1). Note that u2 = Θ(B), we
have

Pr[sc+m = y + 1, sc = x− 1]

=M(x− 2, c− 1) ·M(y − x+ 1,m− 1)

·M(B − y, u− c−m)/M(B, u)

= Ω

(
cm(u− c−m)B1.5

x1.5(y − x)1.5(B − y)1.5u

· e−
c2

4x−2c
− m2

4(y−x)−2m
− (u−c−m)2

4(B−y)−2(u−c−m)
+ u2

4B

)
.

17



Since m� u and l ∈ [p/3d, 2p/3d] (i.e., c ∈ [u/3, 2u/3]),

Pr[sc+m − sc ∈ [m2/2, 2m2]]

≥
2B/3∑
x=B/3

2m2∑
y−x=m2/2

Pr[sc+m = y, sc = x]

=

2B/3∑
x=B/3

2m2∑
y−x=m2/2

Ω

(
m

B(y − x)1.5
e
− m2

4(y−x)−2m

)

≥Ω

(
B ·m2 · m

B(m2)1.5

)
≥ Ω(1).

In the rest of this section, we will prove the two remaining lemmas. Both lemmas consider one
specific good block (i, [x, y]). For simplicity of notations, we will omit all the superscripts (i, [x, y]).

We denote the length of the block by U := y−x+1 and S = Si∩ [x, y] be the set of input points
contained in it. Thus, we have U = Θ(m2). It is easy to verify that the marginal distribution of S
is similar to Equation (3):

Pr[S = {s1, . . . , sm}] =
1

M(U,m)

m∏
j=0

Csj+1−sj−1.

Let k = log4B. We have L = bm2/kc. Let K = bU/Lc be approximately the number of
predecessor search queries we put in Qpub in [x, y]. We sample a random integer ∆ ∈ [1, L]. Recall
that within this block we put in Qpub all predecessor search queries at points of form ∆ + j · L.
That is, we divide U into roughly K intervals of size L, with a uniformly random offset. Finally,
recall that Ej is the indicator random variable indicating [∆ + j · L,∆ + (j + 1) · L) contains at
least one point in S.

We will involve the following inequalities as a toolkit to finish our analysis. The proofs are
deferred to the appendix of the full version of this paper.

Fact 11. For A, T > 0,
∑T

h=1 e
−A/h · h−1.5 ≤ O(e−A/T (1/

√
T + 1/

√
A)).

Fact 12. For A, T > 0,
∑T

h=1 e
−A/(T−h) · h−0.5 ≤ O(e−A/T

√
T ).

Fact 13. For A1, A2, T > 0,

T∑
h=1

e−A1/h−A2/(T−h) · h−1.5(T − h)−1.5

≤O

(
T−1.5e−(A1+A2)/2T ·

(
1 +

√
(A1 +A2)/T +

√
A1A2

T (A1 +A2)

)

·
(

1/
√
A1 + 1/

√
A2

))
.
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Fact 14. For positive 2A1 ≤ A2 and B1 ≥ B2, we have
A2

1
B1

+ 7
8 ·

A2
2

B2
≥ (A1+A2)2

B1+B2
.

The following lemma asserts that not too many non-empty intervals have few elements.

Lemma 15. For l ≤ m/
√
k = O(

√
L), the expected number of intervals that have between l/2 and

l elements is upper bounded by O(lk/m+ 1).

Proof. Instead of upper-bounding the expected number of such intervals directly, we are going to
count how many elements can be the first element in such a interval in expectation. By linearity
of expectation, it suffices to estimate for each element sc, what is the probability that it becomes
such an element.

Fix an integer c ∈ [2,m − 3l]. sc can be the first element in a interval that have at most l
elements, only if

• sc−1 is in an earlier interval, and

• sc+l is in a later interval.

To bound the probability, let us first estimate the probability that sc+l = z conditioned on
sc = y for some y ≤ U − 3L and z > y. By Proposition 10, we have

Pr[sc+l = z | sc = y] =
M(z − y − 1, l − 1) ·M(U − z,m− c− l)

M(U − y,m− c)

=O

 l(m− c− l)22(U−y)−(m−c) · exp(− l2

4(z−y) −
(m−c−l)2

4(U−z) )

M(U − y,m− c) · (z − y)1.5(U − z)1.5

 .

By Cauchy-Schwarz, l2

4(z−y) + (m−c−l)2
4(U−z) ≥

(m−c)2
4(U−y) . Thus, when z ≤ U+y

2 (which implies 1/(U − z) ≤
2/(U − y)), the probability is at most

Pr[sc+l = z | sc = y]

≤O

 l(m− c− l)22(U−y)−(m−c)

M(U − y,m− c)
·

exp(− (m−c)2
4(U−y))

(z − y)1.5(U − y)1.5

 .

When z > U+y
2 (which implies 1/(U − y) ≥ 1/(2z − 2y)), since 2l < m− c− l and z − y > U − z,

we have

Pr[sc+l = z | sc = y]

=O

 l(m− c− l)22(U−y)−(m−c) · exp(− l2

4(z−y) −
(m−c−l)2

4(U−z) )

M(U − y,m− c) · (z − y)1.5(U − z)1.5

 .

and by Fact 14,

l2

4(z − y)
+

7

8
· (m− c− l)2

4(U − z)
≥ (m− c)2

4(U − y)
.
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The probability is also at most

Pr[sc+l = z | sc = y]

≤O

 l(m− c− l)22(U−y)−(m−c)

M(U − y,m− c)
· e

− (m−c)2
4(U−y)−

(m−c−l)2
32(U−z)

(U − y)1.5(U − z)1.5

 .

Thus, for U − y ≥ 3L and y < x ≤ y + L, we have

Pr[sc+l ≥ x | sc = y]

=

U+y−x∑
z=x

Pr[sc+l = z | sc = y] +
U∑

z=U+y−x+1

Pr[sc+l = z | sc = y]

≤O

(
l(m− c− l)22(U−y)−(m−c)

M(U − y,m− c)
· e
− (m−c)2

4(U−y)

(U − y)1.5

·

U+y−x∑
z=x

1

(z − y)1.5
+

U∑
z=U+y−x

e
− (m−c−l)2

32(U−z)

(U − z)1.5

)

≤O

(
l(m− c− l)22(U−y)−(m−c)

M(U − y,m− c)
· e
− (m−c)2

4(U−y)

(U − y)1.5

·

 1√
x− y

+

x−y∑
U−z=1

e
− (m−c)2

32(U−z)

(U − z)1.5

)

which by Fact 11, is at most

≤O

(
l(m− c− l)22(U−y)−(m−c)

M(U − y,m− c)
· e
− (m−c)2

4(U−y)

(U − y)1.5

·

 1√
x− y

+
e
− (m−c)2

32(x−y)

m− c

). (5)
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Similarly, for y ≥ 2L and x > y − L (which implies x > y/2), we have

Pr[sc−1 ≤ x | sc = y]

=

x∑
z=1

Cy−z−1 ·M(z − 1, c− 2)

M(y − 1, c− 1)

≤O

(
1

M(y − 1, c− 1)

x∑
z=1

c22y−ce−c
2/4z

(y − z)1.5z1.5

)

≤O

(
c22y−c

M(y − 1, c− 1)

(
x∑

z=y−x

e−c
2/4z

(y − z)1.5z1.5
+

y−x∑
z=1

e−c
2/4z

(y − z)1.5z1.5

))

≤O

 c22y−c

M(y − 1, c− 1)
· 1

y1.5

 e
− c

2

4y

√
y − x

+
e
− c2

4(y−x)
√
y − x

+
e
− c2

4(y−x)

c


≤O

 c22y−c

M(y − 1, c− 1)
· e
− c

2

4y

y1.5

 1√
y − x

+
e
− c2

8(y−x)

c

 . (6)

The probability that 2L ≤ sc ≤ U − 3L, c is the first element in a interval with at most l
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elements, is at most

U−3L∑
y=2L

L∑
b=1

1

L
Pr[sc = y, sc−1 ≤ y − b, sc+l > y − b+ L]

=

U−3L∑
y=2L

Pr[sc = y]

L

L∑
b=1

Pr[sc−1 ≤ y − b, sc+l > y − b+ L | sc = y]

≤
U−3L∑
y=2L

M(y − 1, c− 1)M(U − y,m− c)
L ·M(U,m)

L∑
b=1

O

 c22y−c

M(y − 1, c− 1)
· e
− c

2

4y

y1.5

 1√
b

+
e−

c2

8b

c


· l(m− c− l)2

2(U−y)−(m−c)

M(U − y,m− c)
· e
− (m−c)2

4(U−y)

(U − y)1.5
·

 1√
L− b

+
e
− (m−c)2

32(L−b)

m− c


≤O

(
22U−mcl(m− c− l)

L ·M(U,m)

U∑
y=1

e
− c

2

4y
− (m−c)2

4(U−y)

y1.5(U − y)1.5

L∑
b=1

 1√
b

+
e−

c2

8b

c

 1√
L− b

+
e
− (m−c)2

32(L−b)

m− c

)

≤O

(
cl(m− c− l)U1.5

mL

 U∑
y=1

e
− c

2

4y
− (m−c)2

4(U−y)

y1.5(U − y)1.5


L∑
b=1

 1√
b

+
e−

c2

8b

c

 1√
L− b

+
e
− (m−c)2

32(L−b)

m− c

).
By Fact 13, we have

U∑
y=1

e
− c

2

4y
− (m−c)2

4(U−y)

y1.5(U − y)1.5

≤O

(
U−1.5e−(c2+(m−c)2)/2U ·

(
1 +

√
c2 + (m− c)2

U

+

√
c2(m− c)2

U(c2 + (m− c)2

)
· (1/c+ 1/(m− c))

)
≤O

(
U−1.5(1/c+ 1/(m− c))

)
.
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Next, we bound the last sum:

L∑
b=1

 1√
b

+
e−

c2

8b

c

 1√
L− b

+
e
− (m−c)2

32(L−b)

m− c


≤

L∑
b=1

1√
b(L− b)

+
L∑
b=1

1

(m− c)
√
b

+

L∑
b=1

1

c
√
L− b

+

L∑
b=1

e
− c

2

8b
− (m−c)2

32(L−b)

≤ O

(
1 +

√
L

m− c
+

√
L

c

)
+ L · e−

m2

32L

≤ O

(
1 +

√
L

m− c
+

√
L

c

)
,

where the last inequality is due to our assumption L logL = o(U). Hence, for 2 ≤ c ≤ m− 3l, we
have

Pr[2L ≤ sc ≤ U − 3L,

c is the first element of a interval with at most l elements]

·
U−3L∑
y=2L

1

L

L∑
b=1

Pr[sc = y, sc−1 ≤ y − b, sc+l > y − b+ L]

≤O

(
cl(m− c− l)

mL

(
1

c
+

1

m− c

)(
1 +

√
L

m− c
+

√
L

c

))
.

Next, we take the sum over c:

m−3l∑
c=2

cl(m− c− l)
mL

(
1

c
+

1

m− c

)(
1 +

√
L

m− c
+

√
L

c

)

≤2

m/2∑
c=1

cl(m− c)
mL

· 2

c
·

(
1 +

2
√
L

c

)

≤O

m/2∑
c=1

l

L

(
1 +

√
L

c

)
≤O

(
lm/L+ (l logm)/

√
L
)

=O(lk/m),

where the last inequality is due to our assumption L = o(U/ logU).
So far, we obtained an upper bound on the expected number of non-empty intervals that
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• have at most l elements;

• begin with sc such that 2L ≤ sc ≤ U − 3L and 2 ≤ c ≤ m− 3l.

However, there could be at most O(1) intervals that begin with an sc with sc ≤ 2L or sc ≥ U − 3L,
or c = 1. For c > m− 3l, there could be at least O(1) intervals with at least l/2 elements.

Hence, the expected number of non-empty intervals with at most l and at least l/2 elements is
O(lk/m+ 1).

Let S′ ⊆ S be an (arbitrarily) jointly distributed subset of S, and E[|S′|] = (1−ε)m. The above
bound implies an upper bound on the number of non-empty intervals that do not contain any point
in S′.

Corollary 16. Let S′ ⊆ S be an (arbitrarily) jointly distributed subset of S, and E[|S′|] = (1−ε)m.
The number of non-empty intervals that do no contain any point in S′ has expectation at most
O(
√
εk + logm), where the expectation is taken over the joint distribution of S, ∆ and S′.

Proof. By Lemma 15, the number of intervals that have at most m
√
ε/k elements is at most

O(
√
εk+ logm) (regardless of whether it contains a point in S′). On the other hand, the expected

number of intervals that have at least m
√
ε/k elements that do not contain any point in S′ is at

most
εm

m
√
ε/k

=
√
εk.

Summing up the two parts proves the corollary.

Next lemma considers the gaps between adjacent non-empty intervals. It asserts that most
non-empty intervals are consecutive intervals, and very few pairs are far away.

Lemma 17. The expected number of non-empty interval pairs that have between t−1 and 2t empty
intervals and no non-empty interval in between is at most O(

√
k/t+ 1). In particular, the expected

number of non-empty intervals is at most O(
√
k + logK).

Proof. Let us first bound the expected number of non-empty interval pairs with exactly t−1 empty
intervals (and no non-empty interval) in between, i.e., adjacent non-empty interval pairs (B1,B2)
that are t intervals far from each other. Instead of upper-bounding it directly, we are going to
estimate for each element sc, the probability that it is the last element in B1 and sc+1 is the first
element in B2. Then by linearity of expectation, taking the sum over c gives us the desired bound.
Indeed, for 1 ≤ c ≤ m − 1 and (t − 1)L < y − x < (t + 1)L, the probability that sc = x, sc+1 = y
and they form such a pair is at most

Pr[sc = x, sc+1 = y] ·
(

1− |y − x− tL|
L

)
=
M(x− 1, c− 1)M(U − y,m− c)Cy−x−1

M(U,m)
·
(

1− |y − x− tL|
L

)
≤O

(
c(m− c) · U1.5

m · x1.5(y − x)1.5(U − y)1.5
· L− |y − x− tL|

L

)
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For x ≤ U − 5tL, we have

x+(t+1)L−1∑
y=x+(t−1)L+1

c(m− c) · U1.5

m · x1.5(y − x)1.5(U − y)1.5
· L− |y − x− tL|

L

≤O

 tL∑
y−x=(t−1)L+1

c(m− c) · U1.5

m · x1.5(y − x)1.5(U − x)1.5

(
y − x
L
− (t− 1)

)
=O

(
c(m− c) · U1.5

m · x1.5(U − x)1.5
· 1

t1.5
√
L

)
.

Now, we take the sum over x, the expected number of such (B1,B2) pairs where the last element
in B1 is sc ≤ U − 5tL, is at most

U−5tL∑
x=1

O

(
c(m− c) · U1.5

m · x1.5(U − x)1.5
· 1

t1.5
√
L

)
≤ O

(
c(m− c)
m · t1.5

√
L

)
.

Next, we take the sum over c,

m−1∑
c=1

O

(
c(m− c)
m · t1.5

√
L

)
= O

(
m

t1.5
√
L

)
= O(

√
k/t1.5).

A similar argument shows that, for any t′ ∈ [t− 1, 2t), the expected number of adjacent non-empty
interval pairs (B1,B2) such that

• they are t′ intervals far, and

• the last element in B1 is at most U − 5tL

is at most O(
√
k/t′1.5). However, there could be at most O(1) interval pairs that are [t − 1, 2t)

intervals far after U − 5tL. Hence, taking the sum over t′, the expected total number of such pairs
is O(

√
k/t+ 1).

In particular, taking the sum over t = 2i for i = 0, . . . , logK gives us an upper bound of
O(
√
k + logK) on the expected number of non-empty pairs.

Now, we are ready to prove Lemma 7. Note that k,K = Θ(log4B).

Lemma 7 (restated). For random S and ∆, let S′ ⊆ S be a subset (arbitrarily) jointly distributed.
Then there is a prefix-free binary string ext∆,S(S′), such that ext∆,S(S′) and S′ together determine
{Ej}j∈[K] (or equivalently, the set of non-empty intervals). Moreover, we have the following bound
on the expected length of ext∆,S(S′):

E
∆,S,S′

[∣∣ext∆,S(S′)
∣∣] ≤ O (√ε log2B log(1/ε) + logB log logB

)
,

where ε := E[1− |S′|/m].

Proof. First observe that for each non-empty interval, when at least one of its elements appears
in S′, we already know this interval is non-empty. In the other words, it suffices to encode in
ext∆,S(S′), the non-empty intervals that none of the elements appears in S′.
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Encode {Ej} given S′. We now describe ext∆,S(S′), which encodes the non-empty intervals
given S′. To this end, we first compute all non-empty intervals, as well as the non-empty intervals
that contain no points in S′. Let Kne be the number of non-empty intervals, and Kun be the number
of “unknown” non-empty intervals (i.e. the non-empty intervals that do not contain a point in S′).
Let I1, I2, . . . , IKne ∈ [K] be all non-empty intervals in the increasing order. Let Ii1 , Ii2 , . . . , be all
non-empty intervals that contain no points in S′ (the “unknown” intervals to be encoded). We first
write down Kne, then for each “unknown” interval Iia , we do the following:

1. write down ia − ia−1 (i0 is assumed to be 0);

2. write down Iia − Iia−1.

All integers are encoded using the folklore prefix-free encoding which takes O(logN) bits to encode
an integer N . This completes ext∆,S(S′).

Decode {Ej} given ext∆,S(S′) and S′. To decode {Ej}, we first compute the list J of non-
empty intervals that contain at least one point in S′. Next, we read Kne (which together with |J |,
determines Kun), and do the following for a = 1, . . . ,Kun:

1. read the next integer and recover ia;

2. for i = ia−1 + 1, . . . , ia − 1, let Ii be the next interval in J (the intervals that do no require
encoding);

3. read the next integer and recover Iia .

Finally, for i = iKun + 1, . . . ,Kne, let Ii be the next interval in J . This recovers all I1, . . . , IKne ,
hence, decodes {Ej}.

The length of ext∆,S(S′). Next, we analyze the expected length of ext∆,S(S′). Kne takes
O(logK) bits to encode. Then for a = 1, . . . ,Kun, ia − ia−1 takes O(log(ia − ia−1)) bits to encode.
Since all these integers sum up to (at most) Kne, by concavity of log, the total number of bits used
to encode {ia − ia−1} is at most

O(Kun · log
Kne

Kun
).

By Corollary 16, E[Kun] ≤ O(
√
εk + logm) = O(max{

√
εk, logm}). By Lemma 17, E[Kne] ≤

O(
√
k). Then by the concavity and monotonicity of f(x, y) = x ln(y/x), the expected encoding

length of all ia − ia−1 is at most

O

(
max{

√
εk, logm} log

( √
k

max{
√
εk, logm}

))
. (7)

Next, the value Iia−Iia−1 takesO(log(Iia−Iia−1)) bits to encode. For all Iia − Iia−1 ≤
√
k

max{
√
εk,logm} ,

their total encoding length is at most

O

(
Kun · log

( √
k

max{
√
εk, logm}

))
,
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and its expectation is at most

O

(
max{

√
εk, logm} · log

( √
k

max{
√
εk, logm}

))
. (8)

For all Iia − Iia−1 >
√
k

max{
√
εk,logm} , by Lemma 17, their expected encoding length is at most

∑
t= 2b·

√
k

max{
√
εk,logm}

:b≥0,t≤K

O((
√
k/t+ 1) log t)

≤ O

(
max{

√
εk, logm} · log

( √
k

max{
√
εk, logm}

)
+ log2K

)
. (9)

Finally, summing up (7), (8) and (9), the expected length of extS,∆(S′) is at most

O

(
max{

√
εk, logm} · log

( √
k

max{
√
εk, logm}

)
+ log2K

)
.

Since k,K = Θ(log4B), m ≤ B and f(x, y) = x log(y/x) is non-decreasing when x ≤ y/e, it is at
most

O
(

max{
√
εk log(1/

√
ε), logB · log logB}+ log2 logB

)
≤O

(√
εk log(1/ε) + logB · log logB

)
.

This proves the lemma.

Finally, we prove Lemma 5 (and note that k = log4B).

Lemma 5 (restated). The entropy of {Ej}j∈[K] is at least Ω(
√
k).

Proof. To prove the entropy lower bound, we will apply the chain rule, and show that for many j,
H(Ej−1 | E≥j) is large. Denote by c, the smallest element in E≥j . Then c and sc, . . . , sm determine
E≥j . Thus, it suffices to lower bound H(Ej−1 | c, sc, . . . , sm), as conditioning on more variables
could only decrease the entropy.

To this end, fix j ∈ [k/30, 2k/30], and suppose the j-th interval is [x, x + L). Then x ∈
[m2/30, 2m2/30], and x < 2U/3. We denote by Wj , the event that c ∈ [m/3, 2m/3] and sc ∈
[x+ L/2, x+ L). The entropy lower bound follows from the following two claims.

Claim 18. The probability of Wj is at least Pr[Wj ] ≥ Ω(1/
√
k).

Claim 19. The conditional entropy of Ej−1 conditioned on Wj, is at least

H(Ej−1 |Wj , c, sc, . . . , sm) ≥ Ω(1).
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We first prove the lemma assuming the two claims. Since Wj is an event that depends only on
c and sc, by definition, we have

H(Ej−1 | E≥j)
≥H(Ej−1 | c, sc, . . . , sm)

= E
c0,z

[H(Ej−1 | c = c0, sc = z, . . . , sm)]

≥Pr[Wj ] · E
c0,z|Wj

[H(Ej−1 |Wj , c = c0, sc = z, . . . , sm)]

≥Pr[Wj ] ·H(Ej−1 |Wj , c, sc, . . . , sm)

≥Ω(1/
√
k).

Finally, by chain rule, we have

H(E1, . . . , EK) =
K∑
j=1

H(Ej | Ej+1, . . . , EK)

≥
2k/30∑
j=k/30

H(Ej−1 | Ej , . . . , EK)

≥ Ω(
√
k).

This proves the lemma. Consequently, it suffices to prove the two claims.

To prove Claim 18, let us first lower bound the probability that sc = z for some z ∈ [x+L/2, x+
L),

Pr[sc = z] =
x∑
y=1

Pr[sc = z, sc−1 = y]

≥
x∑

y=x−L

M(y − 1, c− 2)Cz−y−1M(U − z,m− c)
M(U,m)

which by Proposition 10, is at least

Ω

 x∑
y=x−L

c(m− c)U1.5e−O(c2/y+(m−c)2/(U−z))+Ω(m2/U)

y1.5(z − y)1.5(U − z)1.5m


=Ω

 x∑
y=x−L

m

x1.5(z − y)1.5


≥Ω

(
1

m2
√
L

)
.

Now, we take the sum over z from x + L/2 to x + L and over c from m/3 to 2m/3, proving
Pr[Wj ] =

∑
c∈[m/3,2m/3]

∑
z∈[x+L/2,x+l) Pr[sc = z] ≥ Ω(

√
L/m) = Ω(1/

√
k).
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To prove Claim 19, it suffices to show that the conditional probability of Ej−1 = 0 is bounded
away (by a constant) from both 0 and 1. Note that sc is the first element after (j − 1)-th interval,
sc−1 must be in (j − 1)-th interval or earlier. We have

Pr[Ej−1 = 0 | c, sc = z, sc+1, . . . , sm]

= Pr[sc−1 < x− L | sc = z, sc−1 < x]

=
Pr[sc−1 < x− L | sc = z]

Pr[sc−1 < x | sc = z]

=

∑x−L−1
y=1 M(y − 1, c− 2)Cz−y−1∑x−1
y=1 M(y − 1, c− 2)Cz−y−1

Recall that c = Θ(m), x = Θ(m2), z − x = Θ(L). Note that M(y, c)Cz−y is increasing when

y = O(m2) and exp(−c2/4y)
exp(−c2/(4y−2c))

= 1 + o(1) when y2 = ω(c3), thus the probability is

= (1± o(1))

∑x−L
y=1 e

−c2/4yy−1.5(z − y)−1.5∑x
y=1 e

−c2/4yy−1.5(z − y)−1.5
.

On the one hand, it is at least∑x−L
y=1 e

−c2/4yy−1.5(z − y)−1.5∑x
y=1 e

−c2/4yy−1.5(z − y)−1.5

≥
∑x−L

y=x−2L e
−c2/4(x−2L)(x− L)−1.5(z − (x− 2L))−1.5

2
∑x

y=x/2 e
−c2/4yy−1.5(z − y)−1.5

≥Ω

(∑x−L
y=x−2L x

−1.5(z − x)−1.5∑x
y=x/2 x

−1.5(z − y)−1.5

)

=Ω

(
L · x−1.5 · L−1.5

x−1.5L−0.5

)
=Ω(1),

since z − x ∈ [L/2, L), L� x and c2/x = O(1).
On the other hand, it is at most∑x−L

y=1 e
−c2/4yy−1.5(z − y)−1.5∑x

y=1 e
−c2/4yy−1.5(z − y)−1.5

=1−
∑x

y=x−L+1 e
−c2/4yy−1.5(z − y)−1.5∑x

y=1 e
−c2/4yy−1.5(z − y)−1.5

≤1− Ω

(∑x
y=x−L+1 e

−c2/4(x−L)x−1.5(z − y)−1.5

x−1.5L−0.5

)

≤1− Ω

(
L(z − (x− L))−1.5

L−0.5

)
≤1− Ω(1).
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In the other words, Pr[Ej−1 = 0 | c, sc = z, sc+1, . . . , sm] is always bounded away from both 0
and 1. Thus, the conditional entropy is at least a constant

H(Ej−1 | c, sc = z, sc+1, . . . , sm) ≥ Ω(1).

This bound holds for all c, z that satisfy Wj , hence,

H(Ej−1 |Wj , c, sc, sc+1, . . . , sm) ≥ Ω(1).

This completes the proof of the lemma.
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A Proofs of the Facts

Proof of Fact 11. Observe that exp(−A/h)h−1.5 is increasing when h ∈ [1, 1.5A] and decreasing
when h > 1.5A. Thus if T ≤ 1.5A,

T∑
h=1

exp(−A/h)h−1.5 ≤ exp(−A/T )
T∑
h=1

T−1.5 = exp(−A/T )/
√
T .

Otherwise,

T∑
h=1

exp(−A/h)h−1.5 ≤
1.5A∑
h=1

exp(−A/h)h−1.5 +O(1/
√
A) = O(1/

√
A).

Then the desired inequality follows.

Proof of Fact 12.

T∑
h=1

exp(−A/(T − h)) · h−0.5 ≤ exp(−A/T )

T∑
h=1

·h−0.5 = O(exp(−A/T )

∫ T

1

dx√
x

) = O(exp(−A/T )
√
T ).

Proof of Fact 13. Without loss of generality, assume A1 ≤ A2. Let h∗ := A1T/(A1 +A2) the point
such that A1/h

∗ = A2/(T − h). Note that h∗ ≤ T/2. Thus

T−1∑
h=1

exp(−A1/h−A2/(T − h))h−1.5(T − h)−1.5

≤O

(
h∗∑
h=1

exp(−A1/h)h−1.5(T − h)−1.5 +
T∑

h=h∗

exp(−A2/(T − h))h−1.5(T − h)−1.5

)
The former term is upper bounded by

T−1.5
h∗∑
h=1

exp(−A1/h)h−1.5 ≤ T−1.5 exp(−A1/h
∗)(1/

√
h∗ + 1/

√
A1),

due to the fact h∗ < T/2 and Fact 11. Note that

T/2∑
h=h∗

exp(−A2/(T − h))h−1.5(T − h)−1.5 ≤ O(T−1.5 exp(−2A2/T )(1/
√
h∗ − 1/

√
T ).

T−1.5
T∑

h=T/2

exp(−A2/h)(T − h)1.5 ≤ O(T−1.5 exp(−A2/T )(1/
√
T + 1/

√
A2)).
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Thus the latter term is upper bounded by

T−1.5 exp(−A2/T )(1/
√
h∗ + 1/

√
A2 + 1/

√
T ).

By the symmetry of the expression,

T−1∑
h=1

exp(−A1/h−A2/(T − h))h−1.5(T − h)−1.5

≤O

(
T−1.5 exp(−(A1 +A2)/2T )(

√
A1 +A2

A1T
+

√
A1 +A2

A2T
+ 1/

√
A1 + 1/

√
A2 + 1/

√
T )

)

=O

(
T−1.5 exp(−(A1 +A2)/2T )(1 +

√
A1 +A2

T
+

√
A1A2

T (A1 +A2)
)(1/

√
A1 + 1/

√
A2)

)

Proof of Fact 14. The following inequality is an alternative form of the desired inequality:

8(
A2

B2
− A1

B1
)2 ≥ A2

2

B2
(

1

B1
+

1

B2
).

Recall that A2 > 2A1 and B1 ≥ B2, so the L.H.S. is at least 2(A2/B2)2 and the R.H.S. is at most
2(A2/B2)2.

B A Constant Redundancy Algorithm

In this section, we aim to propose an algorithm which solves RMQ using space of log2Cn + 1 bits
and answer any query in O(log n) times. The upper bounds from [NS14] imply exactly identical
result, but our approach is totally different from [NS14] which uses the algorithm from [FH11] as
a black-box. Our approach is much simpler, clearer and easier to be implemented.

Our algorithm is some kind of augmented binary (search) tree called by Mihai Pǎtraşcu[Pǎt08a,
Pǎt08b] or segment tree called by Chinese competitive programming participants. Note that the
structure is different with the one used to store segments invented by Jon Louis Bentley[Ben77].

• The data structure is a binary tree which represents some properties of an array A[1 . . . n].
The value of i-th leaf of the in-order tree traversal is a function of A[i].

• The tree is a recursive structure. Every internal node equips a tiny structure to aid query
algorithm. Let the leaves contained in a subtree v be the i-th to j-th leaves of the in-order
tree traversal. Then the root node of subtree v represents the subarray A[i . . . j]. The tree is

a complete binary tree, thus there are roughly
∑log2 n

i=0 n/2i ≤ 2n nodes.

• Usually, given any query on subarray A[i . . . j], the query will be broken into at most O(log n)
queries on smaller subarraies represented by the nodes of the tree. But here in our algorithm,
the query algorithm will return the answer upon the query interval is broken, therefore we
will access at most O(log n) nodes in the tree.
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Query Algorithm. Given a query [a, b], starting from the root of the tree, we can always recurse
to one of the children if [a, b] is completely covered by the interval represented by the child. The
problem is how do we find the position of the minimum value in the range [a, b] if [a, b] overlaps
with both of the two children intervals. Given a node v, let [Lv, Rv] be the interval represented by
v, let Sl,v, Sr,v ∈ [n]∗ be the sequences of positions of the greedy longest decreasing subsequences
starting from Lv in A[Lv, Rv] and starting from Rv in A[Rv, Lv]. Formally, Sl,v,1 , Lv, Sl,v,i ,
min{j ∈ [Sl,v,i−1, RV ] : A[j] < A[Sl,v,i−1]} and Sr,v,1 , RV , Sr,v,i , max{j ∈ [Lv, Sr,v,i−1] : A[j] <
A[Sr,v,i−1]}. Suppose our query [a, b] is covered by a pair of sibling nodes p, q with paramenters
a ≤ Rp, b ≥ Lq. Our idea is that the answer for query [a, b] obviously is arg mini∈{Sr,p,a′ ,Sl,q,b′}A[i]

if we have a ∈ (Sp,r,a′+1, Sp,r,a′ ] and b ∈ [Sq,l,b′ , Sq,l,b′+1). The remaining problems for our query
algorithm are

1. how to find a′ and b′?

2. how to compare A[Sr,p,a′ ] and A[Sl,q,b′ ]?

To solve the first problem, we store two values |Sl,v| and |Sr,v| in any node v.

Claim 20. The following algorithm find a′, b′ in O(log n) times.

Algorithm 1: algorithm to relocate the range

input : query [a, b]; a pair of sibling nodes p, q with paramenters a ≤ Rp and b ≥ Lq.
output: a tuple (a′, b′) such that a′ = min{i : Sp,r,i ≥ a} and b′ = min{i : Sq,l,i ≤ b}.
return ( FindA(p),FindB(q))
Function FindA(current node: v) is

if Lv = Rv then return 1 ; // It is a leaf node

LChild← LChild(v);
RChild← RChild(v);
if a ≥ LRChild then return FindA(RChild) ; // In the right subtree

// Otherwise a is in the left subtree

offset←FindA(LChild);
return max{0, offset− (|Sr,LChild|+ |Sr,RChild| − |Sr,v|)}+ |Sr,RChild|;

end
Function FindB(current node: v) is

if Lv = Rv then return 1 ; // It is a leaf node

LChild← LChild(v);
RChild← RChild(v);
if a ≤ RLChild then return FindB(LChild) ; // In the left subtree

// Otherwise a is in the rigt subtree

offset←FindB(RChild);
return max{0, offset− (|Sl,LChild|+ |Sl,RChild| − |Sl,v|)}+ |Sl,LChild|;

end

Consider the process when we merge the two array A[Sr,p] and A[Sl,q] into a sorted decreasing
array A′. We define a boolean string Mergepq ∈ {0, 1}|Sr,p|+|Sr,q | as the witness of the process:
Mergepq,i = 0 ⇐⇒ A′[i] is from A[Sr,p], Mergepq,i = 1 ⇐⇒ A′[i] is from A[Sl,q]. It is easy
to see that, to compare A[Sr,p,a′ ] and A[Sl,q,b′ ], it is sufficient to compare the index of a′-th 0
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and the index of b′-th 1. To this end, we maintain an additional data structure in every internal
node such that any select query can be answered in time O(log |Mergepq|) for any internal node
with children nodes p, q. The additional data structure is a fundamental application of augmented
binary (tree) or segment tree[Pǎt08a]. Let Mergepq,(i) denote the position of i-th smallest one in
Mergepq. We just construct a string of numbers T ∈ [u]n from Mergepq in the following way:

T1 , Mergepq,(1),∀i > 1, Ti , Mergepq,(i) −Mergepq,(i−1). Then the select(i) on Mergepq is equal to
rank(i) on T . It is easy to see that

A[Sr,p,a′ ] < A[Sl,q,b′ ] ⇐⇒ select(b′,Mergepq) = rank(b′, T ) ≥ a′ + b′. (10)

Table Construction. The remaining part is construct a data structure meets everything the
query algorithm needs with at most logCn + 1 bits, where Cn =

(
2n
n

)
/(n+ 1) ∼ 22n

n3/2
√
π

is the n-th

Catalan number. Note that the number of possible databases of length n for RMQ exactly is the
number of binary trees of size n, i.e. the n-th Catalan number. To this end, we represent our data
structure in spill-over representation by applying Mihai Pǎtraşcu’s technique[Pǎt08b]. In spill-over
representation, an element x ∈ X is represented as a tuple (ym, yk) ∈ {0, 1}m× [k] for some integers
m, k, so the number of bits used to store x is considered as m + log2 k. We want to apply Mihai
Pǎtraşcu’s lemma in a black-box way.

Lemma 21 (Lemma 5 from [Pǎt08b]). Assume we have to represent a variable x ∈ X , and a pair
(yM , yK) ∈ {0, 1}M(x) × {0, . . . ,K(x)− 1}. Let p : X → R be a probability density funciton on X ,
and K,M : X → N be non-negative functions on X satisfying:

∀x ∈ X : log2

1

p(x)
+M(x) + log2K(x) ≤ H (11)

We can design a spill-over representation of x, yM and yK with the following parameters:

• the spill universe is K? with K? ≤ 2r, and the memory usage is M? bits;

• the redundancy is at most 4/r bits, i.e. M? + log2K? ≤ H + 4/r;

• if the word size is w = Ω(log |X | + log r + log maxxK(x)), x and yK can be decoded with
O(1) word probes. The input bits yM can be read directly from memory, but only after yK is
retrieved;

• given a precomputed table of O(|X |) words that only depends on the input functions K,M and
p, decoding x and yK takes constant time on the world of RAM.

However, the issue is that our tiny structures equiped by internal nodes can not be considered
as a part of varable x in Lemma (21), since the cardinality of the universe of the structure can be
as large as exp(Ω(n)), which can not be read in O(1) times by a cell-probe shceme with word size
w = O(log n). To fix this issue, we treat the tiny structure as the third child of the internal nodes.
Assume all the tiny structures are prepared into a spill-over representation in following way:

Claim 22. We can design a spill-over representation of any S ∈
(

[u]
n

)
with the following para-

menters:

• the spill-over universe is KS ≤ 2r, and the memory usage is MS bits;
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• the redundancy is at most 4/r bits, i.e. MS + log2KS ≤ log2

(
u
n

)
+ 4/r;

• if the word size is w = Ω(log u + log r), for any i ∈ [n], the query select(i) can be answered
in time O(log n).

The algorithmm is a simple application of Mihai Pǎtraşcu’s algorithm [Pǎt08b], we omit the
proof here. Now we are ready to show the constrution of our table.

Let ϕ be some label assigned to some node, and ϕv a label assigned to node v. For any leaf v,
the universe of ϕv will be identical, and the cardinality of the universe is 1. Hence there will be
nothing to be stored in a leaf. For a internal node v, ϕv , (|Sl,v|, |Sr,v|) is a tuple. Let N (n, ϕ)
denote the number of possible instances of cartesian trees of A[1 . . . n] conditioning on the root of
our data structure is labeled with ϕ. Note that we can write the following recursion of N (a+, b, ϕ):

N (a+ b, ϕ) =
∑

ϕ′,ϕ′′:A(ϕ′,ϕ′′)3ϕ

N (a, ϕ′) · N (b, ϕ′′) · M(ϕ,ϕ′, ϕ′′),

where A(ϕ′, ϕ′′) is the set of labels can be merged into from children with labels ϕ′ and ϕ′′,
M(ϕ,ϕ′, ϕ′′) is the number of possible merge witnesses given the event that children is labled with
ϕ′, ϕ′′ and parent node is labeled with ϕ. In particular,

A(ϕ′, ϕ′′) , {(l, r) : (ϕ′l = l ∧ ϕ′r + ϕ′′r ≥ r ≥ ϕ′′r + 1) ∨ (ϕ′′r = r ∧ ϕ′l + ϕ′′l ≥ l ≥ ϕ′r + 1)},

where ϕl, ϕr are the first and second elements of ϕ respectively. Observe that the two substrees
and the merge witness are mutual independent if the three labels ϕ,ϕ′, ϕ′′ are fixed. Also observe
that M(ϕ,ϕ′, ϕ′′) is a binomial coefficent but a little bit complicated:

M(ϕ,ϕ′, ϕ′′) ,


(ϕ′r−(ϕr−ϕ′′r )+ϕ′′l

ϕ′′l

)
(if ϕl = ϕ′l)(ϕ′′l −(ϕl−ϕ′l)+ϕ

′
r

ϕ′r

)
(if ϕr = ϕ′′r)

(12)

Assume all the tiny structures are prepared into a spill-over representation according to Claim
(22) with the binomial coefficent in Eq(12). Let K(n, ϕ),M(n, ϕ) be the spill universe and the
memory bits used by our spill-over representation for any input array of length n and root label ϕ.
Let r to be determined. We guarantee inductively that:

K(n, ϕ) ≤ 2r; (13)

M(n, ϕ) + log2K(n, ϕ) ≤ log2N (n, ϕ) + 8 · n− 1

r
. (14)

For a leaf, there are nothing to be stored. So K(1, ∗) = 1,M(1, ∗) = 0. For a internal node v, we
assume the array of length n is broken into two subarrays of length a and b without loss of generality.
Let ϕ′, ϕ′′ be labels of the children of v. We recursively construct data structures for both of the two
subtrees using space (M(a, ϕ′),K(a, ϕ′)) and (M(b, ϕ′′),K(b, ϕ′′)) respectively. We also construct
our tiny structure for v using space K(ϕ,ϕ′, ϕ′′) ≤ 2r and M(ϕ,ϕ′, ϕ′′) + log2K(ϕ,ϕ′, ϕ′′) ≤
log2M(ϕ,ϕ′, ϕ′′) + 4/r. Then we directly concatenate the three blocks of memory bits into a
bit vector M ′ = M(a, ϕ′) + M(b, ϕ′′) + M(ϕ,ϕ′, ϕ′′), and combine the spills into a superpill over
the univser K ′ = K(a, ϕ′) × K(b, ϕ′′) × K(ϕ,ϕ′, ϕ′′). Since log2K

′ ≤ O(log r) by our induction
hypothesis, the superspill can be stored in constant number of cells if the word size w = Ω(log r).
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Given a, b, ϕ, ϕ′, ϕ′′ the query algorithm can easily locate the blocks of memory bits of the left child,
the right child, and the tiny structure. According to our induction hypothesis, we have

M ′ + log2K
′ ≤ log2(N (a, ϕ′) · N (b, ϕ′′) · M(ϕ,ϕ′, ϕ′′)) + 8 · n− 2

r
+ 4/r.

Let p(·) be the distribution of ϕ′, ϕ′′ given ϕ, we have

p(ϕ′, ϕ′′) ,
N (a, ϕ′) · N (b, ϕ′′) · M(ϕ,ϕ′, ϕ′′)

N (n, ϕ)
.

We insert p(·) into our space upper bound, result in

log2

1

p(ϕ′, ϕ′′)
+M ′ + log2K

′ ≤ log2N (n, ϕ) + 8 · n− 2

r
+ 4/r.

By applying Lemma (21) with the inequality above, we obtain a spill-over representation of subtree
v will spill universe K? ≤ 2r, and M? memory bits, satisfying

M? + log2K? ≤ log2N (n, ϕ) + 8 · n− 2

r
+

8

r
= log2N (n, ϕ) + 8 · n− 1

r
.

Note that at each step, we pack the labels of child nodes into a spill-over representation. The
remaining problem is how can the query algorithm know the label of root node. To finish our
constrution, we appy Lemma (21) with x = (ϕ,ϕ′, ϕ′′) at the root:

log2

1

p(ϕ,ϕ′, ϕ′′)
+M ′ + log2K

′ ≤ log2Cn + 8 · n− 1

r
.

Finally, we set r , 8n.
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Final Query Algorithm. We state our final query algorithm here.

Algorithm 2: Final query algorithm to answer RMQ

input : query [a, b]; the root CurrentNode.
output: index i ∈ [n], A[i] is the RMQ in range [a, b].
begin

if a = b then
return a;

end
l ← 1,r ← n;
mid ← d(l + r)/2e;
Unpack child nodes LeftChild,RightChild,Merge and (ϕCurrentNode, ϕLeftChild, ϕRightChild)
from the spill-over representation;
while b ≤ mid ∨ a > mid do

if b ≤ mid then
r ←mid;
CurrentNode ←LeftChild;

else
l ← mid + 1;
CurrentNode ←RightChild;

end
Unpack child nodes LeftChild,RightChild,Merge and (ϕLeftChild, ϕRightChild) from the
spill-over representation;

end
Find (a′, b′), the lengths of the decreasing subsequence starting from A[mid] in subarray
A[mid . . . a] and starting from A[mid + 1] in sub array A[mid + 1 . . . b], respectively, with
Algorithm 1;

Reduce the comparing A[Sr,LeftChild,a′ ] and A[Sl,RightChild,b′ ] to select problem with Eq(10);
Answer the select problem by Merge with the algorithm guaranteed by Claim 22 in the
universe calculated with Eq(12);
if A[Sr,LeftChild,a′ ] < A[Sl,RightChild,b′ ] then

return FindA’(LeftChild,a′);
else

return FindB’(RightChild,b′);
end

end
Function FindA’(current node: v; target rank a′) is

if Lv = Rv then return Lv;
LeftChild← LChild(v);
RightChild← RChild(v);
if a′ ≤ |Sr,RightChild| then return FindA’(RightChild,a′);
return FindA’(LeftChild,a′ − |Sr,RightChild|+ (|Sr,LeftChild|+ |Sr,RightChild| − |Sr,v|));

end
Function FindB’(current node: v; target rank b′) is

if Lv = Rv then return Lv;
LeftChild← LChild(v);
RightChild← RChild(v);
if b′ ≤ |Sl,LeftChild| then return FindA’(LeftChild,b′);
return FindA’(RightChild,b′ − |Sl,LeftChild|+ (|Sl,LeftChild|+ |Sl,RightChild| − |Sl,v|));

end
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C A Generalized Time-Redundancy Trade-Off

The algorithm is a generalized version of the algorithm proposed by Fischer and Heun [FH11]. An
exactly identical upper bounds was shown in [NS14]. The essential difference beween our algorithm
and Navarro-Sadakane algorithm is the solution for findopen: our solution is much more clear and
simple.

Corollary 23 (generalized from Corollary 14 of [FH11]). Given the DFUDS of MA, RMQA(i, j)
can be answered in O(t) time with by the following sequence of operation (1 ≤ i ≤ j ≤ n).

1. x← select)(DFUDS, i+ 1)

2. y ← select)(DFUDS, j)

3. w ← ±1RMQE(x, y)

4. if rank)(DFUDS, findopen(DFUDS, w)) = i then return i

5. else return rank)(DFUDS, w)

Our algorithm follows Mihai Pǎtraşcu’s schema [Pǎt08b]. We break the parenthesis array of
length 2n into 2n/r blocks of length r. We choose B , logn

log r and t , log r
logB . For each block, we

construct a segment tree with branching factor of B. For any node with respect to range [a, . . . , b]
in the segment tree, we maintain

1. the number of )’s in sub-array DFUDS[a′, . . . , b′], which is at most r;

2. the minimum value in sub-array E[a′, . . . , b′], which is in [E[a]− r, E[a] + r].

for all the B sub-ranges [a′, . . . , b′]. Note that we can encode them with at most O(B log r) =
O(log n) bits.

To answer select, rank and ±1RMQ, we maintain three extra data structures A,B,C for prefix
sum array N ∈ [n]n/r and block minimum value array M ∈ [n]n/r : for any i, N [i] is the total
number of )’s in blocks 1, . . . , i of DFUDS; M [i] is the minimum value in i-th block of array E.

select)(i): We do a predecessor search i on N with data structure A, and find the block x which contains
i-th (. To do the predecessor search, we adopt a variety of the algorithm from [PT06b]: in
the leaf of the Van Emde Boas tree, recall that the leaf node denotes max{v ∈ N : v < i},
we write down the index of the block x such that x = max{j ∈ [n/r] : N [j] < i}. Hence the
block contains i-th ( must be x+ 1, we then finish the query by querying on the segment tree
with respect to block x+ 1.

rank)(i): The data structure B is a copy of array N . To answer the prefix sum query i, we find the
block x which contains i, return N [x − 1] plus the answer of a rank query on the segment
tree with respect to block x.

±1RMQ(x, y): We break the range [x, y] into two in-block ranges and one out-block range. The two in-block
RMQ can be easily answered by querying on at most two segment trees with respect to the
two blocks which contains x and y respectively. Our data structure C uses the algorithm from
[Sad07b] as a black-box, which is a linear space data structure which can solve the out-block
RMQ on array M in constant time. Finally, we return the minimum value among the three
answers.
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For now, we can answer three of the four kinds of queries inO(t) times with redundancy n/( logn
t )O(t).

To finish our proof, we take care of the last query findopen(w) now.
Recall that E[i] , rank((i) − rank)(i). For a closing parenthesis with index i, the index of its

open parenthesis must be max{j : E[j − 1] = E[i]}. Note that ∀i, |E[i + 1] − E[i]| = 1. Which
implies the index of the open parenthesis is the predecessor of i in set {j ∈ [n] : E[j] ≤ E[i]} plus
one. Thus the open parenthesis is in the same block as long as minE[. . . , i− 1] ( i.e. the minimum
value of the prefix of the sub-array) is not larger than E[i] and we can find its index in 2 log r

logB = 2t
time, since the minimum values of any sub-range are stored in the nodes of the segment tree.

To locate the block which contains the open parenthesis, we adopt the idea from Lemma 1 of
[MR01]. A closing parenthesis is called far if its matching parenthesis is located in a different block.
A far parenthesis is call a pioneer if its matching parenthesis is located in a different block than
its immediately next far parenthesis. Obviously, if a far closing parenthesis is not a pioneer, its
matching parenthesis and the matching parenthesis of the immediately next pioneer of the closing
parenthesis must be located in the same block. Given a closing parenthesis, we check whether it is
a far parenthesis by looking for its matching parenthesis in at most two blocks with O(t) time. We
do a predecessor search to check whether a closing parenthesis is pioneer and find the immediately
next pioneer of the closing parenthesis. Jacobson[Jac89] noted that there are at most 4n/r − 3
pioneers if there are 2n/r blocks. We have at most O(n/r) values from a universe of size 2n, so the
second branch of [PT06b] can support query time O(t) using space (n/r) · rΩ(1/t) ≤ n/Bt−1 words.
To locate the block the matching parenthesis located in, we store the number of block in the leaf
of the van Emde Boas tree.

To summarize, we support all the four kinds of queries with a redundancy of n/BO(t) =
n/( logn

t )O(t) bits and a time complexity of O(t).
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