
Beating Brute Force for Systems of Polynomial Equations over Finite Fields∗

Daniel Lokshtanov† Ramamohan Paturi‡ Suguru Tamaki§ Ryan Williams¶

Huacheng Yu¶

Abstract

We consider the problem of solvingsystems of multivariate
polynomial equations of degree kover a finite field. For every
integer k ≥ 2 and finite fieldFq where q = pd for a prime
p, we give, to the best of our knowledge, the first algorithms
that achieve an exponential speedup over the brute forceO(qn)
time algorithm in the worst case. We present two algorithms,
a randomized algorithm with running timeqn+o(n) · q−n/O(k)

time if q ≤ 24ekd, and qn+o(n) · (logq
dek)

−dn otherwise, where
e= 2.718. . . is Napier’s constant, and a deterministic algorithm
for countingsolutions with running timeqn+o(n) ·q−n/O(kq6/7d).
For the important special case of quadratic equations inF2, our
randomized algorithm has running timeO(20.8765n).

For systems overF2 we also consider the case where the input
polynomials do not have bounded degree, but instead can be
efficiently represented as aΣΠΣ circuit, i.e., a sum of products
of sums of variables. For this case we present a deterministic
algorithm running in time 2n−δn for δ = 1/O(log(s/n)) for
instances withs product gates in total andn variables.

Our algorithms adapt several techniques recently developed
via the polynomial method from circuit complexity. The algo-
rithm for systems ofΣΠΣ polynomials also introduces a new
degree reductionmethod that takes an instance of the problem
and outputs a subexponential-sized set of instances, in such a
way that feasibility is preserved and every polynomial among
the output instances has degreeO(log(s/n)).

∗This work was done in part while the authors were visiting the
Simons Institute for the Theory of Computing, Berkeley, CA.

†University of Bergendaniello@ii.uib.no. Supported by

the Beating Hardness by Pre-processing grant of the

Bergen Research Foundation
‡University of California, San Diegopaturi@cs.ucsd.edu. This

research is supported by NSF grant CCF-1213151 from the Division
of Computing and Communication Foundations. Any opinions, findings
and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National
Science Foundation.

§Kyoto University tamak@kuis.kyoto-u.ac.jp. Supported in
part by MEXT KAKENHI (24106003); JSPS KAKENHI (25240002,
26330011); the John Mung Advanced Program of Kyoto University. Part
of the work performed while the author was at Department of Computer
Science and Engineering, University of California, San Diego.

¶Stanford University. rrw@cs.stanford.edu,

yuhch123@gmail.com. Supported by an Alfred P. Sloan Fellow-
ship and NSF grants CCF-1212372 and CCF-1552651 (CAREER). Any
opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the
views of the NSF.

1 Introduction

We consider the problem of solvingsystems of multivari-
ate polynomial equationsover a finite field of orderq =
pd. For brevity, we call the problem SysPolyEqs(q). An
instanceP of the problem has the form{p1, p2, . . . , pm},
where eachpi ∈ Fq[x1,x2, . . . ,xn] and is represented as a
sum of monomials where the exponent of each variable is
at mostq−1 (due to the identityxq = x). Our task is to
decide whetherP is feasible, i.e., whether there exists an
x∈ Fn

q such thatp1(x) = p2(x) = · · · pm(x) = 0 holds. We
call such anx asatisfying assignmentto P.

We define the degree of an instance as
max1≤i≤mdeg(pi), where deg(pi) is the maximum
degree of the monomials ofpi and the degree of a
monomial is defined as the sum of the exponents of the
variables in it. For instances of degree one, the problem
is solvable in polynomial time by Gaussian elimination.
An easy reduction from the circuit satisfiability problem
shows that SysPolyEqs(2) is NP-complete for degree-2
instances. In addition, H̊astad [18] showed that, given
a degree-k instance, it is NP-hard to find an assignment
to a feasible SysPolyEqs(2) instance that satisfies a
(21−k − 21−2k + ε)-fraction of equations for anyk ≥ 2
and ε > 0. Thus the problem is extremely hard to
approximate.

In terms of exact solvability, there are few posi-
tive results known. Although several algorithms for
SysPolyEqs(2) are known in the crypto community based
on plausible average-case assumptions (see the section
on related work), to the best of our knowledge no algo-
rithm running inqδn time (for some fixedδ < 1) has been
reported for the general case of SysPolyEqs(q), for any
prime powerq and any degree larger than 1.

1.1 Our Results We present algorithms for the problem
that beat brute force search decisively for bounded degree
instances in all finite fields.

THEOREM 1.1. (Solving Low-Degree Systems of Poly-
nomial Equations).Let p be a prime, and q= pd for d≥ 1.
There is a randomized algorithm that, given an instance
of SysPolyEqs(q) with m polynomial equations of degree
at most k in n variables, decides the satisfiability of the
system correctly with high probability. The running time

of the algorithm is bounded by

• O⋆(20.8765n) time1 when q= k= 2,

• O⋆(q(1− 1
5k)n ·n3k) when p= 2 (but q> 2 or k> 2),

• O⋆(q(1−(1/200k))n ·n3kq) when p> 2 and logp< 4ek,

• O⋆

(
qn ·
(

logq
ekd

)−dn
)

when p> 2 and logp≥ 4ek,

where e= 2.718. . . is Napier’s constant.

The running time bounds of Theorem1.1can be inter-
preted in the following way. When the base of the field
size is “small” relative to the degree, that is,p< 24ek, the
algorithm outperforms brute force by a multiplicative fac-
tor of qn/O(k). This corresponds to not having to guess on
a 1/O(k) fraction of the variables, and is qualitatively the
same kind of “savings” as that of the fastest known algo-
rithms fork-SAT [32]. It would be quite surprising to see
an algorithm for SysPolyEqs(q) beating brute force by a
factor more thanqn/O(k). When the basep of the field size
becomes “very large” compared to the degree bound, i.e.,
logp ≥ 4ek, the algorithm no longer achieves the multi-
plicative factorqn/O(k) improvement over brute force, in-

stead the improvement is a factor
(

logq
ekd

)dn
, which is still

substantial and for example much larger thanqO(n/kq).
The algorithm of Theorem1.1 is randomized, a natural

goal is to obtain a deterministic algorithm with the same
running time. We are currently unable to achieve this goal,
but we do obtain a deterministic algorithm that decisively
beats brute force and also solves the problem of counting
the number of satisfying assignments.

THEOREM 1.2. (Counting Solutions to Low-Degree Sys-
tems of Polynomial Equations).Let q= pd for a prime
p and integer d≥ 1. There is a deterministic algorithm
that, given an instance of SysPolyEqs(q) with m polyno-
mial equations of degree at most k in n variables, runs in

time q
n

(
1− 1

300kq6/7d

)
+o(n)

·mO(kq) and counts the number
of satisfying assignments for the system.

We then proceed to consider the case of polynomial
equations inFq where the input polynomials donot have
bounded degree, but instead can be encoded efficiently as
a ΣΠΣ circuit; i.e., a linear form of products of linear
forms on the variables. Specifically, we require that an
encoding of eachpi as aΣΠΣ circuit is provided as input.
We call this variant of the problem GenSysPolyEqs(q).
For q= 2 we obtain an algorithm that achieves exponen-
tial speedup over 2n as long as the total number of product
gates in the input polynomials is linear in the numbern

1TheO⋆ notation omits polynomial factors.

of variables. Again we obtain one deterministic and one
randomized algorithm, with the deterministic algorithm
counting the number of satisfying assignments. However,
in this case the difference between the running times of
the deterministic and the randomized algorithms is only
in the constant factor in the savings.

THEOREM 1.3. (Solving Systems ofΣΠΣ Polynomials).
There is a randomized algorithm that, given an instance
of GenSysPolyEqs(2) of size u with s products and n

variables, runs in timepoly(u) · 2
(

1− 1
10log(s/n)+O(1)

)
n
, and

decides the satisfiability of the system correctly with high
probability.

THEOREM 1.4. (Counting Solutions to Systems ofΣΠΣ
Polynomials). There is a deterministic algorithm that,
given an instance of GenSysPolyEqs(2) of size u with
s products and n variables, runs in timepoly(u) ·

2

(
1− 1

1100log(s/n)+O(1)

)
n

and counts the number of satisfying
assignments for the system.

Note that if the degree of eachΣΠΣ polynomial is
at mostk, then one can in principle use the algorithms
of Theorems1.1 and 1.2 to solve GenSysPolyEqs(2).
However, in general the degree of eachΣΠΣ circuit in
our instances can be larger thann, and our algorithm
for GenSysPolyEqs(2) can still run in time that is super-
polynomially faster than 2n.

1.2 Related Work Solving systems of multivariate
polynomial equations is a fundamental problem in mathe-
matics, science and engineering; see for example [11, 36].
The problem of detecting rational points inFq (finding a
non-zero point that makes a polynomial zero) is widely
studied ([8, 19, 25, 26]).

Systems of Degree-Two.For fields of characteristic two
and the polynomials of degree two, the problem arises
in breaking certain cryptosystems based on the presumed
hardness of quadratic polynomial equations [4, 16]. This
underscores the importance of beating exhaustive search
in the degree-2 case. For the purposes of this paragraph,
we call the problem Deg2-SysPolyEqs(q). Woods [41]
gave an interesting nondeterministic proof system for
Deg2-SysPolyEqs(q), showing how one can prove that
a system of quadratic equations is infeasible with an
O⋆(qn/2)-length proof verifiable inO⋆(qn/2) time. Under
several algebraic assumptions, Yang and Chen [42] esti-
mate anO(20.875n) time bound for Deg2-SysPolyEqs(2).
Miura et al. [30] show how to solve Deg2-SysPolyEqs(2)
in polynomial time when the system is sufficiently under-
determined (in particular, the number of variablesn ≥
Ω(m2), wherem is the number of equations). Bardet
et al. [5] gave algorithms for Deg2-SysPolyEqs(2) run-
ning in deterministic 20.841n time and Las Vegas 20.792n

time for the casem= n under certain algebraic assump-
tions on the instances. In general, considerable research
in modern cryptanalysis is centered around solving multi-
variate systems of low-degree polynomial equations (see
the books [17, 3]).

Efficient Algorithms For Special Cases.Lu [28] gave a
deterministic algorithm for finding a solution to asingle
polynomial equation that runs in time poly(s) for polyno-
mials with s monomials. Building on a randomized al-
gorithm of Huang and Wong [19], Kayal [22] gave a de-
terministic algorithm for SysPolyEqs(q) that has running

time dnO(n) ·poly(m, logq), wheren is the number of vari-
ables,d is the degree, andm is the number of equations.
This algorithm is only non-trivial whenq is extremely

large relative to the degree, in particulardnO(n) ≪ qn.

Conditional Lower Bounds Based on SysPolyEqs(2).
In some papers, the conjecture that SysPolyEqs(2) in
degree-2cannotbe solved in 2n(1−ε) time for anyε > 0
was used to justify the optimality of certain algorithms.
Björklund et al. [10] showed that the conjecture implies
that their algorithm for listing triangles in sparse graphs
is optimal. Vassilevska and Williams [37] prove that the
conjecture implies that finding a zero-edge-sum triangle
over F2 requiresn3−o(1) time; this problem is closely
related to the 3XOR problem of Jafargholi and Viola [21].
Clearly, Theorem1.1 refutes the above conjecture, and
opens up the possibility for faster algorithms for the above
problems.

Relationship to SAT. SysPolyEqs(2) and
GenSysPolyEqs(2) may be seen as generalizations
of the satisfiability problem for CNF formulas: The
former is equivalent to SAT of unbounded-fan-in
AND-PARITY-AND circuits, and the latter is SAT of
unbounded-fan-in AND-PARITY-AND-PARITY cir-
cuits. Small-depth unbounded-fan-in circuits with AND,
OR and PARITY gates (i.e., AC0[⊕]) are widely studied
in Boolean circuit complexity; see, e.g., [24, 15, 14]. To
the best of our knowledge, faster-than-2n SAT algorithms
were not known even for depth-3 unbounded-fan-in
circuits with alinear number of AND and PARITY gates.

Williams [39] gave an algorithm for the ACC0-SAT
problem, which includes SysPolyEqs(2) as a special
case; however, the algorithm of Williams only runs in
poly(n,m) · 2n−nε

time, whereε is a small positive con-
stant. Chapter 4.3 of Matthews’ PhD thesis [29] cites Lok-
shtanov and Paturi (two authors of the present paper) with
an unpublished algebraic algorithm fork-SAT. Our algo-
rithms for systems of degree-k equations can be seen as
a considerable extensions of their method. Williams and
Lokshtanov-Paturi were based on the polynomial method
in Boolean circuit complexity [6] (see the survey [40] for
more).

1.3 TechniquesGiven a set of degree-k polynomials
S= {p1, . . . , pm} ⊆ Fq[x1, . . . ,xn], we can define a single
polynomial capturing all of them, namelyPS(x) := 1−
∏m

i=1(1− pi(x)q−1). For all a ∈ Fn
q, note thatPS(a) = 0

holds if p1(a)= · · ·= pm(a)= 0, andPS(a)= 1 otherwise.
For some appropriately chosenn′ < n, we may define
a polynomialR∈ Fq[x1, . . . ,xn−n′] asR(x1, . . . ,xn−n′) :=
∏a∈Fn′

q
PS(x1, . . . ,xn−n′ ,a). Observe that there is ana∈ Fn

q

such thatPS(a) = 0 if and only if there is ab ∈ Fn−n′
q

such thatR(b) = 0. Therefore, evaluatingR on all points
a∈ Fn−n′

q will determine if the original system is feasible
or not. Evaluation ofR(a) would be relatively easy if it
were merely a sum of products, but it is more complex:
a product of sums of products of sums of monomials.
However, sinceR(y) is a product ofqn′ functions, it takes
time qn′ · poly(n) to evaluateR(y) at a single pointy.
Hence the straightforward way of evaluatingR on qn−n′

points would lead to aqn ·poly(n) running time.

Despite the complexity ofR, we can in fact evaluate on
qn−n′ points inqn−n′ ·poly(n,m) time by deftly applying
the probabilistic polynomial constructions of Razborov
and Smolensky together with an algorithm for efficient
sums-of-monomials evaluation. These are among the cou-
ple of ideas required to prove Theorem1.1; attaining a
deterministic algorithm requires substantially more work.
We borrow some tools from recent work of Chan and
Williams [13], who give a more efficient deterministic al-
gorithm for counting SAT assignments. Generalizing the
ideas of their #SAT algorithm to fit the SysPolyEqs(q)
setting requires some care, in particular, the restriction
to prime fields. To make a deterministic algorithm that
works for all fields we give a reduction that transforms a
system ofmpolynomial equations of degreek with n vari-
ables overFpd for d ≥ 2 into an equivalent system ofmd
polynomial equations of degreek with nk variables over
Fp. This reduction turns out to be also useful to obtain
an additional speedup for the randomized algorithm in the
case thatq= pd.

Our algorithms for solving systems ofΣΠΣ poly-
nomials (Theorems1.3 and 1.4) consist of two steps.
First, given an instance, we run adegree reduction algo-
rithm that produces a set of instances of degree at most
O(log(s/n)) such that the original instance is satisfiable if
and only if at least one of them is satisfiable. Then, we
apply the algorithms of Theorems1.1 or 1.2 to each in-
stance. Our degree reduction algorithm can be seen as a
generalization of Schuler’s width reduction algorithm for
CNF-SAT [34].

The degree reduction algorithm implies that an AND-
PARITY-AND-PARITY circuit can be represented as a
“small-size” algebraic decision tree whose internal nodes
and leaves correspond to indicator functions of affine
subspaces and low-degree polynomials respectively. Such

representation might be useful in proving average-case
lower bounds for AND-PARITY-AND-PARITY circuits,
as Impagliazzo, Matthews and Paturi [20] used Schuler’s
width reduction algorithm to obtain correlation bounds
for AC0 circuits (i.e., bounded-depth unbounded-fan-in
circuits with AND and OR gates) for approximating the
PARITY function.

2 Preliminaries

We use random access machines as our computation
model. For a positive integern, [n] denotes the set
{1,2, . . . ,n}. For rational numbersa < b, (a,b) denotes
the open interval betweena and b. For a finite setS,
|S| denotes the cardinality ofS. We use the following
notation: Z denotes the set of integers,Z≥0 denotes the
set of non-negative integers,Zm denotes the quotient ring
of integers modulom, identified with{0,1, . . . ,m−1} and
Fq denotes the finite field of orderq. We use 0 and 1 to
denote the additive identity and the multiplicative identity
of Fq.

Let x1,x2, . . . ,xn be formal variables. Amonomialis
a product of powers of variables and a constant. For
γ ∈ Zn

≥0, we definexγ := ∏i∈[n] x
γi
i . We can represent

a polynomial P(x) as a sum of monomials of the form
∑γ aγxγ whereaγ is thecoefficientof xγ . In this paper, we
consider polynomials overFq and overZ.

When dealing with polynomials overFq, we will only
be concerned with them for the purpose of eventually
evaluating them overFq. The identityxq

i = xi then implies
that every monomial can be represented asxγ for γ ∈ Zn

q,
without changing what the monomial evaluates to when
the variables takes values fromFq.

The degreeof a monomialxγ is ∑i γi . Thus, the
degree of a monomial is the sum of the exponents of the
variables in the monomial. We defineM(n,k,q) to be the
number of different monomials of degree at mostk on n
variables inFq, andM(n,k) to be the number of different
monomials of degree at mostk on n variables over any
(fixed, possibly infinite) field. The degree of a polynomial
P is the maximum degree of a monomial ofP. We use the
following facts in Section3.

LEMMA 2.1. The number of monomials of degree at
most k can be upper bounded as follows: M(n,k,q) ≤
M(n,k)≤

(n+k
n

)
≤ (1+ n

k)
k(1+ k

n)
n ≤ en(1+ k

n)
n.

LEMMA 2.2. (Fast Evaluation in Finite Fields).There is
an algorithm that, given anFq polynomial P in n variables
represented as a sum of monomials, runs inpoly(n) · qn

time and prints a qn-dimensional vector V such that for
all x ∈ Fn

q, V[x] = P(x) holds.

Proof. This is a generalization of the algorithm from
Section 6.2 in [38]. Note that we can writeP asP(x) =

∑q−1
i=0 Pi(x2, . . . ,xn)xi

1 for somePi : Fn−1
q → Fq. This gives

us a way to decompose the problem intoq subproblems.
The running timeT(n) of the algorithm satisfiesT(n) =
qT(n−1)+poly(n)qn and we haveT(n) = poly(n) ·qn.

LEMMA 2.3. (Fast Evaluation of Integer Polynomials).
Let n-variate integer polynomial P have at most pn/7

monomials such that the maximum absolute value of P(x)
over all x∈ {0,1, . . . , p− 1}n is at most M. Then we
can evaluate P(x) over all points in{0,1, ..., p− 1}n in
poly(logM) · pn+o(n) time.

Lemma2.3 does not follow from the usual techniques,
such as dynamic programming [9] or divide and con-
quer [38], becauseP could have arbitrary degree. Below
we give a proof sketch.

Proof. Let t ≤ pn/7 be the number of monomials. Let
a1 . . . ,apn/2 ∈ {0, ..., p−1}n/2 be a list of all assignments
to n/2 variables. Letm1 = c1xγ1, . . . ,mt = ctxγt be a list
of monomials inP. Prepare matricesA and B of pn/2

by pn/7 and pn/7 by pn/2 dimensions, respectively, with
the following definitions:A[i, j] = mj(ai ,⃗1) andB[j,k] =
mj (⃗1,ak)/c j , where⃗1 denotes the all-ones assignment on
n/2 variables.

Observe thatA[i, j]B[j,k] = mj(ai ,ak). It follows that
(AB)[i,k] = ∑ j mj(ai ,ak) = P(ai ,ak). Thus, a matrix
multiplication of A and B yields the value ofP on all
points.

Le Gall [27] gives a matrix multiplication algorithm
which can multiplyN by N0.3 and N0.3 by N matrices
in N2+o(1) arithmetic operations, over any finite field.
We can therefore multiplyA andB over any fieldFq in
O(pn+o(n)) arithmetic operations. Selectq to be a prime
greater than 2M+1. Our matrix multiplication now takes
poly(logM)pn+o(n) time.

Now for all (i, j) = (1,1), . . . ,(pn/2, pn/2), consider
(AB)[i, j], and cast it as an integerr ∈ {0,1, . . . ,q}. If
r ∈ {0,1, . . . ,M} then outputr as the value ofP(ai ,a j).
Otherwise,r must be in{q−M, . . . ,q−1}; outputr −q
as the value ofP(ai ,a j).

3 Randomized Algorithms for Systems of
Polynomial Equations

In this section we give a proof of Theorem1.1. A
degreek instance of SysPolyEqs(q) is {p1, p2, . . . , pm},
where eachpi is an Fq polynomial in formal variables
x1,x2, . . . ,xn and represented aspi(x) = ai +∑si

j=1bi, jxγi, j

for ai ,bi, j ∈ Fq, si ≥ 0 andγi, j ∈ Zn
q with ∑l (γi, j)l ≤ k.

Before proceeding with our algorithm for SysPolyEqs(q),
we describe the approximation of polynomials by low-
degree probabilistic polynomials due to Razborov and
Smolensky [33, 35]. We begin with the following lemma
whose proof is elementary:

LEMMA 3.1. Let Fq be a finite field and
v = (v1,v2, . . . ,vn) ∈ Fn

q \ {(0,0, . . . ,0)}. Select
r = (r1, r2, . . . , rn) from Fn

q uniformly at random.
Then,∑i∈[n] r ivi is distributed uniformly at random over
Fq.

Let P : Fn
q → F be the function such thatP(x) = 1

if x = (0,0, . . . ,0) and P(x) = 0 otherwise, i.e.,P(x) =

∏i∈[n](1− xq−1
i). For s1,s2, . . . ,sl ∈ Fn

q, define a poly-

nomial P̃{si}l
i=1

(x) := ∏l
i=1

{
1−
(
∑ j∈[n](si) j ·x j

)q−1
}
.

Razborov and Smolensky showed that if we select random
elementss1,s2, . . . ,sl ∈ Fn

q uniformly and independently,

thenP̃{si}l
i=1

(x) approximatesP(x) with high probability.

LEMMA 3.2. ([33, 35]) Select random s1,s2, . . . ,sl ∈ Fn
q

uniformly and independently. Then, for all x∈ Fn
q,

P̃{si}l
i=1

(x) ∈ {0,1}. Furthermore, (i) If x= (0,0, . . . ,0),

then P̃{si}l
i=1

(x) = 1 and (ii) if x ̸= (0,0, . . . ,0), then

Pr{si}l
i=1

[P̃{si}l
i=1

(x) = 0] = 1−q−l .

We are now ready to give a randomized algorithm for
SysPolyEqs(q) beating brute force. We remark that the
constants in the exponent of Lemma3.3are not optimized
(with the exception for the case thatq= k= 2), but chosen
so as to simplify presentation.

LEMMA 3.3. There is a randomized algorithm that,
given an instance of SysPolyEqs(q) with m polynomial
equations of degree at most k in n variables, decides the
satisfiability of the system correctly with high probabil-
ity. The running time of the algorithm is bounded by

(i) O⋆(20.8765n) when q= k = 2, (ii) O⋆(2(1− 1
5k)n · n3k)

when q= 2 and k> 2, (iii) O⋆(q(1−(1/(200k)))n ·n3kq) when

3≤ q andlogq< 4ek, and (iv) O⋆
(

qn ·
(

logq
ek

)−n
)

when

logq≥ 4ek.

Proof. Let P : Fn
q → Fq be the function such thatP(x) = 1

if p1(x) = p2(x) = · · · = pm(x) = 0 andP(x) = 0 oth-
erwise. We select an integern′ = ⌊δ · n⌋ where the
exact value ofδ will be set at the end of the proof
to be strictly between 0 and 1 depending onk and
q. For formal variablesy = (y1,y2, . . . ,yn−n′) and con-
stantsa = (a1,a2, . . . ,an′) ∈ Fn′

q , we defineQ(y,a) :=

P(y1,y2, . . . ,yn−n′ ,a1,a2, . . . ,an′). Let R : Fn−n′
q → Fq be

the function such thatR(y) = 0 if Q(y,a) = 0 for every
a ∈ Fn′

q andR(y) = 1 otherwise.P(x) is identically 0 if
and only ifR(y) is identically 0.

We would like to check whether there exists an assign-
ment to the variables such thatR(y) = 1. For this purpose,
we representR(y) as a sum of monomials and apply the
fast evaluation algorithm for polynomials (Lemma2.2).

Note that if we writeR(y) as a polynomial in the straight-
forward manner, e.g.,R(y) = 1−∏a∈Fn′

q
(1−Q(y,a)), and

represent it as a sum of monomials, it might take time
more thanqn time. This is becauseR(y) has degreeqn′

as a polynomial in formal variables{Q(y,a)}a∈Fn′
q

. To re-

duce the degree ofR(y), we use Lemmas3.2and3.1. We
start by settingl = n′+2, for eacha∈ Fn′

q selecting uni-
formly at randoml random vectorssa,1,sa,1, . . . ,sa,l from
Fm

q , and defining

Q̃{sa,i}l
i=1

(y,a) :=
l

∏
i=1

1−

(
∑

j∈[m]

(sa,i) j · p j(y,a)

)q−1
 .

Next, select uniformly at random aqn′ -dimensional vector
s overFq and define

R̃s,{sa,i}(y) := ∑
a∈Fn′

q

sa · Q̃{sa,i}l
i=1

(y,a).

By Lemma 3.2, for all y ∈ Fn−n′
q and a ∈ Fn′

q , we

have thatQ(y,a) = 1 implies Q̃{sa,i}l
i=1

(y,a) = 1, while

Q(y,a) = 0 yieldsPr{sa,i}l
i=1

[Q̃{sa,i}l
i=1

(y,a) = 0] = 1−q−l .

By Lemma3.1, for all y∈ Fn−n′
q and{sa,i}, we have that,

(i) for all a∈ Fn′
q , if Q̃{sa,i}l

i=1
(y,a) = 0 thenR̃s,{sa,i}(y) =

0, and “conversely”, (ii) if there exists ana ∈ Fn′
q such

thatQ̃{sa,i}l
i=1

(y,a) = 1, thenPrs[R̃s,{sa,i}(y) ̸= 0] = 1− 1
q.

Thus, for ally∈ Fn−n′
q , we have

R(y) ̸= 0 ⇒ Pr
s,{sa,i}

[R̃s,{sa,i}(y) ̸= 0]≥ 1− 1
q
≥ 1

2
,

R(y) = 0 ⇒ Pr
s,{sa,i}

[R̃s,{sa,i}(y) ̸= 0]≤ qn′ ·q−l ≤ 1
4
,

where we use the union bound for the second implication.
The algorithm repeats the following proceduret =

100nlogq times: It draws the random vectors{sa,i} and
s, and computes a representation ofR̃s,{sa,i} as a sum of

monomials. The procedure then evaluatesR̃s,{sa,i}(y) for

all y ∈ Fn−n′
q using the algorithm of Lemma2.2. For

eachy ∈ Fn−n′
q , the algorithm keeps a counter that keeps

track of the number of times the above procedure resulted
in R̃s,{sa,i}(y) ̸= 0. The algorithm returns that the input
instance is satisfiable if there exists ay for which the
counter is at least 40 percent of the number of runs, that
is, at least 0.4t.

For the success probability analysis, suppose that the
input instance is satisfiable. Then there exists ay such
thatR(y) ̸= 0. Thus, in each of the runs of the procedure
R̃s,{sa,i}(y) ̸= 0 with probability at least 1/2. Since each of

the runs of the procedure are independent, the probability
that the counter fory will be at most 0.4t is at most
t ·
(t
.4t

)
2−t ≤ t ·

(
1.961

2

)t ≤ 100nlogq
q2n .

Suppose now that the input instance is not satisfiable.
Then R(y) = 0 for all choices ofy and hence, in each
run of the procedure the probability that̃Rs,{sa,i}(y) ̸=
0 is at most 1

4. For any fixedy, the probability that
the counter ofy reaches above 0.4t is therefore at most

t ·
(t
.4t

)(
1
4

).4t (3
4

).6t ≤ t ·
(

1.961
2.06

)t ≤ 100nlogq
q2n . The union

bound taken over allqn−n′ ≤ qn choices ofy yields that the
probability of false positives is upper bounded by100nlogq

qn .
Hence the algorithm outputs the correct answer with high
probability.

We now proceed with the running time analysis. The
running time is upper bounded byt times the time taken
to execute the main procedure once, we now upper bound
this. By Lemma2.2 it takesO⋆(qn−n′) time to evaluate
R̃s,{sa,i} for all y once a representation of̃Rs,{sa,i} as a sum
of monomials is given.

To upper bound the time taken to compute the represen-
tation of R̃s,{sa,i} as a sum of monomials it is sufficient to

observe that̃Rs,{sa,i} is a polynomial inn−n′ variables of
total degree at mostk(q−1)l . We compute the represen-
tation of R̃s,{sa,i} using the definitions directly, applying
the näıve algorithm for polynomial multiplication. How-
ever, we make sure that whenever we are multiplying two
polynomials, at least one of them has degree at mostkq.
Note that this is achievable, because the only multiplica-
tions in the definition ofR̃s,{sa,i} occur in the definition

of Q̃{sa,i}l
i=1

(y,a), which is a product of polynomials of
degree at mostkq. Thus, the total number of operations
(polynomial additions or multiplications) needed to com-
puteR̃s,{sa,i} is at mostO⋆(qn′), and each such operation

takes timeO⋆(M(n−n′,k(q−1)(n′+2),q) ·nkq). Using
the observation thatM(n, r +1,q) ≤ n ·M(n, r,q) for ev-
ery n and r we conclude that the total time taken by the
algorithm is upper bounded by

O⋆(qn−n′ +qn′ ·M(n−n′,k(q−1)n′,q) ·n3kq)

= O⋆(q(1−δ)n+qδn ·M((1−δ)n,k(q−1)δn,q) ·n3kq).

We now discuss the choice ofδ for different possible
values of q and k. By always pickingδ such that
M((1−δ)n,k(q−1)δn,q)=O⋆(q(1−2δ)n), we ensure that
the running time is upper bounded byO⋆(q(1−δ)n ·n3kq).
We divide the analysis into three cases, first the case that
q = 2, then whenq ≥ 3 but q is still “small enough”
compared tod, and finally whenq is “large” compared
to d.

For q = 2 and k = 2, we setδ = 0.1235 to sat-
isfy M((1−δ)n,k(q−1)δn,q)≤

(n−δn′

δn

)
≤O⋆(2(1−2δ)n).

This implies that a degree-2 instance of SysPolyEqs(2)
can be solved in timeO⋆(20.8765n).

For q = 2 we have thatM(n,k,2) ≤
(n

k

)
, thusM((1−

δ)n,k(q − 1)δn,q) ≤
(n−δn

kδn

)
. Setting δ = 1/(5k) we

obtain M((1 − δ)n,k(q − 1)δn,q) ≤ O⋆
(

2(1− 2
10)n
)
≤

O⋆
(

2(1−2δ)n
)
. Thus, forq = 2 we obtain an algorithm

with running timeO⋆(2(1− 1
5k)n ·n3k).

When q ≥ 3 and logq < 4ek, we setδ = 1/(200k),
then M((1 − δ)n,k(q − 1)δn,q) ≤ O∗ (en

(q
3 +

q
200

)n)
,

using logq < 4ek we obtain O∗ (en
(q

3 +
q

200

)n) ≤
O∗
(

qn ·2−
logq·0.12n

4ek

)
≤ O∗

(
q(1−2δ)n

)
. Hence, in this case

we obtain an upper bound ofO⋆(q(1−(1/200k))n · n3kq) on
the running time.

When logq≥ 4ek, we setδ = log logq(1/ek)

4logq , which yields
M((1−δ)n,k(q−1)δn,q)≤O∗ ((2ekqδ)n). Inserting the
definition of δ we obtainM((1− δ)n,k(q− 1)δn,q) ≤
O∗
((

q· log logq(1/ek)

2·logq(1/ek)

)n)
. Now, q1/ek ≥ 16 implies that(

2·logq(1/ek)

log logq(1/ek)

) 2·logq(1/ek)

log logq(1/ek) ≥ q1/ek. Thus we have

O∗

((
q· log logq(1/ek)

2· logq(1/ek)

)n)

≤ O∗

((
q

1− 1
ek·

log logq(1/ek)

2·logq(1/ek)

)n)
≤ O∗

(
q(1−2δ)n

)
.

Hence, in this case we get an upper bound of

O⋆

(
qn ·
(

logq
ek

)−n
)

on the running time.

Next we show that any system ofm polynomial equa-
tions of degreek with n variables overFpd for d ≥ 2 can
be reduced in polynomial time to an equivalent system of
md polynomial equations of degreek with nk variables
overFp. This allows us to substantially improve over the
running time of the algorithm of Lemma3.3 for the case
whenq is large compared tod, andq is a prime powerpd,
d ≥ 2.

Let p be prime. In the following, we will assume we
possess an irreducible polynomialP(X) of degreek in
Fp[X]. A standard way of efficiently constructing such
P(X) is to choose degree-k polynomialsP at random, then
test them for irreducibility. The irreducibility ofP can
then be checked by running Kedlaya-Umans’ determinis-
tic irreducibility test ink1+o(1) log2+o(1) p time ([23], Sec-
tion 8.2); a standard algebraic fact is that a random poly-
nomial overFp of degreek is irreducible with probability
at least 1/k. We are now ready to give the aforementioned
reduction.

LEMMA 3.4. There is a polynomial-time algorithm that
given as input a system S of m degree-k n-variate poly-
nomial equations overFpd , together with an irreducible
polynomial P(X) of degree d inFp[X], outputs an equiv-
alent system Sp of dm degree-k dn-variate equations over
Fp. That is, S has a solution overFpd if and only if Sp has
a solution overFp.

Proof. For every 0≤ ℓ ≤ (d − 1)k, compute degree-
(d − 1) polynomialsPℓ ∈ Fp[X] such thatXℓ ≡ Pℓ(X)
(mod P(X)). ThesePℓ can be determined by simple poly-
nomial division, in poly(d ·k) time. Letxi be theith vari-
able in the systemS; we intend to setxi to a value inFpd .
Fpd is isomorphic toFp[X]/P, that is, the elements ofFpd

can be thought of as equivalence classes of polynomials in
Fp[X] moduloP(X). It is a basic fact that every element
r of Fp[X]/P can be written asr = ∑d−1

l=0 r iXℓ for r i ∈ Fp

in a unique way. Thus, for eachi ≤ n and 0≤ ℓ ≤ d−1
we can definexi,ℓ ∈ Fp such thatxi ≡ ∑d−1

l=0 xi,ℓXℓ. That
is, we think of the value ofxi as ad-dimensional vec-
tor with entries fromFp, wherexi,ℓ is the ℓth compo-
nent of this vector. Consider now the productxix j , we
have thatxix j ≡ ∑d−1

l1,l2=0xi,ℓ1xi,ℓ2Pℓ1+ℓ2. Since allPℓ’s are

fixed polynomials inFp[X], the coefficients of everyXℓ

are quadratic forms over the variables{xi,ℓ}0≤ℓ<d and
{x j,ℓ}0≤ℓ<d.

In general, a product ofk variables can be viewed as a
degree-d polynomial ofX, whose coefficients are degree-
k forms of{xi,ℓ}1≤i≤n,0≤ℓ<d. Therefore, a single degree-
k polynomial equation over the variables{xi}1≤i≤n over
Fpd can be viewed as a system ofd degree-k polynomial
equations over the variables{xi,ℓ}1≤i≤n,0≤ℓ<d over Fp.
Doing this for every equation in the input system increases
the number of variables and the number of equations by a
factor of d, but reduces the underlying field fromFpd to
Fp.

We may now directly combine the algorithm of
Lemma 3.3 with the reduction of Lemma3.4 to ob-
tain improved savings for SysPolyEqs(q) whenq is large
compared tok and not prime. In particular, applying
Lemma 3.4 and then solving the output instance using
Lemma3.3yields a proof of Theorem1.1.

4 Deterministic Algorithms for Systems of
Polynomial Equations

We now show how to obtain a deterministic algorithm for
SysPolyEqs(q) that beats the naı̈veO⋆(qn) time algorithm,
in particular we prove Theorem1.2. We will first give
such an algorithm for SysPolyEqs(p) for prime p. We
start with a “deterministic version” of the probabilistic
polynomial constructions of Razborov and Smolensky
following the lead of Chan and Williams [13]. We need a
construction ofsmall-biased spaces.

DEFINITION 1. (Naor and Naor [31]). A set S⊆ Fn
p of n-

dimensional vectors isε-biasedif for all non-zero v∈ Fn
p

and all a∈ Fp,

Pr
r∈S

[
∑

i∈[n]
r ivi = a

]
∈ (1/p− ε,1/p+ ε).

THEOREM 4.1. (Alon, Goldreich, H̊astad and Per-
alta [2]). For every positive integer n andε ∈
(0,1/q), there is an ε-biased set Sn,ε ⊆ Fn

p of

cardinality O(n3(log3
2 p)/ε3), constructible in time

poly(n(log2 p)/ε).

We also need constructions ofmodulus-amplifying
polynomials:

LEMMA 4.1. (Beigel and Tarui [7]). For every positive
integerℓ, the degree(2ℓ−1) integer polynomial

Fℓ(y) = 1− (1−y)ℓ
ℓ−1

∑
j=0

(
ℓ+ j −1

j

)
y j

has the property for all p∈ Z:

• if y = 0 modp, then Fℓ(y) = 0 modpℓ,
• if y = 1 modp, then Fℓ(y) = 1 modpℓ.

In addition, for0 ≤ i ≤ 2ℓ−1, the coefficient of yi in Fℓ
has magnitude at most2O(ℓ).

Now we are ready to “derandomize” the probabilistic
polynomial constructions of Razborov and Smolensky as
follows. For a non-empty setS⊆ Fn

p and a positive integer
ℓ, define a polynomial̂pS,ℓ(x) : Fn

p → Z as

p̂S,ℓ(x) := ∑
r∈S

Fℓ

(∑
i∈[n]

r ixi

)p−1
 ,

where we regardFp as the set of integers{0,1, . . . , p−
1} ⊂ Z. Then, we have:

LEMMA 4.2. Let S⊆ Fn
p be anε-biased set andℓ be a

positive integer such that pℓ > |S|. Then:

• If x = (0,0, . . . ,0), thenp̂S,ℓ(x) = 0.
• If x ̸= (0,0, . . . ,0), then (p̂S,ℓ(x) mod pℓ) ∈ ((1−

1/p− ε)|S|,(1−1/p+ ε)|S|).

Proof. The first item is by the fact thatFℓ(0) = 0. The
second item is by the fact that for anya ̸= 0 modp,
ap−1 = 1 modp holds and the definition ofε-biased set.

We are now prepared to give the deterministic algorithm
for fields of prime order:

LEMMA 4.3. Let p be a prime. There is a deterministic
algorithm that, given an instance of SysPolyEqs(p) with m
polynomial equations of degree at most k in n variables,

runs in time p
n

(
1− 1

300kp6/7

)
+o(n)

· mO(kp) and counts the
number of satisfying assignments for the system.

Proof. Let {p1, p2, . . . , pm} be an instance of
SysPolyEqs(p). We select an integern′ = ⌊δ · n⌋,
where the exact value ofδ will be set at the end of the
proof, strictly between 0 and 1, depending onk and q.
Define a functionQ : Fn−n′

p ×Fn′
p → Fp asQ(y,a) = 1 if

p1(y,a) = p2(y,a) = · · · = pm(y,a) = 0 andQ(y,a) = 0
otherwise. Also we define a functionK : Fn−n′

p → Z
as K(y) := |{a ∈ Fn′

p | Q(y,a) = 0}|. Note thatK(y)
represents the number of unsatisfying assignments when
the first n− n′ variables are fixed toy. If we have the
value of K(y) for all y ∈ Fn−n′

p , we can compute the
number of satisfying assignments to the input instance,
i.e., pn−∑y∈Fn−n′

p
K(y), in time poly(n) · pn−n′ .

In what follows, we show how to construct an integer
polynomial in the samen−n′ variables asK(y), such that
for every y ∈ Fn−n′

p , K(y) can be efficiently determined
from the value of the polynomial evaluated ony. For a
nonempty setS⊆ Fm

p and a positive integerℓ, define the
integer polynomials

Q̂S,ℓ(y,a) := ∑
r∈S

Fℓ

(∑
i∈[m]

r i · pi(y,a)

)p−1
 ,

R̂S,ℓ(y) := ∑
a∈Fn′

p

Q̂S,ℓ(y,a).

Here we regardFp as the set of integers{0,1, . . . , p−1}
and eachpi as an integer polynomial whose coefficients
are from{0,1, . . . , p−1} in a natural way.

Let ε := 1/(4 · pn′), and construct anε-biased set
S⊆ Fm

p using Theorem4.1. We have that|S| is at most

m3p3n′+O(1), and thatS is constructed inO⋆(pO(n′)) time.
Now, let ℓ be the smallest integer greater than|S|pn′ ,
note thatℓ ≤ 4n′+ logm+O(1). By Lemma4.2, for all
y∈ Fn−n′

p anda∈ Fn′
p , we have that

Q(y,a) = 1 ⇒ Q̂S,ℓ(y,a) = 0,

Q(y,a) = 0 ⇒ (Q̂S,ℓ(y,a) mod pℓ)

∈ ((1−1/p− ε)|S|,(1−1/p+ ε)|S|).

Then, for ally∈ Fn−n′
p , we have

(R̂S,ℓ(y) mod pℓ)

∈ ((1−1/p− ε)|S|K(y),(1−1/p+ ε)|S|K(y)).

Let M := (1−1/p)|S| and recall thatε := 1/(4· pn′). For
all y∈ Fn−n′

p , we have that

(R̂S,ℓ(y) mod pℓ)/M ∈ (K(y)−1/2,K(y)+1/2).

The algorithm computes a representation of(R̂S,ℓ(y))
as a sum of monomials from the representations of
{p1, p2, . . . , pm} by directly applying the definitions of
R̂S,ℓ(y) andQ̂S,ℓ(y,a). The degree of(R̂S,ℓ(y)) is at most
4k(p−1)n′+O(kplogm). We will setn′ = δn in such a
way that

M((1−δ)n,4k(p−1)δn)≤ O⋆(p(n−n′)/7),

and that therefore the number of monomials in(R̂S,ℓ(y))
is p(n−n′)/7 ·mO(kp). Hence we can obtain the value of
K(y) for all y∈ Fn

p in time pn−n′+o(n) ·mO(kp) by applying

Lemma2.3to R̂S,ℓ(y).
We now proceed to the running time analysis, for this

we need to specify more precisely how the representation
of (R̂S,ℓ(y)) as a sum of monomials is computed. In
particular, all polynomial additions and multiplications
are performed using the naı̈ve addition and multiplication
algorithms, however, we make sure that whenever we are
multiplying two polynomials, at least one of them has
degree at mostkq. Note that this is achievable, because all
multiplications occur in the definition of̂QS,ℓ(y,a). Here
a polynomial of degree at mostk is taken to the(p−1)th
power, resulting in a polynomial of degree at mostkp.
ThenFℓ is applied to this polynomial. Note thatFℓ(t) can
be computed using the definition of Lemma4.1 in such
a way that in any multiplication, at least one of the two
factors is eithert or 1− t. Thus, each multiplication takes
time at most

O⋆(M(n,4k(p−1)n′+O(kplogm))) ·M(n,kp)

≤ M(n,4k(p−1)n′) · (mn)O(kp).

Each Q̂S,ℓ(y,a) is computed withO⋆(|S|) ≤ O⋆(p3n′)

polynomial additions and multiplications, and(R̂S,ℓ(y)) is
the sum ofQ̂S,ℓ(y,a) over all pn′ choices ofa. Hence, the
total number of operations needed to construct(R̂S,ℓ(y))
is upper bounded byO⋆(p4n′). Evaluating(R̂S,ℓ(y)) using
Lemma2.3takes timepn−n′+o(n) ·mO(kp), while construct-
ing |S|, which is done once, takes timeO⋆(pO(n′)). Hence
the total running time is upper bounded by

pn−n′+o(n)+ pO(n′)

+p4n′ ·M(n−n′,4k(p−1)n′) · (nm)O(kp)

≤ p(1−δ)n+o(n)+ pc·δn

+p4δn ·M((1−δ)n,4k(p−1)δn) · (nm)O(kp).

Herec is the constant in the big-Oh notation in thepO(n′)

term,c is independent ofp andk.

We now discuss the choice ofδ for different values of
p andk. We will always pickδ to be at less than 1/(c+1)
and less than 1/5, thus the first term in the running
time will always be larger than the second. Further,
we have already constrained the choice ofδ such that
M((1− δ)n,4k(p−1)δn) ≤ p(n−n′)/7. For such aδ , the
running time is upper bounded by

p(1−δ)n+o(n)+ p4δn · p(1−δ)/7 · (nm)O(kp) ≤ p(1−δ)n+o(n).

We first consider the case thatp ≥ (2e)7. We setδ =
1/(10ekp6/7), then we have that

M((1−δ)n,4k(p−1)δn)≤ M((1−δ)n,5kpδn(1−δ))

≤ O⋆

((
n+5kpδn

n

)1−δ
)

≤ (e+5ekpδ)(1−δ)n

≤ p(1−δ)n/7 = p(n−n′)/7.

Suppose now thatp < (2e)7, we setδ = 1
kp6/7·300

. We

have that

M((1−δ)n,4k(p−1)δn)≤ O⋆

((
n+5kpδn

n

)1−δ
)

≤ O⋆

(n+np1/7

60
n

)1−δ
≤ O⋆


(1+

p1/7

60

)
·
(

1+
60

p1/7

) p1/7

60

(1−δ)n
≤ O⋆

((
p1/7

)(1−δ)n
)
.

The last transition was verified by explicitely comparing
the two sides for every integerp between 2 and(2e)7.
This completes the proof.

Lemma4.3 only works for prime fields, however, by
combining Lemma4.3 with the reduction of Lemma3.4,
we obtain an algorithm that works for all fields. More
concretely, we are now in position to prove Theorem1.2.

Theorem 1.2 (restated). Let q= pd for a prime p and
integer d≥ 1. There is a deterministic algorithm that,
given an instance of SysPolyEqs(q) with m polynomial
equations of degree at most k in n variables, runs in

time q
n

(
1− 1

300kq6/7d

)
+o(n)

·mO(kq) and counts the number
of satisfying assignments for the system.

Proof. Given as input a system ofmdegreed polynomial
equations overn variables inFq, find in timepO(d) = qO(1)

an irreducible polynomialP(X) in Fp[X] of degreed.
This can be done by going over all of the at mostpd

choices for the coefficients ofP(X), and then testing
irreducibility by dividing P(X) by each polynomial in
Fp[X] of degree at mostd/2. Then transform the input
system using Lemma3.4 to an equivalent system ofkm
degreed polynomial equations overkn variables inFp,
and use Lemma4.3to solve this system.

5 A Degree Reduction Algorithm

In this section we prove Theorems1.3 and1.4. Specif-
ically, we present algorithms for a generalization of
SysPolyEqs(2), where eachpi is a polynomial of the form

pi(x) = ai +
si

∑
j=1

ti, j

∏
k=1

bi, j,k+ ∑
l∈Ui, j,k

xl

(5.1)

for ai ,bi, j,k ∈ {0,1}, si , ti, j ≥ 1 and /0 ̸= Ui, j,k ⊆
{1,2, . . . ,n}. Let s := ∑i si and u := ∑i, j,k |Ui, j,k| de-
note thenumber of productsand thesize respectively.
When the polynomials in the input system are given in the
form 5.1, we refer to the problem as GenSysPolyEqs(2).
Our algorithm works by reducing systems of polyno-
mial equations overF2 where each polynomial is in the
form 5.1 to systems of polynomial equations overF2

where the degree of the polynomials of the output sys-
tem depends on the number of products in the input sys-
tem. This reduction together with Theorems1.1 and1.2
will complete the proofs of Theorems1.3and1.4, respec-
tively.

Note that because we are working inF2, xd
ℓ = xℓ for

all d ≥ 1, and that therefore the degree of a monomial is
equal to the number of variables in it. The degree of a
polynomial pi is at most maxti, j , however it is possible
that it is actually less. In this section we will abuse
terminology and for eachi refer to the degree of the
polynomialpi as deg(pi) := maxti, j .

Tools from Linear Algebra. We need the following stan-
dard notions and properties of linear independence ofF2.
LetV be a set of vectors{v1,v2, . . . ,vt} ⊆ {0,1}n. We say
V is linearly dependentif there exists a non-zero vector
(a1,a2, . . . ,at) ∈ {0,1}t such that∑t

i=1aivi = (0,0, . . . ,0)
holds. Otherwise,V is linearly independent. If V is lin-
early independent andV ∪ {v} is linearly dependent for
all v∈ {0,1}n \V, thenV is maximally linearly indepen-
dent. Therankof V, denoted by rank(V), is the maximum
cardinality of a linearly independent subset ofV. For any
maximally linearly independent subsetV ′ of V, the cardi-
nality of V ′ is equal to rank(V).

Let V be a subset of{0,1}n and V ′ be a linearly
independent subset of{0,1}n. The rank of V relative to
V ′ is the maximum cardinality of a subsetV ′′ of V such
thatV ′∪V ′′ is linearly independent. Note that any vector
in V can be written as a linear combination of vectors in

V ′ ∪V ′′. In what follows, it is convenient to identify the
vectorv∈ {0,1}n with the setSv = {i ∈ [n] | vi = 1} and
the linear formL = ∑n

i=1vixi . Thus, we use terms such
as linearly independent and rank for a set of subsets of
[n] or a set of linear forms in a natural way. For linear
formsL1,L2, . . . ,Lt anda1,a2, . . . ,at ∈ {0,1}, we identify
the system of linear equations{Li = ai}t

i=1 with the affine
subspace{x∈ {0,1}n | L1 = a1,L2 = a2, . . . ,Lt = at}. The
following lemma gives a way to reduce the degree of
polynomials all of whose products of sums of variables
have “low rank.”

LEMMA 5.1. (Degree reduction relative to a system of
linear equations).Let U1,U2, . . . ,Ut be subsets of[n] and
L1,L2, . . . ,Lt ′ be linear forms such that{Li}t ′

i=1 is linearly
independent and the rank of{Ui}t

i=1 relative to{Li}t ′
i=1

is d. Then, for all a1,a2, . . . ,at ′ ,b1,b2, . . . ,bt ∈ {0,1},
there exists a polynomial p of degree at most d such that
p(x)=∏t

k=1

(
bk+∑l∈Uk

xl
)

holds for all x∈{Li = ai}t ′
i=1.

Proof. Let V be a linearly independent subset
{S1,S2, . . . ,Sd} of {Ui}t

i=1 such that the rank ofV
relative to{Li}t ′

i=1 is d. By the definition of the rank
of a set relative to a set, eachUi can be written as
a linear combination of vectors inV ∪ {Li}t ′

i=1. This
implies that we can write∏t

k=1

(
bk+∑l∈Uk

xl
)

as a
function of S1,S2, . . . ,Sd,L1,L2, . . . ,Lt ′ . By setting
L1 = a1,L2 = a2, . . . ,Lt ′ = at ′ and using the fact that
every function ind variables can be written as a degree-d
polynomial, we complete the proof.

Simplification of systems of polynomial equations.Be-
fore describing our main algorithm, we introduce a pro-
cedure that simplifies instances of GenSysPolyEqs(2).
Let P = {p1, p2, . . . , pm} be an instance of Gen-
SysPolyEqs(2). Let deg(P) = maxdeg(pi). We parti-
tion P into P1 and P2 such thatP1 = {p ∈ P|deg(p) ≤
1} and P2 = {p ∈ P|deg(p) ≥ 2}. Note that we can
check whetherP1 is satisfiable or not in polynomial time
via Gaussian elimination. In what follows, we assume
pi(x) = ai +∑ j∈Ui

x j if deg(pi)≤ 1 and

pi(x) = ai +
si

∑
j=1

ti, j

∏
k=1

bi, j,k+ ∑
l∈Ui, j,k

xl


if deg(pi) ≥ 2. Given a positive integerd, we define the
procedureSimplify(P,d) as follows:

1. Simplify P1: AssumeP1 = {p1, p2, . . . , pm′}. First,
check whether a system of linear equationsp1 =
p2 = · · · = pm′ = 0 is satisfiable. If the system
is not satisfiable, return unsatisfiable, and continue
otherwise. Select a maximally linearly independent
subsetV of {Ui}m′

i=1. RedefineP1 := {pi}Ui∈V .

2. Simplify P2 with P1: AssumeP1 = {p1, p2, . . . , pm′}
andP2 = {pm′+1, pm′+2, . . . , pm}. Form′+1≤ i ≤m,
1 ≤ j ≤ si and 1≤ k ≤ ti, j , if Ui, j,k can be written
as a linear combination of vectors in{Ui}m′

i=1 as

Ui, j,k = ∑m′
i=1ciUi for somec1,c2, . . . ,cm′ ∈ {0,1},

replace∑l∈Ui, j,k
xl by ∑m′

i=1ciai . If deg(pi) ≤ 1 for
somei, m′+1≤ i ≤ mafter the substitution, remove
pi from P2, add it toP1 and go back to Step 1.

3. Degree Reduction: Again, assumeP1 =
{p1, p2, . . . , pm′} and P2 = {pm′+1, pm′+2, . . . , pm}.
For m′ + 1 ≤ i ≤ m and 1≤ j ≤ si , if the rank of
{Ui, j,k}

ti, j
k=1 with respect to{Ui}m′

i=1 is at mostd,

rewrite ∏
ti, j
k=1

(
bi, j,k+∑l∈Ui, j,k

xl

)
as a polynomial

of degree at mostd by Lemma5.1. If deg(pi) ≤ 1
for somei, m′+1≤ i ≤ m after the above rewriting,
removepi from P2, add it toP1 and go back to Step
1.

Let P′ be the simplified instance obtained by apply-
ing Simplify to P. The following is true: (P1) The
number of satisfying assignments forP is equal to that
for P′. (P2) Partition the resulting instanceP′ into
P′

1 and P′
2 and assumeP′

1 = {p1, p2, . . . , pm′} and P′
2 =

{pm′+1, pm′+2, . . . , pm}. Then, (i){Ui}m′
i=1 is linearly in-

dependent, and (ii) form′+1≤ i ≤ m and 1≤ j ≤ si , we
have eitherti, j ≤ d or the rank of{Ui, j,k}

ti, j
k=1 with respect

to {Ui}m′
i=1 is at leastd+1.

The algorithm and its analysis. We now describe the
algorithmDegree-Reduction(P,d), which we will use to
prove Theorems1.3 and1.4. We first finish the proof of
Theorem1.3and then describe the necessary adjustments
to prove Theorem1.4.

1. RunSimplify(P,d).

2. If deg(P) ≤ d, assumeP1 = {p1, p2, . . . , pm′} and
select an arbitrary subsetV of {0,1}n such that
{Ui}m′

i=1∪V is maximally linearly independent, i.e.,
has rankn. Rewrite each variablexi as a linear
combination of vectors in{Ui}m′

i=1 ∪V. We regard
each vector inV as a formal variable and each vector
Ui as the constantai . Apply Theorem1.1 to the

resulting instance in
(

n− rank({Ui}m′
i=1)

)
variables.

3. If deg(P)> d, assumeP1 = {p1, p2, . . . , pm′} and se-
lect arbitraryi, j ′,m′ + 1 ≤ i ≤ m,1 ≤ j ′ ≤ si , such

that pi(x) = ai +∑si
j=1 ∏

ti, j
k=1

(
bi, j,k+∑l∈Ui, j,k

xl

)
and

ti, j ′ > d. Select an arbitrary subsetV of {Ui, j ′,k}
ti, j′
k=1

of sized such thatV ∪{Ui}m′
i=1 is linearly indepen-

dent. Define

qi(x) := ∏
Ui, j,k∈V

bi, j,k+ ∑
l∈Ui, j,k

xl

 ,

r i(x) := ai + ∑
1≤ j≤si , j ̸= j ′

ti, j

∏
k=1

bi, j,k+ ∑
l∈Ui, j,k

xl

 .

Define instancesPL := {P \ {pi}} ∪ {qi , r i}, and
PR := P ∪ {bi, j,k + ∑l∈Ui, j,k

xl}Ui, j,k∈V . Then,
run Degree-Reduction(PL,d) and Degree-
Reduction(PR,d) recursively.

The correctness ofDegree-Reductionis guaranteed since
P is satisfiable if and only if at least one ofPL andPR is sat-
isfiable. This is because in Step 3, instancesPL andPR cor-
respond to conditionsqi(x) = 0 andqi(x) = 1 respectively.
Note that we can chooseV in Step 3 due to Property (P2)-
(ii) of Simplify . In what follows, we give the running time
analysis ofDegree-Reduction(P,d). The overall struc-
ture is the same as the analysis of Schuler’s width reduc-
tion algorithm for SAT of CNF formulas in [12].

We regard the execution ofDegree-Reductionas a
rooted binary treeT. The root ofT is labeled with an input
instanceP. For each node labeled withQ, its left (right,
resp.) child is labeled withQL (QR, resp.) as defined in
Step 3 ofDegree-Reduction. If deg(Q) ≤ d holds, then
the node labeled withQ is a leaf. Let us consider a path
p from the root to a leafv labeled withQ. We denote by
L andR the number of left and right childrenp selects to
reachv. We see that (1)L≤ ssince the number of products
with degree more thand is at mosts, (2) R≤ n/d since
a right branch increases the rank ofP1 (as a set of linear
forms) byd and the rank ofP1 cannot be larger thann,
and (3)Q is defined over at mostn−dRvariables in the
sense of Step 2 ofDegree-Reduction. Furthermore, the
number of leaves that are reachable by exactlyR times of
right branches is at most

(s+R
R

)
. Let T(n,m,d) denote the

running time of the algorithm of Theorem1.1on instances
of SysPolyEqs withm polynomial equations of degree at
mostd in n variables. We can upper bound the running
time ofDegree-Reductionas follows:

O⋆

(n
d

∑
R=0

(
s+R

R

)
·T(n−dR,m,d)

)

≤ O⋆

(n
d

∑
R=0

(
s+R

R

)
·2(1− 1

5d)(n−dR)

)

≤ O⋆

(
s+ n

d

∑
R=0

(
s+ n

d

R

)
·2(1− 1

5d)(n−dR)

)

= O⋆
(

2(1− 1
5d)n · (1+2−d(1− 1

5d))s+ n
d

)
≤ O⋆

(
2(1− 1

5d)n ·exp
{

2−d(1− 1
5d)
(

s+
n
d

)})
≤ O⋆

(
poly(u) ·2(1− 1

5d)n ·24s/2d−1/5
)
,

where we assumes≥ n/d. We setd := 2log(s/n) + c
for sufficiently largec > 0, then

(
1− 1

5d

)
n+ 4s

2d−1/5 ≤(
1− 1

10log(s/n)+5c +
1

(s/n)2c−3

)
n. This completes the proof

of Theorem1.3.
We see that (1)Simplify does not change the number

of satisfying assignments by Property P-1, and (2) each
branching ofDegree-Reductiononly partitions the solu-
tion space. This implies that if we replace Theorem1.1
by Theorem1.2 in Step 2 ofDegree-Reductionand add
the number of satisfying assignments ofPL and that ofPR

in Step 3, we obtain Theorem1.4.

6 Concluding Remarks

We have shown how multivariate systems of polynomial
equations can be solved faster than exhaustive search in
very generic settings. There are two natural extensions
that we have not yet been able to crack:

Is there an algorithm for SysPolyEqs(q) with a better
runtime exponent?Our savings over exhaustive search
for SysPolyEq(pd) in the exponent isn/O(k) for degree-
k polynomials whenp ≤ 24ek, and n · O(log logq−log4ek

logq)

otherwise. Can one achieve savingsn/O(k) even for large
p compared tok? Can such savings be achieved by a
deterministic algorithm? We remark that removing the
factor of 1/k from the savings entirely would refute the
Strong Exponential Time Hypothesis (k-SAT can easily
be embedded into degree-k instances of SysPolyEqs(2)).

Is there an algorithm for SAT of large-depth arith-
metic circuits overFp? Arbitrary arithmetic circuits?
Our algorithm for GenSysPolyEqs(2) already solves the
SAT problem for ΠΣΠΣ circuits which is a consider-
able generalization of CNF-SAT. By results of Agrawal
and Vinay [1] who reduce arbitrary small low-degree cir-
cuits to subexponential-sizeΣΠΣΠ circuits, we can al-
ready conclude a non-trivial SAT algorithm for anyF2-
arithmetic circuit of degree less thann2−ε (by a random-
ized reduction).

Acknowledgments. The fourth author thanks Timothy
Chan for helpful discussions on an earlier phase of this
work.

References

[1] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm
at depth four. InProceedings of the 49th Annual IEEE

Symposium on Foundations of Computer Science (FOCS),
pages 67–75, 2008.

[2] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple
construction of almostk-wise independent random vari-
ables.Random Struct. Algorithms, 3(3):289–304, 1992.

[3] G. Bard. Algebraic cryptanalysis. Springer Science &
Business Media, 2009.

[4] G. V. Bard, N. Courtois, and C. Jefferson. Efficient
methods for conversion and solution of sparse systems of
low-degree multivariate polynomials over GF(2) via SAT-
solvers.IACR Cryptology ePrint Archive, 2007:24, 2007.

[5] M. Bardet, J. Faug̀ere, B. Salvy, and P. Spaenlehauer. On
the complexity of solving quadratic Boolean systems.J.
Complexity, 29(1):53–75, 2013.

[6] R. Beigel. The polynomial method in circuit complexity.
In Proceedings of the 8th Annual Structure in Complexity
Theory Conference, pages 82–95, 1993.

[7] R. Beigel and J. Tarui. On ACC.Computational Com-
plexity, 4:350–366, 1994.

[8] A. Bhowmick and S. Lovett. Bias vs structure of poly-
nomials in large fields, and applications in effective alge-
braic geometry and coding theory.Electronic Colloquium
on Computational Complexity (ECCC), TR15-22, 2015.

[9] A. Björklund, T. Husfeldt, and M. Koivisto. Set partition-
ing via inclusion-exclusion.SIAM J. Comput., 39(2):546–
563, 2009.

[10] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick.
Listing triangles. InProceedings of the 41st International
Colloquium on Automata, Languages, and Programming
(ICALP), Part I, pages 223–234, 2014.

[11] M. Bronstein, A. M. Cohen, H. Cohen, D. Eisenbud,
B. Sturmfels, A. Dickenstein, and I. Z. Emiris.Solving
Polynomial Equations: Foundations, Algorithms, and Ap-
plications. Springer, 2005.

[12] C. Calabro, R. Impagliazzo, and R. Paturi. A duality be-
tween clause width and clause density for SAT. InPro-
ceedings of the 21st Annual IEEE Conference on Compu-
tational Complexity (CCC), pages 252–260, 2006.

[13] T. M. Chan and R. Williams. Deterministic APSP,
orthogonal vectors, and more: Quickly derandomizing
Razborov-Smolensky. InProceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1246–1255, 2016.

[14] M. Cheraghchi, E. Grigorescu, B. Juba, K. Wimmer,
and N. Xie. AC0◦MOD2 lower bounds for the Boolean
inner product. InProceedings of the 43rd International
Colloquium on Automata, Languages and Programming
(ICALP), pages 35:1–35:14, 2016.

[15] G. Cohen and I. Shinkar. The complexity of DNF of
parities. InProceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 47–
58, 2016.

[16] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Effi-
cient algorithms for solving overdefined systems of multi-
variate polynomial equations. InProceedings of the 19th
International Conference on the Theory and Application
of Cryptographic Techniques (EUROCRYPT), pages 392–
407, 2000.

[17] J. Ding, J. E. Gower, and D. Schmidt.Multivariate Public

Key Cryptosystems, volume 25 ofAdvances in Information
Security. Springer, 2006.

[18] J. Håstad. Satisfying degree-d equations over GF[2]n.
Theory of Computing, 9:845–862, 2013.

[19] M. A. Huang and Y. Wong. Solving systems of polynomial
congruences modulo a large prime (extended abstract). In
Proceedings of 37th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 115–124, 1996.

[20] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiabil-
ity algorithm for AC0. In Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 961–972, 2012.

[21] Z. Jafargholi and E. Viola. 3SUM, 3XOR, triangles.
Algorithmica, 74(1):326–343, 2016.

[22] N. Kayal. Derandomizing some number-theoretic and
algebraic algorithms. PhD thesis, Indian Institute of
Technology Kanpur, 2006.

[23] K. S. Kedlaya and C. Umans. Fast polynomial fac-
torization and modular composition.SIAM J. Comput.,
40(6):1767–1802, 2011.

[24] S. Kopparty and S. Srinivasan. Certifying polynomials
for AC0[⊕] circuits, with applications. InProceedings
of the 32nd IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science
(FSTTCS), pages 36–47, 2012.

[25] S. Kopparty and S. Yekhanin. Detecting rational points on
hypersurfaces over finite fields. InProceedings of the 23rd
Annual IEEE Conference on Computational Complexity
(CCC), pages 311–320, 2008.

[26] A. G. B. Lauder and D. Wan. Counting points on varieties
over finite fields of small characteristic. In J. P. Buhler
and P. Stevenhagen, editors,Algorithmic Number Theory:
Lattices, Number Fields, Curves and Cryptography, pages
579–612. Cambridge University Press, 2008.

[27] F. Le Gall. Faster algorithms for rectangular matrix
multiplication. In Proceedings of the 53rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS),
pages 514–523, 2012.

[28] C. Lu. Hitting set generators for sparse polynomials over
any finite fields. InProceedings of the 27th Conference on
Computational Complexity (CCC), pages 280–286, 2012.

[29] W. G. Matthews. A satisfiability algorithm for constant
depth Boolean circuits with unbounded fan-in gates. PhD
thesis, UC San Diego, 2011.

[30] H. Miura, Y. Hashimoto, and T. Takagi. Extended al-
gorithm for solving underdefined multivariate quadratic
equations. InProceedings of the 5th International Work-
shop on Post-Quantum Cryptography (PQCrypto), pages
118–135, 2013.

[31] J. Naor and M. Naor. Small-bias probability spaces:
Efficient constructions and applications.SIAM J. Comput.,
22(4):838–856, 1993.

[32] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An
improved exponential-time algorithm fork-SAT. J. ACM,
52(3):337–364, 2005.

[33] A. Razborov. Lower bounds on the size of bounded-depth
networks over a complete basis with logical addition.
Mathematical Notes of the Academy of Sci. of the USSR,
41(4):333–338, 1987.

[34] R. Schuler. An algorithm for the satisfiability problem
of formulas in conjunctive normal form.J. Algorithms,
54(1):40–44, 2005.

[35] R. Smolensky. Algebraic methods in the theory of lower
bounds for Boolean circuit complexity. InProceedings of
the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 77–82, 1987.

[36] B. Sturmfels. Solving Systems of Polynomial Equations.
American Mathematical Society, 2002.

[37] V. Vassilevska Williams and R. Williams. Finding, mini-
mizing, and counting weighted subgraphs.SIAM J. Com-
put., 42(3):831–854, 2013.

[38] R. Williams. A casual tour around a circuit complexity
bound.SIGACT News, 42(3):54–76, 2011.

[39] R. Williams. Nonuniform ACC circuit lower bounds.J.
ACM, 61(1):2, 2014.

[40] R. Williams. The polynomial method in circuit complexity
applied to algorithm design (invited talk). InProceedings
of the 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science
(FSTTCS), pages 47–60, 2014.

[41] A. R. Woods. Unsatisfiable systems of equations, over a
finite field. InProceedings of the 39th Annual Symposium
on Foundations of Computer Science (FOCS), pages 202–
211, 1998.

[42] B. Yang and J. Chen. Theoretical analysis of XL over
small fields. In Proceedings of the 9th Australasian
Conference on Information Security and Privacy (ACISP),
pages 277–288, 2004.

