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Abstract 1 Introduction

We consider the problem of solvingystems of multivariate We consider the problem of solvirgystems of multivari-
polynomial equations of degreedver a finite field. For every 440 polynomial equationsver a finite field of ordeq =

integerk > 2 and finite fieldFq whereq = pY for a prime _d ;
p, we give, to the best of ourc1<nowledge, the first algorithn_ﬁ . For brevity, we call the problem SysPolyEgs(An

that achieve an exponential speedup over the brute ©fge) InstanceP of the problem has the forrfips, pz, ..., Pm},

time algorithm in the worst case. We present two algorithmghere eachp; € Fq[x1,%2,...,Xn] and is represented as a
a randomized algorithm with fulf;mng timg" 0" . g0 sym of monomials where the exponent of each variable is
time if g < 249, and g™ . (G4 otherwise, where at mostq— 1 (due to the identitgd = x). Our task is to
e=2.718... is Napier's constant, and a deterministic algorithrjacide whetheP is feasible i.e., whether there exists an

for countingsolutions with running time ™o . g—n/Okd’™) n _ _ .. _
For the important special case of quadratic equatiori%jrour X € Fq such thalplgx) . pz(x). Pm(x) = 0 holds. e
randomized algorithm has running tir@g20-8765), call such arx asatisfying assignmeo P.

We define the degree of an instance as

For systems ovef, we also consider the case where the input . .
polynomials do not have bounded degree, but instead canB@x<i<mdedpi), where degpi) is the maximum
efficiently represented asA12 circuit, i.e., a sum of products degree of the monomials ofj and the degree of a
of sums of variables. For this case we present a determini?ﬁ%nomial is defined as the sum of the exponents of the

algorithm running in time 279" for & = 1/0(log(s/n)) for : . :
ingtances withs pr%duct gates in total amiva/ria(blegs(./ ) variables in it. For instances of degree one, the problem

Our algorithms adapt several techniques recently develodgosowable n pglynomlal tlmg by. Gau_ssllan. §I|m|nat|on.
via the polynomial method from circuit complexity. The algoAn easy reduction from the circuit satisfiability problem
rithm for systems of£MX polynomials also introduces a newshows that SysPolyEqs(2) is NP-complete for degree-2

degree reductiomethod that takes an instance of the proble e ;
and outputs a subexponential-sized set of instances, in su stances. In addition, &btad [8] showed that, given

way that feasibility is preserved and every polynomial amor'i‘lgélegreEk instance, it is NP-hard to find an assignment
the output instances has degf@gog(s/n)). to a feasible SysPolyEqgs(2) instance that satisfies a
(21-k — 21-% 1 g)fraction of equations for ank > 2
and € > 0. Thus the problem is extremely hard to
approximate.

In terms of exact solvability, there are few posi-
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of the algorithm is bounded by of variables. Again we obtain one deterministic and one
randomized algorithm, with the deterministic algorithm
o O%(2°876%) time! when g=k =2, counting the number of satisfying assignments. However,
O*(q(lfglﬁ)n.nsk) when p=2 (but g> 2 or k> 2), in this case the difference between the running times of
the deterministic and the randomized algorithms is only
in the constant factor in the savings.

—dn
o~ (qn' (%) ) when p> 2 andlogp > 4ek,  THEOREM1.3. (Solving Systems o3 Polynomials).
There is a randomized algorithm that, given an instance
where e=2.718.... is Napier's constant. of GenSysPolyEqs(2) of size u with s products and n

o O*(q(1-(1/200))n . n3ka) when p> 2 andlog p < 4ek,

. L. 1—— 1
variables, runs in timepoly(u) ~2< 10'045/””0(1))”, and

The running time bounds of Theorehil can be inter- . P L
preted in the following way. When the base of the fielgif;k';;i?”;?/e satisfiability of the system correctly with high

size is “small” relative to the degree, that 5< 2, the

algorithm outperforms brute force by a multiplicative facfyeorem 1.4. (Counting Solutions to Systems &f15
tor of /. This corresponds to not having to guess olynomials). There is a deterministic algorithm that,

a 1/0(k) fraction of the variables, and is qualitatively thgjiven an instance of GenSysPolyEqs(2) of size u with
same kind of “savings” as that of the fastest known algg- products and n variables, runs in timgoly(u) -

rithms fork-SAT [32]. It would be quite surprising to see (1,%)1 L
an algorithm for SysPolyEqg) beating brute force by a2' “*#¥"*°%/" and counts the number of satisfying
factor more tham™ ). When the basp of the field size 2SSignments for the system.

becomes “very large” compared to the degree bound, i.e.Note that if the degree of eachns polynomial is

Iogp 2 4ek the aIgErilthm na longer achieves the ml.miét mostk, then one can in principle use the algorithms
plicative factorgq”°k improvement over brute force, iN0f Theorems1.1 and 1.2 to solve GenSysPolyEqs(2)

dn
stead the improvement is afact@‘e%) , which is still However, in general the degree of eatRX circuit in
our instances can be larger than and our algorithm

substantial and for example much larger tig@f"k9. _ e :
. . . for GenSysPolyEqs(2) can still run in time that is super-
The algorithm of Theorer.1is randomized, a natural :
olynomially faster than2

goal is to obtain a deterministic algorithm with the sam%
running time. We are currently unable to achieve this goal
but we do obtain a deterministic algorithm that decisive
beats brute force and also solves the problem of count
the number of satisfying assignments.

2 Related Work Solving systems of multivariate
ynomial equations is a fundamental problem in mathe-

matics, science and engineering; see for exanidle3g].

The problem of detecting rational pointsliy (finding a

THEOREM 1.2. (Counting Solutions to Low-Degree Sys_non-zero point that makes a polynomial zero) is widely

tems of Polynomial Equations)et q= p® for a prime studied (B, 19, 25, 26)). . o
p and integer d> 1. There is a deterministic algorithmSystems of Degree-Twd-or fields of characteristic two
that, given an instance of SysPolyEqgs(q) with m polyr@ad the polynomials of degree two, the problem arises

mial equations of degree at most k in n variables, runs i breaking certain cryptosystems based on the presumed
hardness of quadratic polynomial equatiossl6]. This

(1 sk ) ol . | .

time q \ 300/ -m°kd and counts the numberunderscores the importance of beating exhaustive search

of satisfying assignments for the system. in the degree-2 case. For the purposes of this paragraph,
we call the problem Deg2-SysPolyEqgs( Woods §1]

We then proceed to consider the case of polynomgdve an interesting nondeterministic proof system for
equations irfq where the input polynomials dwothave Deg2-SysPolyEqgsf, showing how one can prove that
bounded degree, but instead can be encoded efficienthaasystem of quadratic equations is infeasible with an
a ZMZ circuit; i.e., a linear form of products of linearO*(q"/?)-length proof verifiable if0*(g"/?) time. Under
forms on the variables. Specifically, we require that aeveral algebraic assumptions, Yang and CHéh ¢sti-
encoding of eaclp; as a>Mz circuit is provided as input. mate anO(2°87M) time bound for Deg2-SysPolyEqs(2).
We call this variant of the problem GenSysPolyEps( Miura et al.[30] show how to solve Deg2-SysPolyEqs(2)
For g = 2 we obtain an algorithm that achieves exponem polynomial time when the system is sufficiently under-
tial speedup over®as long as the total number of produaietermined (in particular, the number of variables
gates in the input polynomials is linear in the numberQ(n?), wherem is the number of equations). Bardet

et al. [5] gave algorithms for Deg2-SysPolyEqs(2) run-
"~ TTheO* notation omits polynomial factors. ning in deterministic 284" time and Las Vegas®2°®



time for the casen = n under certain algebraic assumpt.3 TechniquesGiven a set of degrek-polynomials
tions on the instances. In general, considerable reseg®ch {py,..., Pm} € Fg[X1,...,%n], we can define a single
in modern cryptanalysis is centered around solving mulfielynomial capturing all of them, nameRs(x) := 1 —
variate systems of low-degree polynomial equations (S8&,(1— pi(x)91). For allac [Fg, note thatPs(a) = 0
the books 17, 3)). holdsifpi(a) =--- = pm(a) =0, andPs(a) = 1 otherwise.
For some appropriately chosen < n, we may define
a polynomialR € Fg[X1,...,Xy_y] @SR(X1,..., Xp_py) =
ﬂaewg’ Ps(X1, ..., X\ _rv,a). Observe that there is ane IFg

Efficient Algorithms For Special CaseslLu [28] gave a
deterministic algorithm for finding a solution tosingle
polynomial equation that runs in time pd$y for polyno- !
mials with s monomials. Building on a randomized alsuch thatPs(a) = 0 if and only if there is a& € Fg™"
gorithm of Huang and WondlP], Kayal [22] gave a de- such tha}IR(b) = 0. Therefore, evaluating on all points
terministic algorithm for SysPolyEqs that has running a € Fg~" will determine if the original system is feasible
time g™ -poly(m,logq), wheren is the number of vari- OF not. Evaluation oR(a) would be relatively easy if it
ablesd is the degree, anohis the number of equations Were merely a sum of products, but it is more complex:
This algorithm is only non-trivial whem is extremely @ product of sums of products of sums of monomials.
large relative to the degree, in particulﬁ‘?w <. I-'|oweV(lar, sinceR(y) is a product off" fungtlons, it t.akes
time " - poly(n) to evaluateR(y) at a single pointy.
Conditional Lower Bounds Based on SysPolyE@5( Hence the straightforward way of evaluatiRgon g™

In some papers, the con_jectLlJre that SysPolyEqs(2) gints would lead to &" - poly(n) running time.
degree—ZCannlotb_e solved n 2 . ¥ time for. anye > 0 Despite the complexity dR, we can in fact evaluate on
was used to justify the optimality of cert.am algc_)rlthm%]n_nf points ing™" - poly(n, m) time by deftly applying
Bjorklund et al. [10] showed that the conjecture |mpl|e§he probabilistic polynomial constructions of Razborov

that their algorithm for listing triangles in sparse grapt}fnd Smolensky together with an algorithm for efficient

is optimal. Vassilevska and William$T] prove that the ¢, ¢ ot monomials evaluation. These are among the cou-

conjecture implies that finding a zero-edge-sum triangz?e of ideas required to prove Theorent: attaining a
over F» requiresn®°% time; this problem is closel

: ) Y deterministic algorithm requires substantially more work.
related to the 3XOR problem of Jafargholi and ViG] v orrow some tools from recent work of Chan and

Clearly, Theoreml'.ll refutes the abovg conjecture, ang\lilliams [13], who give a more efficient deterministic al-
opens up the possibility for faster algorithms for the ab%%rithm for counting SAT assignments. Generalizing the

problems. ideas of their #SAT algorithm to fit the SysPolyEg)s(

Relationship  to SAT.  SysPolyEgs(2) and setting requires some care, in particular, the restriction
GenSy5P0|yEqs(2) may be seen as genera“zaﬁé@sprime fields. To make a deterministic algorithm that
of the satisfiability problem for CNF formulas: Theworks for all fields we give a reduction that transforms a
former is equivalent to SAT of unbounded-fan-igyStem ofmpolynomial equations of degréavith nvari-
AND-PARITY-AND circuits, and the latter is SAT of ables ovei s for d > 2 into an equivalent system afd
unbounded-fan-in AND-PARITY-AND-PARITY cir- Polynomial equations of degrdewith nk variables over
cuits. Small-depth unbounded-fan-in circuits with ANDEp- This reduction turns out to be also useful to obtain
OR and PARITY gates (i.e., Alp]) are widely studied an additional speedup for the randomized algorithm in the
in Boolean circuit complexity; see, e.g24 15, 14). To case thag = p.

the best of our knowledge, faster-thah&AT algorithms  Our algorithms for solving systems &MZ poly-
were not known even for depth-3 unbounded-fan-momials (Theoremsl.3 and 1.4) consist of two steps.
circuits with alinear number of AND and PARITY gates. First, given an instance, we rundagree reduction algo-

Williams [39] gave an algorithm for the ACESAT rithm that produces a set of instances of degree at most
problem, which includes SysPolyEqs(2) as a specfailog(s/n)) such that the original instance is satisfiable if
case; however, the algorithm of Williams only runs ignd only if at least one of them is satisfiable. Then, we
poly(n,m) - 2" time, wheree is a small positive con- @Pply the algorithms of Theorenis1or 1.2to each in-
stant. Chapter 4.3 of Matthews’ PhD theg§][cites Lok- Stance. Our degree reduction algorithm can be seen as a
shtanov and Paturi (two authors of the present paper) wiigneralization of Schuler’s width reduction algorithm for
an unpublished algebraic algorithm fSAT. Our algo- CNF-SAT [34].
rithms for systems of degrdeequations can be seen as The degree reduction algorithm implies that an AND-
a considerable extensions of their method. Williams aRARITY-AND-PARITY circuit can be represented as a
Lokshtanov-Paturi were based on the polynomial methtginall-size” algebraic decision tree whose internal nodes
in Boolean circuit complexityq] (see the survey0] for and leaves correspond to indicator functions of affine
more). subspaces and low-degree polynomials respectively. Such



representation might be useful in proving average-c@%;olﬁ(xz,...,xn)xil for somePR, :IFQ*l — Fg. This gives
lower bounds for AND-PARITY-AND-PARITY circuits, us a way to decompose the problem igteubproblems.
as Impagliazzo, Matthews and Pati20] used Schuler’'s The running timeT (n) of the algorithm satisfie¥ (n) =
width reduction algorithm to obtain correlation boundgT(n— 1) + poly(n)q" and we havd (n) = poly(n) - q".
for AC? circuits (i.e., bounded-depth unbounded-fan-in

circuits with AND and OR gates) for approximating théEMMA 2.3. (Fast Evaluation of Integer Polynomials).
PARITY function. Let n-variate integer polynomial P have at most'p

monomials such that the maximum absolute value(ef P
over all xe {0,1,...,p—1}" is at most M. Then we

) can evaluate Px) over all points in{0,1,...,p—1}" in
We use random access machines as our computaighy(jogM) - p*+°(" time.

model. For a positive integen, [n] denotes the set

{1,2,...,n}. For rational numbera < b, (a,b) denotes Lemma2.3 does not follow from the usual techniques,

the open interval betweea andb. For a finite setS, such as dynamic programmin@][or divide and con-

|§ denotes the cardinality o We use the following quer B8], becauseP could have arbitrary degree. Below

notation: Z denotes the set of integel®; denotes the we give a proof sketch.

set of non-negative integel&y, denotes the quotient ring 07 ]

of integers modulan, identified with{0,1,...,m—1} and Proof. Lett < p¥’ be ths/znumbe_r of monomials. Let

Fq denotes the finite field of order We use 0 and 1 to@---»8y2 € {0,..., p— 1} be a list of all assignments

denote the additive identity and the multiplicative identif{® N/2 variables. Letm = ¢;x,...,m = ¢x* be a list

of Fy. of monomials inP. Prepare matriced and B of p"/2
Let xi_x be f | variables. An ialis by pV7 and p"7 by p"/? dimensions, respectively, with

1,X2,...,X%, be formal variables. Anonomialis ) e o ° -

a product of powers of variables and a constant. A€ following definitions:Ali, j] = mj(a;, 1) andBjj, k] =

y € 204, we definex’ := i x. We can representm; (1, ak_)/cj, wherel denotes the all-ones assignment on

a polynomial Rx) as a sum of monomials of the form1/2 variables.

¥ yayx¥ wherea, is thecoefficieniof xV. In this paper, we ~ Observe thaf\[i, j|B[j, k| = m;(a,a). It follows that

consider polynomials oveéf, and overZ. (AB)[i,K| = yjmj(a,a) = P(aj,a). Thus, a matrix
When dea”ng with po]ynomia]s O\/Q’q, we will On|y multlpllcatlon of A and B ylelds the value ofP on all

be concerned with them for the purpose of eventua@pInts.

evaluating them ovef. The identityxf‘:xi thenimplies  Le Gall [27] gives a matrix multiplication algorithm

that every monomial can be representedafor y € Zg, Wwhich can multiplyN by NO3 and N%3 by N matrices

without changing what the monomial evaluates to whém N27°3) arithmetic operations, over any finite field.

the variables takes values frdfyg. We can therefore multiphA and B over any fieldFq in
The degreeof a monomialx’ is ¥;y. Thus, the O(p™*°") arithmetic operations. Selegtto be a prime

degree of a monomial is the sum of the exponents of theeater than & + 1. Our matrix multiplication now takes

variables in the monomial. We defid(n, k, q) to be the poly(logM)p™*°™ time.

number of different monomials of degree at mksin n Now for all (i,j) = (1,1),...,(pY?,p"?), consider

variables infFq, andM(n,k) to be the number of different(AB)[i, j], and cast it as an integerc {0,1,...,q}. If

monomials of degree at mokton n variables over any r € {0,1,...,M} then outputr as the value oP(&;, a;).

(fixed, possibly infinite) field. The degree of a polynomiaDtherwise,r must be in{g—M,...,q—1}; outputr —q

P is the maximum degree of a monomialRfWe use the as the value oP(g;,a;).

following facts in Sectior8.

2 Preliminaries

. 3 Randomized Algorithms for Systems of
LEMMA 2.1. The number of monomials of degree at Polynomial Equations

most k can be upper bounded as follows:(ryk,q) <

M(n,k) < (n:k) < (1+E)k(1+'ﬁ‘)“§e"(1+'ﬁ‘)“. In this section we give a proof of Theoreml A

degreek instance of SysPolyEgs(is {p1,P2,---,Pm},
LEMMA 2.2. (Fast Evaluation in Finite Fields)here is Where eachp; is an[q polynomial in formzzl variables
an algorithm that, given aliq polynomial P in n variables X1,X2;--->Xn and represented g§(x) = &+ b i
represented as a sum of monomials, runaty(n) - for a.bij € Fq, § > 0 andy j € Zg with 3 (y,j)i < k.

time and prints a Bdimensional vector V such that forBefore proceeding with our algorithm for SysPolyEg)s(
allx e Fg,v[x] = P(x) holds. we describe the approximation of polynomials by low-

degree probabilistic polynomials due to Razborov and
Proof. This is a generalization of the algorithm fronSmolensky 83, 35. We begin with the following lemma
Section 6.2 in 38]. Note that we can writd® asP(x) = whose proof is elementary:



LEMMA 3.1. Let Fq be a finite field and Note thatif we writeR(y) as a polynomial in the straight-
vV = (V,V2,...,Vn) € Fg\ {(0,0,...,0)}. Select forward manner, e.gR(y):1—ﬂa€F3,(1—Q(y,a)), and
r = (ri,r2,....,rn) from Fg uniformly at random. represent it as a sum of monomials, it might take time
Then, ¥ iciq rivi is distributed uniformly at random overmore thang” time. This is becausB(y) has degree”
Fg. as a polynomial in formal variablg€(y, a) } acky - Tore-

Let P: F — F be the function such tha®(x) = 1 duce the degree ®(y), we use Lemma§.2and3.l Wg
if x = (0,0,...,0) andP(x) = O otherwise, i.e.P(x) = Start by setting =n'+2, for eacha € Fy selecting uni-
Hie[n}(lfxlqil)- For s, $.....5 € Fg, define a poly- formly at random random vectorsg 1,81, -,Ss) from

~ FM, and defining
i . -1 q°
nomial Py (X) = |_|==1{1_ (Sjem(s)j-%)* }
Razborov and Smolensky showed that if we select random | q-1
eIemEntssl,sz,...,s € B uniformly and independently, Q{sa,i}!:l(y’ a) = I_l 1- (; (Sai)j - P (y,a))
thenP{S}!il(x) approximate$(x) with high probability. 1= je[m

LEMMA 3.2. ([33, 35]) Selectrandomsss,,...,s € Fy Next, select uniformly at randomg -dimensional vector
uniformly and independently. Then, for all T}, soverFqand define

Y _(x) € {0,1}. Furthermore, (i) If x= (0,0,...,0), &) 5 e
) a(y) = Qe Q).
then Py (x) = 1 and (i) if x # (0,0,...,0), then Retmnly aan,sa sl

1= q

Pr {s}izl[f’{s}!:l(x) =0 =1-q".

W ; _ tomized alaorithim 1 By Lemma3.2, for all y € Fi-" anda € FJ, we
'e are now ready to give a randomized algorithm for PR~ B .
SysPolyEqg{) beating brute force. We remark that th(éave thatQ(.y7 =1 |mpI|§s Q{Sa.i}Ll(y7 ) =1 Whllle
constants in the exponent of Lem®aare not optimized Q(Y,&) = 0yieldsPr . 1 [Q 1 (v,8)=0=1-q".
(with the exception for the case thipt= k= 2), but chosen By | emma3.1, for ally € FH_"' and{s,, }, we have that,

to simpli tation. . rL X ~
so as to simplify presentation (i) for all a € g, if Q{Sa.iH:l(y’ a) =0 thenRg (5,1 (Y) =

LEMMA 3.3. There is a randomized algorithm that0, and “conversely”, (ii) if there exists aa < FY such
given an instance of SysPolyEqgs(q) with m polynom'tanlatQ{Sai}! (y,a) = 1, thenPrg[Rs s, 1 (Y) # 0] = 1— %
equations of degree at most k in n variables, decides tP e ’

fius, for ally € F-", we h
satisfiability of the system correctly with high probabil- us, forally € ¥q =, we have

ity. The running time of the algorithm is bounded by - 1 1
(i) O*(2°878) when g=k = 2, (i) O*(21 &)n.p3) RV #0 = Pr [Ryjey () #0=1-0 =5
when g= 2 and k> 2, (i) O* (gt~ (&/(20%))n . n3ka) \when N 1
— pu— n, . - —
3 < gandlogq < 4ek, and (iv) O (q”~ (";%) n) when Ry)=0 = &Fs;i}[Rs7{Sa-i}(y) #0<q’-q" < 4’

logq = 4ek. where we use the union bound for the second implication.

Proof. LetP:Fg—ﬂFq be the function such th&t(x) = 1 102;:‘? aIgpnthm r(cajpeats ;he fogowmg proce.dure:d
if P1(X) = pa(X) = --- = pm(X) = O andP(x) — O oth- ogq times: It draws the random vectofs,i} an
erwise. We select an integer = |&-n| where the S @nd computes a representationRyfs, ; as a sum of
exact value ofd will be set at the end of the proofmonomials. The procedure then evalua®gss,  (y) for
to be strictly between 0 and 1 depending knand gl y ¢ F3-" using the algorithm of Lemma.2. For

g. For formal variabley = (yl,’yz""’y”f”’) and con- eachy ¢ Fg*"/, the algorithm keeps a counter that keeps
stantsa = (a1, &,...,ay) € Fg, we deflne/Q(y, 8) '= track of the number of times the above procedure resulted
P(Y1,Y2; -, Yn-w,81,8,...,8y). L&t R:Fg™" — Fq be in ﬁs{sa_i}(y) £ 0. The algorithm returns that the input
the function such thaR(y) = 0 if Q(y,a) = 0 for every instance is satisfiable if there existsyaor which the
ac IE‘Q' andR(y) = 1 otherwise.P(x) is identically O if counter is at least 40 percent of the number of runs, that
and only ifR(y) is identically O. is, at least Qit.

We would like to check whether there exists an assign-For the success probability analysis, suppose that the
ment to the variables such tHafy) = 1. For this purpose, input instance is satisfiable. Then there exists such
we represenR(y) as a sum of monomials and apply théhatR(y) # 0. Thus, in each of the runs of the procedure
fast evaluation algorithm for polynomials (Lemr2&?). ﬁs,{sa_i}(y) # 0 with probability at least 12. Since each of



the runs of the procedure are independent, the probabilityis implies that a degree-2 instance of SysPolyEqs(2)
that the counter foy will be at most 04t is at most can be solved in tim@*(20-8769),

()2t <. (L9e1yt - 10(nlogg
t (.4t)2 <t ( 2 ) < @ Forq=2 we have thaM(n7k72)§(E),thUSM((l—

Suppose now that the input instance is not satisfiab n—an ;
) : n,k(q—1)on,q) < . Setting & = 1/(5k
Then R(y) = 0 for all choices ofy and hence, in each .(q )on.a) < (gy)- Setting (1{(2)31 we
run of the procedure the probability th& s ) (y) # ©°Ptain M((1—20)nk(g—1)dn.q) < O (2 10 ) <
0 is at most%. For any fixedy, the probability that o+ (2(1725>n). Thus, forg = 2 we obtain an algorithm
the counter ofy reaches above.&t is therefore at most

th /1y4 3y 6t 1961\t _ 10mlogq . with running timeO*(Z(l*SlR)” %),

t-(a) (2)" (3)7 <t-(os) < “gm - The union

bound taken over ati"" < g" choices ofyyields thatthe ~Wheng > 3 and logy < 4ek we wa = 1/(%0 k),

probability of false positives is upper boundedﬂ%. then M((1 - o)nk(q - 1)on,q) < O (€ (3+ Torg) ).

Hence the algorithm outputs the correct answer with higging logy < 4ek we obtain O (€" (3 + 5fg) ) <

. logg-0.

probability. o* (qn.zf%)vffm) < 0*(q1~22)n) . Hence, in this case
We now proceed with the running time analysis. Thv(\a/e obtain an upper bound m*(q<1*<1/200<))n ) ngkq) on

running time is upper bounded Ihytimes the time taken the running time

to execute the main procedure once, we now upper boung '

this. By Lemma2.2 it takesO* (") time to evaluate

Rs (sai) for.all y once a representation B (s,;} @asasum M((1—&)n,k(q—1)3n,q) < O* ((2eked)"). Inserting the
of monomials is g|ven.. definition of & we obtainM((1— d)n,k(g—1)dn,q) <

To upper bound the time taken to compute the represen- loglogg(¥/e¥ \ " N ek > 16 implies that
tation of Ry (s,;; @s a sum of monomials it is sufficient to (( '2.|ogq<1/ek>(2 k))- ow, 7" > Implies tha
observe thaﬁs s} IS @ polynomial inn—n' variables of 7 5oqq(1/el %
total degree at{m(})sh(q —1)I. We compute the represen-(Ioglc?gqq“/ek)) o > /*. Thus we have
tation 0f§g{%,i} using the definitions directly, applying e\ "
the ndve algorithm for polynomial multiplication. How- o (( _loglogq ) )
ever, we make sure that whenever we are multiplying two 2-logq(l/ek
polynomials, at least one of them has degree at rkqst

<o

K
When logy > 4ek, we setd = %, which yields

1 loglogq(1/€¥

n
Note that this is achievable, because the only multiplica- ql_a( 210gq(1/eK <O <q(1725)n) _
tions in the definition Oﬂ?&{sa‘i} occur in the definition -

of Q{Sa,i}Ezl(y,a), which is a product of polynom|als_ OfHence, in this case we get an upper bound of
degree at modtg. Thus, the total number of operations n (logg) " o
(polynomial additions or multiplications) needed to conf?” { d"- (w) ) on the running time.

/

puteRs (s, is at mostO*(q" ), and each such operation

takes timeO*(M(n—n',k(q—1)(n' +2),q) -nk9). Using  Next we show that any system of polynomial equa-

the observation tha¥l(n,r +1,q) < n-M(n,r,q) for ev- tions of degre& with n variables oveff 4 for d > 2 can

ery n andr we conclude that the total time taken by thke reduced in polynomial time to an equivalent system of

algorithm is upper bounded by md polynomial equations of degrdewith nk variables

overF,. This allows us to substantially improve over the

O*(q”*“, +q"- M(n—n',k(q—1)n’,q) - n9) running time of the algorithm of Lemm@ 3 for the cagse

_ v (n(1=3)n  ~on _ _ 3kq whengq is large compared td, andq is a prime powep®,

=0 (@ " +g™-M((1-2)nk(g-1)on,q)-n). | o,

We now discuss the choice offor different possible ~ Let p be prime. In the following, we will assume we
values ofq and k. By always pickingd such that POSS€ss an irreducible polynomia(X) of degreek in
M((1—3)n,k(g—1)dn,q) = O*(q(1-29), we ensure thatIFp[x}_. A standard way of efficieptly constructing such
the running time is upper bounded B (q1-9" . n3a). P(X) is to choose degrelepolynomialsP at random, then
We divide the analysis into three cases, first the case tifst them for irreducibility. The irreducibility oP can
q = 2, then wheng > 3 but g is still “small enough” then be checked by running Kedlaya-Umans’ determinis-
compared tad, and finally wheny is “large” compared tic irreducibility test ink!°(%) log>"°(*) p time ([23], Sec-
tod. tion 8.2); a standard algebraic fact is that a random poly-

nomial overF, of degreek is irreducible with probability

Forg=2 andk = 2, we setd = 0.1235 to sat- atleast k. We are now ready to give the aforementioned
isfy M((1—8)n,k(q—1)3n,q) < ("2") <0*(21-22").  reduction.



LEMMA 3.4. There is a polynomial-time algorithm thatDerINITION 1. (Naor and Naor31]). A set SC IFj of n-
given as input a system S of m degree-k n-variate potijmensional vectors is-biasedif for all non-zero ve F}
nomial equations ovelF 4, together with an irreducible and all ac Fp,

polynomial RX) of degree d irf,[X], outputs an equiv-

alent system sSof dm degree-k dn-variate equations over

Fyp. Thatis, S has a solution ov&ry if and only if § has PL [Z rivi = a] €(1/p—¢,1/p+e).

a solution oveiF,. e

Proof. For every 0< ¢ < (d — 1)k, compute degree-THEOREM4.1. (Alon, Goldreich, Hastad and Per-
(d — 1) polynomialsP, € Fp[X] such thatX’ = P,(X) alta [2]). For every positive integer n and e
(mod P(X)). TheseP, can be determined by simple poly{0,1/q), there is an e-biased set & C Fj of
nomial division, in polyd- k) time. Letx be theith vari-  cardinality o(n3(log3 p)/€3), constructible in time
able in the systerf; we intend to sex; to a value inF 4. poly(n(log, p)/¢).

F a is isomorphic tdFp[X] /P, that is, the elements &

can be thought of as equwalen_ce classes of polynom|aIS|r\1Ne also need constructions ehodulus-amplifying
Fp[X] moduloP(X). Itis a basic fact that every elemenbolynomials

r of Fp[X]/P can be written as = 32X’ for r; € Fp,

in a unique way. Thus, for eagh< nand 0</<d—-1 | gmuma 4.1. (Beigel and Tarui T]). For every positive
we can define; € Fp such that = 5{-9%,X". That integert, the degred2¢ — 1) integer polynomial

is, we think of the value ok; as ad-dimensional vec-

tor with entries fromFp, wherex;, is the /th compo- S -1
nent of this vector. Consider now the produgtj, we F(y)=1-(1-y) Z}( - )
have thatxxj = zf’ljizoxi’glxszgle. Since allP/’s are 1= ]
fixed polynomials inFp[X], the coefficients of everX’ has the property for all & Z:
are quadratic forms over the variabl€s (}o</<q and « ify = 0 modp, then E(y) = 0 mod,
{Xj.cyosi<a: e ify=1modp, then F(y) = 1 modp’.

In general, a product d€ variables can be viewed as 3 addition, for0 < i < 20— 1, the coefficient ofiyin F;

degreed polynomial ofX, whose coefficients are degree:- . (0)
k forms of {X; s }1<i<no<¢<d. Therefore, a single degree—has magnitude at mogP®.

k polynomial equation over the variablés }1<j<n over

yJ

. . Now we are ready to “derandomize” the probabilistic
F « can be viewed as a systemafiegreek polynomial . .
p polynomial constructions of Razborov and Smolensky as

equations over the variablelS }i<i<no<i<a OVer Fp. ¢ e a non-empty s&C F" and a positive integer
Doing this for every equation in the input system mcreas?sdeﬁn'e a polynomiaps, (x) B P_> 7 as
the number of variables and the number of equations by'a poly SO T

factor ofd, but reduces the underlying field frol?bd to

F P
> Ps¢(X) = 25':4 ((% fiXi> ) ,
We may now directly combine the algorithm of re ien]

Lemma 3.3 with the reduction of Lemmées.4 to ob- )
tain improved savings for SysPolyEgs{vhenq is large Where we regardfy as the set of integerf0,1,...,p—
compared tok and not prime. In particular, applyingl} C Z. Then, we have:

Lemma3.4 and then solving the output instance using , )
Lemmas3.3yields a proof of Theoreri. 1. LEMMA 4.2. Let SC [}; be ane-biased set and be a

positive integer such that'p> |S|. Then:

4 Deterministic  Algorithms for Systems of e Ifx=(0,0,...,0), thenps,(x) =0.
Polynomial Equations e If x # (0,0,...,0), then (Ps¢(x) mod p) € ((1—

We now show how to obtain a deterministic algorithm for /P~ €[S, (1=1/p+¢£)IS).

SysPolyEqgf) that beats the rige O*(q") time algorithm,

in particular we prove Theorerh.2. We will first give Proof. The first item is by the fact tha,(0) = 0. The
such an algorithm for SysPolyEgg(for prime p. We second item is by the fact that for ary# 0 modp,
start with a “deterministic version” of the probabilisti@” ' = 1 modp holds and the definition af-biased set.
polynomial constructions of Razborov and Smolensky

following the lead of Chan and William4.8]. We need a We are now prepared to give the deterministic algorithm
construction obmall-biased spaces for fields of prime order:



LEMMA 4.3. Let p be a prime. There is a deterministitetM := (1 1/p)|S and recall that := 1/(4- p"). For
algorithm that, given an instance of SysPolyEqs(p) withail y ¢ ]Fn " we have that
polynomial equatlons of degree at most k in n variables,
o RS P (R(y) mod p')/M € (K(y) —1/2,K(y) +1/2).

runs in time p s0ap -mPkP) and counts the N
number of satisfying assignments for the system. The algorithm computes a representation(Ré,(y))

as a sum of monomials from the representations of
Proof. Let {p1,p2....pm} be an instance of {pl, P2, .. ,pm} by directly applyingAthe de.finitions of
SysPolyEqgf). We select an integen’ — [&-n, Rse( )anngJ(y, a). The degree ofRs(y)) is at most
where the exact value af will be set at the end of the4<(p— 1)1’ +O(kplogm). We will setn’ = &n in such a
proof, strictly between 0 and 1, depending bandg. Way that
Define a functionQ : FI™" x F? — Fp, asQ(y,a) = 1 if _ B o n(n=1)/7
pi(y.a) = po(y.a) = - = pn(y.d) = O andQ(ya) =0 (- OmAP= Lo S O(PTEED,
otherwise. Also We define a functiok : F~ " _, 7 and that therefore the number of monomlalqmgé( y))
asK(y) := [{a€ F | Q(y,a) = 0}|. Note thatK(y) is p™™)/7. mOkp) Hence we can obtain the value of
represents the number of unsatisfying assignments witily) for all y € % in time p"~"+°( . iOkp by applying
the firstn—n’ variables are fixed tg. If we have the Lemma2.3to ng(y)

value of K(y) for all y € F}™", we can compute the e now proceed to the running time analysis, for this
number of satisfying aSS|gnments to the input instangge need to specify more precisely how the representation
L.e., "~ % g K(y), intime poly(n) - p" ", of (Rs/(y)) as a sum of monomials is computed. In

In what follows, we show how to construct an integdtarticular, all polynomial additions and multiplications
polynomial in the sama— ' variables a& (y), such that are performed using the ivee addition and multiplication
for everyy € En-r K(y) can be efficiently determmedalgor'thms however, we make sure that whenever we are
from the value of the polynomial evaluated gn For a Multiplying two polynomials, at least one of them has

nonempty se8 C F™ and a positive integef, define the degree at mostg. Note that this is achievable, because all
; B ’ ltiplications occur in the definition ds,(y,a). Here
integer polynomials multip se(Y,a).

a polynomial of degree at mokts taken to th€ p— 1)th

p—1 power, resulting in a polynomial of degree at mégt
Os/(y, F pily,a ’ ThenF, is applleq to this pol_yr_1c_>m|al. Note thE);(t) can
selha zs ‘ P%.2) be computed using the definition of Lemmal in such
a way that in any multiplication, at least one of the two
RSZ Z QS@ Y factors is eithet or 1—t. Thus, each multiplication takes
acky time at most

Here we regardr, as the set of integer®,1,...,p—1}  O*(M(n,4k(p—1)n' + O(kplogm))) - M(n, kp)

and eachp; as an integer polynomial whose coefficients < M(n,4k(p—1)n') - (mn)OkP),

are from{0,1,..., p— 1} in a natural way. R »
Let £ :— 1/(4. p"), and construct are-biased set EachQsc(y,a) is computed withO*(|§) < O*(p*")

SCFT usmg Theorem.1. We have thats] is at most Polynomial additions and multiplications, atks,(y)) is

mB p3" +o ), and thatSis constructed if0*(pP" )) time. the sum onS((y7 a) over all p" choices ofa. Hence, the

Now, let ¢ be the smallest integer greater thggp”, total number of operations needed to CCA)nSU(lRéiz( y)

note that! < 4n’ +logm-+ O(1). By Lemma4.2, for all is upper bounded bg*(p*). Evaluating(Rs,(y)) using

y € F3-" anda € F}y, we have that Lemma2.3takes timep" " +o(W . mPkP) \while construct-
ing |, which is done once, takes tin@ (p°")). Hence
Qy,a)=1 = Qs(y.a)=0, the total running time is upper bounded by
Qly,a) =0 = (éaz(y, a) mod pé) P m+o(n) | p
€ ((1_ l/p_ €)|S|7 (1_ l/p+ £)|S) —|—p4n . M(n_ n ’4k(p_ 1)n/) . (nm)o(kp)

< p(175)n+0(n) + pc-én

Then, for ally € F2-", we have
e +p*".M((1—5)n,4k(p—1)5n) - (nm)°kP),

(Rs¢(y) mod p') Herec is the constant in the big-Oh notation in th&™)
€((1-1/p—¢€)|9K(y),(1—1/p+¢€)|SK(y)). term,cisindependent op andk.



We now discuss the choice offor different values of choices for the coefficients dP(X), and then testing
p andk. We will always pickd to be at less than/Ic+1) irreducibility by dividing P(X) by each polynomial in
and less than /b, thus the first term in the runningFp[X] of degree at mosti/2. Then transform the input
time will always be larger than the second. Furthesystem using Lemma&.4to an equivalent system &m
we have already constrained the choicedosuch that degreed polynomial equations ovekn variables inFp,
M((1—8)n,4k(p—1)dn) < p™")/7. For such &, the and use Lemma.3to solve this system.
running time is upper bounded by

AD R ion Algorith
p(1-0)mbon) | y48n. (1-8)/7_ (3 Okp) < p(1-d)n+oln), > egree Reduction Algorithm

In this section we prove Theoremis3 and1.4. Specif-

We first consider the case that> (2e)7. We setd = ically, we present algorithms for a generalization of
1/(10ek ;55/7), then we have that SysPolyEqgs(2), where eaghis a polynomial of the form
M((1—0)n,4k(p—1)dn) < M((1—93)n,5kpdn(1—9)) s i
1-5 (5.1) pi(x) =& + bijk+ X
< o* (<n+5:p5n> ) < (e+ sekm)(l—é)n JZlklzll |€U2i,j7k

< p(lfé)n/7: p(nfn/)/7. for a,bijk € {0,1}, s,tij > 1 and 0# Uk C

{1,2,...,n}. Lets:=y3;s andu:= 3;;«|Uijkl de-

We note thenumber of productsand thesize respectively.
When the polynomials in the input system are given in the
form 5.1, we refer to the problem as GenSysPolyEqgs(2).
n+5kp6n> 1‘5> Our algorithm works by reducing systems of polyno-

Suppose now thap < (2e)’, we setd =
have that

_ 1
kp®/7.300°

n mial equations oveF, where each polynomial is in the
form 5.1 to systems of polynomial equations ovies

( n+ P -l -0 where the degree of the polynomials of the output sys-
< O* ( 60 )

M((1—9)n,4k(p—1)dn) < O* <<

tem depends on the number of products in the input sys-

n tem. This reduction together with Theorethd and1.2
iy /7y (1-9)n will complete the proofs of Theorenis3and1.4, respec-
<O* 1+ Py <1+ 60) 6 tively.
- 60 p/7 Note that because we are workingT, x! = x; for
all d > 1, and that therefore the degree of a monomial is
<o ((p1/7)(1‘5>”> _ equal to _the n_umber of variables in it. T_he_: degre_e of a
polynomial p; is at most mag j, however it is possible

that it is actually less. In this section we will abuse
ferminology and for each refer to the degree of the
polynomialp; as deg@p;) := maxt; ;.

The last transition was verified by explicitely comparin
the two sides for every integey between 2 and2e)’.
This completes the proof.
Tools from Linear Algebra. We need the following stan-
Lemma4.3 only works for prime fields, however, bydard notions and properties of linear independendg,of
combining Lemmat.3with the reduction of Lemma&.4, [ etV be a set of vectorfvi, Vo, ..., v} C {0,11". We say
we obtain an algorithm that works for all fields. Morey s linearly dependenif there exists a non-zero vector
concretely, we are now in position to prove Theore@ (g a,,...,a) € {0,1}! such thaty!_, ajvi = (0,0,...,0)
Theorem 1.2 (restated). Let = p? for a prime p and holds._ OtherwiseV is linearly _ind_ependentlf V is lin-
integer d> 1. There is a deterministic algorithm that,early mdepe;]ndent and J v} 'S I|nearl_y dependent for
given an instance of SysPolyEqs(q) with m polynom l’ vE {0,1}"\V, thenV is maximally Il_nearly |nd.epen—
equations of degree at most k in n variables, runs nt_Thgrankof.V, denpted by rank/), is the maximum
L1 >+0(n) card'mahty qf a Ilne.arly independent subseMofFor any
time q”< 300kf/ 7 .mPkd and counts the numbermaximally linearly independent subsétof V, the cardi-
of satisfying assignments for the system. nality of V' is equal to rankV).
Let V be a subset of0,1}" andV’ be a linearly
Proof. Given as input a system afidegreed polynomial independent subset ¢0,1}". Therank of V relative to
equations oven variables inFy, find in timepP@ =q°® V'’ is the maximum cardinality of a subsét of V such
an irreducible polynomiaP(X) in Fp[X] of degreed. thatV'UV” is linearly independent. Note that any vector
This can be done by going over all of the at m@st inV can be written as a linear combination of vectors in



V/UV”. In what follows, it is convenient to identify the 2. Simplify P, with P,: AssumeP; = {p1, p2,..., P}
vectorv € {0,1}" with the setS, = {i € [n] | vy = 1} and andP = {ppys1, Prvs2s---» Pm}. FOrm +1<i<m,
the linear formL = S ; vix;. Thus, we use terms such 1< j<sand 1<k <tj, if Uk can be written
as linearly independent and rank for a set of subsets of as a linear combination of vectors i{Ui}inll as
[n] or a set of linear forms in a natural way. For linear
formsLy,Ly,...,L; andas,ay, ..., & € {0,1}, we identify
the system of linear equatiofik; = & }!_, with the affine ) ' S
subspacéxe {0,1}"|Ly =ay, L, =ap,...,L  =a}. The somei, m 4+ 1 S.I < mafter the substitution, remove
following lemma gives a way to reduce the degree of pi from P2, add it toPy and go back to Step 1.
polynomials all of whose products of sums of variables3. Degree Reduction: Again, assumé’; =
have “low rank.” {p1,p2,-... P} and P> = {Pny+1, Prv42:---» Pm}-
Form+1<i<mand 1< j < s, if the rank of
{Uijx, with respect to{U;}™, is at mostd,

rewrite ﬂﬂil (bi,j’k+2|eui.jth|) as a polynomial

Uijk = z{ilqui for somecy,cy,...,cy € {0,1},
replacez|eui,j‘kx| by z{ilcia,-. If deg(pi) < 1 for

LeEMMA 5.1. (Degree reduction relative to a system of
linear equations)Let Uj,U,, ... ,U; be subsets dh] and
L1,Lo,...,Ly be linear forms such thdt; }}':1 is linearly
independent and the rank ¢t);}!_; relative to {L;}!"_, of degree at mosd by Lemmas5. 1 If deg(pi) <1
is d. Then, for all &,ap,...,as,by,by,....bx € {0,1}, for somei, m +1<i < mafterthe above rewriting,
there exists a polynomial p of degree at most d such that "e€movep; from P2, add it toP; and go back to Step
P(X) = k1 (bk+ Ticu, X ) holds for allxe {Li =ai}!_ ;.

Proof. Let V be a linearly independent subset

9,%,. . S} /Of {Ui}i_, such that the rank oV | ot p pe the simplified instance obtained by apply-
relative to {Li}{_; is d. By the definition of the rank ing Simplify to P. The following is true: (P1) The
of a set relative to a set, eadly can be written as number of satisfying assignments fBris equal to that
a linear combination of vectors i U {Li}{_;. This for P’. (P2) Partition the resulting instand® into
implies that we can writeTi_; (bc+ Yicy, %) as @ P/ and P} and assumé, = {ps, pz,..., Py} and P =
function of §,%,...,%,L1,Lo,..., Lt’.- By setting {Prt-1: Pri12:---» Pm}. Then, (i) {Ui}inil is linearly in-
Li=a,le = &,....Ly = & and using the fact thatyenendent, and (i) farf +1 <i < mand 1< j <5, we
S\é?;z;um?gﬂ?/:;elrgo\rﬁrgllzgetig%?o%ef.wmten asa d(agme'have e:;c{he_ti. j < d or the rank of{U; j,k}ﬁi 1 With respect
to {U;}", is at leasd + 1.

Simplification of systems of polynomial equationsBe-  he aigorithm and its analysis. We now describe the
fore describing our main algorithm, we introduce a pr%\'lgorithmDegree-ReductiorQP, d), which we will use to
cedure that simplifies instances of GenSysPolyEqs(gloye Theorema.3and1.4. We first finish the proof of
Let P = {p1,p2...,pm} be an instance of Gen-rheoremi 3and then describe the necessary adjustments
SysPolyEgs(2). Let d¢§) = maxdegpi). We parti- prove Theorent.4.

tion P into P, and P, such thatP, = {p € P|degp) <
1} and P, = {p € P|degp) > 2}. Note that we can
check whetheP; is satisfiable or not in polynomial time
via Gaussian elimination. In what follows, we assume

pi(X) =a + 3 jey; Xj if deg(pi) < 1 and

1. RunSimplify (P,d).

2. If deg(P) < d, assumeP; = {p1,p2,..., Pw} and

. select an arbitrary subsé&t of {0,1}" such that

pi(X)=a + bijx + g X {Ui}™, UV is maximally linearly independent, i.e.,
j=1k=1 107 x has rankn. Rewrite each variableg as a linear

_ ) o _ combination of vectors ir{Ui}{ilUV. We regard
if deg(pi) > 2. Given a positive integet, we define the each vector iV as a formal variable and each vector

procedureSimplify (P d) as follows: Ui as the constard. Apply Theorem1.1 to the
resulting instance ir(nf rank({Ui}{il)> variables.

w

1. Simplify P;: AssumeP, = {p1, p2,...,Pw}. First,
check whether a system _of. linear equatigns= 3. If deg(P) > d, assumé, = {p1, Pz, ..., P } and se-
P2 = - = py = 0 is satisfiable. If the system |ect arbitraryi, j/,m +1<i<m1< | <s, such
is not satisfiable, return unsatisfiable, and continue N o s i (p
otherwise. Select a maximally linearly independent thatpi(X) =& +3 o M (b"’*k+ z'euwkx') ?r:d
subseV of {Ui}i”ll. RedefineP; := {pi}y,ev. ti y > d. Select an arbitrary subsetof {U; j « } ./,



of sized such thatv U {U;}™, is linearly indepen- - O (2(1*5%[)”.(1+ 2*d(1*%))5+3)

dent. Define ot (2(1*%)”'exp{2*d(1’%) (S+ E) })
1

IN

d
o (Doly(u) o(1-gg)n, 245/2‘1*1/5) 7

IN

G(¥) = T[] (bi,j,k+ > X|>,

Uiﬁj‘kGV |€Ui,j,k

tij
ri(x)::aiJr z rll biﬁkaJr Z X
1<j<s,j#) k= €U j k
of Theoreml.3.

Defl.ne instances. = {P\ {pi}} U{airi}, and  \ya see that (1Bimplify does not change the number
Pri= PU{Biju+ Z_'EUi,j,kX'}ULLkGV' Then, satisfying assignments by Property P-1, and (2) each
run  Degree-ReductioniR,d) and Degree- pranching oDegree-Reductiononly partitions the solu-
Reduction(Pr, d) recursively. tion space. This implies that if we replace Theorérh
by Theoreml.2in Step 2 ofDegree-Reductionand add
The correctness d@egree-Reductions guaranteed sincethe number of satisfying assignmentsffand that ofPz
Pis satisfiable if and only if at least oneBf andPr is sat- in Step 3, we obtain Theoref4.
isfiable. This is because in Step 3, instari@eandPk cor-
respond to conditiong (X) = 0 andg; (x) = 1 respectively. 6 Concluding Remarks

Note that we can chooséin Step 3 due to Property (PZ)'We have shown how multivariate systems of polynomial

(i) of Simplify . Inwhat follows, we give the running tlmeequations can be solved faster than exhaustive search in

anal)_/3|s ofDegree—ReducuorﬁBd). The ov?ral! struc- very generic settings. There are two natural extensions
ture is the same as the analysis of Schuler's width redlﬂq

. ; ) at we have not yet been able to crack:
tion algorithm for SAT of CNF formulas in1[2]. y

We regard the execution dbegree-Reductionas a
rooted binary tred@. The root ofT is labeled with an input
instanceP. For each node labeled with, its left (right, ) -
resp.) child is labeled witkQ, (Qr, resp.) as defined inK Polynomials whenp < 2%k, a”d”'o(%géw“k)
Step 3 ofDegree_Reduction If deg(Q) < d ho|ds7 then otherwise. Can one achieve SaVIrlI'QQ(k) even for Iarge
the node labeled witkD is a leaf. Let us consider a patH? compared tk? Can such savings be achieved by a
p from the root to a leaf labeled withQ. We denote by deterministic algorithm? We remark that removing the
L andR the number of left and right childrep selects to factor of I/k from the savings entirely would refute the
reachv. We see that (1)) < ssince the number of productsStrong Exponential Time Hypothesik-§AT can easily
with degree more thad is at mosts, (2) R< n/d since be embedded into degréenstances of SysPolyEqs(2)).

a right branch increases the rankRif(as a set of linear |5 there an algorithm for SAT of large-depth arith-
forms) byd and the rank oP; cannot be larger than, metic circuits overFp? Arbitrary arithmetic circuits?
and (3)Q is defined over at most— dRvariables in the Our algorithm for GenSysPolyEqs(2) already solves the
sense of Step 2 ddegree-Reduction Furthermore, the SAT problem forM=MZ circuits which is a consider-
number of leaves that are reachable by exaRtlimes of aple generalization of CNF-SAT. By results of Agrawal
right branches is at mogt"). Let T(n,m,d) denote the and Vinay [L] who reduce arbitrary small low-degree cir-
running time of the algorithm of Theoreinlon instances cuits to subexponential-sizEM=M circuits, we can al-

of SysPolyEqgs withm polynomial equations of degree ateady conclude a non-trivial SAT algorithm for aifiy-
mostd in n variables. We can upper bound the runningrithmetic circuit of degree less thal ¢ (by a random-

where we assums > n/d. We setd := 2log(s/n) + ¢
) for sufficiently largec > 0, then (1—g5)n+ %55 <

1 1 H
(1— Tologs/m 75 T (S/n)zc,g) n. This completes the proof

Is there an algorithm for SysPolyEqgs(q) with a better
runtime exponent?Our savings over exhaustive search
for SysPolyEqp?) in the exponent is/O(k) for degree-

time of Degree-Reductionas follows: ized reduction).
n Acknowledgments. The fourth author thanks Timothy
o ( d (s+ R) -T(n—dR,m,d)) Chan for helpful discussions on an earlier phase of this

&\ R work.
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