
Cell-Probe Lower Bounds from Online Communication Complexity

Josh Alman∗ Joshua R. Wang† Huacheng Yu‡

November 12, 2017

Abstract

In this work, we introduce an online model for communication complexity. Analogous to how online
algorithms receive their input piece-by-piece, our model presents one of the players, Bob, his input
piece-by-piece, and has the players Alice and Bob cooperate to compute a result each time before the
next piece is revealed to Bob. This model has a closer and more natural correspondence to dynamic
data structures than classic communication models do, and hence presents a new perspective on data
structures.

We first present a tight lower bound for the online set intersection problem in the online communi-
cation model, demonstrating a general approach for proving online communication lower bounds. The
online communication model prevents a batching trick that classic communication complexity allows,
and yields a stronger lower bound. We then apply the online communication model to prove data struc-
ture lower bounds for two dynamic data structure problems: the Group Range problem and the Dynamic
Connectivity problem for forests. Both of the problems admit a worst case O(log n)-time data structure.
Using online communication complexity, we prove a tight cell-probe lower bound for each: spending
o(log n) (even amortized) time per operation results in at best an exp(−δ2n) probability of correctly
answering a (1/2 + δ)-fraction of the n queries.

∗MIT CSAIL and EECS, jalman@mit.edu. Supported by an NSF Graduate Research Fellowship, and by NSF CAREER awards
1651838 and 1552651. Work initiated while at Stanford University.
†Stanford University, joshua.wang@cs.stanford.edu. Supported by NSF CCF-1524062 and a Stanford Graduate Fellowship.
‡Harvard University, yuhch123@gmail.com. Supported in part by NSF CCF-1212372.

1 Introduction

One major hallmark of complexity theory is Yao’s cell-probe model [Yao81], a powerful model of compu-
tation that manages to capture the inherent complexity found in a variety of data structure problems. The
titular feature of this model is that the data structure is only charged for the number of memory cells that
it accesses (or probes), and not for any computation it needs to perform on the contents of those cells.
Since this model is so strong – data structures are given the power of ‘free computation’ – proving lower
bounds here yields lower bounds for most other models of data structure computation. Many lower bounds
in the cell-probe model are derived via connections to communication complexity, wherein two players try
to jointly compute a function but are only charged for the bits that they communicate to each other and
again, not for any computation [Ajt88, MNSW95, BF02, Pǎt07, PT11, Yu16, WY16].

Unfortunately, the sheer power granted to the data structure by the cell-probe model can often make
it difficult to prove strong lower bounds. In fact, in many cases a matching lower bound in the cell-probe
model may be impossible; counting just cell probes in lieu of actual computation time might indeed make
several problems easier [LW17]. Partly as a result of this difficulty, only a few techniques are known for
proving cell-probe lower bounds. In this paper, we propose a new technique to add to our growing toolbox.
We propose a new model of communication complexity which we call online communication. We give tools
for proving lower bounds in this new model, and then use these tools to show how the model results in new
robust lower bounds for two fundamental data structure problems.

1.1 Online Communication Model

Inspired by the fact that a data structure must answer one query before it sees the next, we propose a novel
model of communication: the online communication model. The salient feature of our model is that one
of the players, Bob, does not receive his entire input at once. Whereas Alice receives her entire input X ,
Bob receives a small piece Y1 and the two must jointly compute a function f1(X,Y1) before Bob receives
the next piece Y2, and so on. As usual, we care about the total amount of communication that Alice and
Bob use. Intuitively, this model is designed to rule out batching techniques; in usual offline models of
communication, it may be cheaper for Bob to discuss all the pieces of his input together, but in the online
model, this is impossible since he only receives one piece at a time.

It stands to reason that we should be able to prove better lower bounds now that communication protocols
have one fewer trick to work with. In this paper, we develop techniques that relate this model to more familiar
entire-input-at-once models. In order to demonstrate how things are different in the online model, we turn
to perhaps one of the most important communication problems: set disjointness.

1.2 Online Set Disjointness

The testbed for our new model is the quintessential problem, set disjointness. In the basic version of this
problem, Alice and Bob are each given subsets over [n] and want to compute whether their subsets are
disjoint. This problem has long been a favored source of hardness, and along with its many variations, it has
been thoroughly studied by theorists; see e.g. the surveys [CP10, She14].

In the context of our model, this problem manifests as the online set intersection problem. Alice is given
an entire subset X ⊆ [n] of size k while Bob is only given single elements yi of another subset Y ⊆ [n] of
size k one at a time. The players need to decide whether yi 6∈ X before Bob receives the next element. We
show that:

Theorem 1.1 (informal). When n ≥ k2, the online set intersection problem requires Ω(k log log k) bits of
total communication.

1

In fact, our proof shows that deciding whether X and Y are disjoint requires Ω(k log log k) bits of
communication in the online model; it cannot be done more effiicently even if Alice and Bob may stop after
finding an intersecting element. We also give a fairly straightforward protocol which solves the problem in
O(k log log k) bits of communication, showing that this bound is tight. This stands in contrast to known
bounds for the classical communication model, in which the set disjointness problem can be solved with
just O(k) bits by using a batching trick to test all elements of Y simultaneously [HW07].

1.3 Group Range Problem

The first data structure problem we consider is a generalization of the Partial Sums problem (from e.g.
[PD04b]). In the Group Range Problem, we have a group G along with a binary encoding of the group
elements (any injective function) e : G → {0, 1}s. We would like a data structure which stores a sequence
of n group elements a0, . . . , an−1 while supporting the following operations:

• Update(i, a) sets entry ai ← a.

• Query(`, r, i) returns the ith bit of the binary encoding of the group product a`a`+1 · · · ar−1ar.

We focus on the case where the cell-size is w = Θ(log n) and the group is polynomially-sized: log |G| =
O(w).

Regarding upper-bounds, there is a folklore data structure which solves the problem with O(log n) time
per operation. This is a worst-case (not just amortized) guarantee, and the data structure is deterministic.
There is a matching Ω(log n) cell-probe lower-bound by Pǎtraşcu and Demaine for the Partial Sums prob-
lem, wherein queries need to return the entire product rather than a single bit [PD04b]. This lower bound
holds for Las Vegas randomized data structures (the number of cell probes is considered in expectation) and
amortized operation cost.

However, this lower bound leaves open several plausible ways to improve the running time. What if we
really only care about a single bit of each query? What if we are willing to tolerate errors? Our main result
shows that even if we permit these concessions, the Ω(log n) barrier still stands:

Theorem 1.2. There exists a distribution over n updates and queries for the Group Range Problem with
binary encoding of the group elements e : G → {0, 1}s, such that for any randomized cell-probe data
structure D with word size w = Θ(log n), which with probability p answers at least a (1

2 + δ) fraction
of queries correctly and spends εn log n total running time, we must have p ≤ exp(−δ2n), as long as
s ≤ (1 + ε) log |G|, δ2 � ε ≥ Ω(1/ log n), and n is sufficiently large.1

Put another way, Theorem 1.2 settles the trade-off between running time and accuracy of the output
for the Group Range Problem. There are two possible regimes. If we are willing to pay Θ(log n) time
per operation, then there exists a deterministic worst-case data structure. Otherwise, if we require the data
structure to spend o(log n) time per operation, then Theorem 1.2 shows that we cannot hope to do much
better than outputting a random bit for each query, up to a constant factor improvement in δ. To the best of
our knowledge, this bound and our other lower bound we describe shortly are the first tight data structure
lower bounds in such a high error regime, where a data structure may answer barely more than half of the
queries correctly, and do so even with a small success probability.

1.4 Dynamic Connectivity

Next, we consider a fundamental problem in graph data structures: Dynamic Connectivity. In this problem,
we would like a data structure which stores an undirected graph G = (V,E) on n vertices, while supporting
the following operations:

1In this paper, we use exp(f(n)) to mean 2Θ(f(n)).

2

• insert(u, v) adds edge (u, v) to E.

• delete(u, v) removes edge (u, v) from E.

• query(u, v) returns whether or not there currently exists a path between nodes u and v.

Like before, we look at this problem in the cell-probe model with cell size w = O(log n). The link/cut
tree data structure [ST81] and Euler tour tree data structure [HK99] for the problem take O(log n) time per
update or query. A matching Ω(log n) lower bound was given by Pǎtraşcu and Demaine [PD06]. However,
their lower bound holds for Las Vegas or Monte Carlo data structures with amortization, where they assume
that the error probability for each query is n−c for some large constant c.

Pǎtraşcu and Demaine still leave open the question of what can be done if we insist on o(log n) time per
operation. Their lower bound asserts that we cannot answer each query correctly with better than 1 − n−c
probability. However, for one example, it could still be possible to design a data structure which answers
all queries correctly simultaneously with probability, say 1 − 1/ log n, and such that each individual query
is correct with probability lower than 1 − n−c. Such a data structure would not violate the existing lower
bounds, and its success probability would be good enough in many applications, as it only incurs an additive
1/ log n overall error probability.

Again, our new technique yields a robust lower bound, ruling out such data structures:

Theorem 1.3. There exists a distribution over O(n) updates and queries for the dynamic connectivity prob-
lem, such that for any randomized cell-probe data structure D with word-size w = Θ(log n), which with
probability p answers at least a (1

2 + δ)-fraction of the queries correctly and spends εn log n total running
time, we must have p ≤ exp(−δ2n) as long as δ2 � 1/ log(1/ε) and ε ≥ Ω(1/ log n) and n is sufficiently
large. Moreover, the graph is always a forest throughout the sequence of updates.

Similar to before, this essentially settles the complexity of the Dynamic Connectivity problem in forests
(where the graph is always a forest throughout the sequence of updates). If one wants o(log n) per update
and query, then one cannot do better than outputting the flip of a random coin to answer each query, again
up to a constant factor in δ.

Our lower bound almost matches the best known upper bound for Dynamic Connectivity in general
graphs of O(log n log3 log n) by Thorup [Tho00]. Dynamic Connectivity with higher error than Pǎtraşcu
and Demaine allowed for, although still lower error than we consider, was studied by Fredman and Saks
[FS89], but for worst-case update time instead of amortized, and for the problem where edge deletions are
not allowed; the only updates allowed are edge insertions. They showed that any 1/32-error data structure
for Dynamic Connectivity without deletions with expected query time tq and worst-case update time tu must
have tu ≥ Ω(log(n)/ log(tu log(n))). Ramamoorthy and Rao [RR16] recently gave a simplified proof of
Fredman and Saks’ result as well.

1.5 Further Results

We also prove some complementary results to our two data structure lower bounds.

1.5.1 Group Range Problem

The Group Range Problem is stated very broadly about general groups G. Although it may help the reader
to imagine a more common group like Zm or a permutation group while reading the proof, there are other
important cases. For example, Theorem 1.2 holds when G is the direct product of many smaller groups. In
this case, the problem can be viewed as many disjoint copies of the Group Range problem on the smaller
component groups with simultaneous updates.

3

The case where G is the general linear group of invertible matrices also has many applications; see
Appendix B for a discussion of applications to physics and to other dynamic data structure problems. For
this case, we show how the matrix structure can be exploited to prove even stronger results. For example,
as a variant of the original problem, consider the Matrix Product Problem, where queries can only ask for a
bit about the bottom-right entry of the product of the entire range of matrices, rather than any bit about the
product of any subrange. In Appendix A.2 we show that the lower bound still applies:

Corollary 1.4. Theorem 1.2 holds for the Matrix Product Problem.

We show a similar result for upper-triangular matrices as well in Appendix A.3.
It would be interesting to extend Theorem 1.2 to hold for an even wider class of algebraic structures.

For instance, some past work (e.g. [PD04b]) considers the partial sums problem where G is any semi-group.
However, we show that such an extension is impossible, not only to semi-groups, but even just to monoids
(a type of algebraic structure between groups and semi-groups, which satisfies all the group axioms except
the existence of inverses). Indeed, we demonstrate in Appendix A.1 that the Ω(log n) lower bound can be
beaten for the Monoid Range Problem (the same as the Group Range Problem except that G can be any
monoid), so no general lower bound applies:

Theorem 1.5. There exists a family of monoids (Gn)n such that the Monoid Range Problem can be solved
in O

(
logn

log logn

)
time per operation worst-case deterministically in the cell-probe model.

1.5.2 Dynamic Connectivity

Dynamic Graph Connectivity is one of the most basic and versatile dynamic graph problems. As such, we
can extend Theorem 1.3 to hold for a number of other graph problems. Some examples include:

• Dynamic Entire Graph Connectivity: Maintain a dynamic undirected graph, where queries ask whether
the entire graph is connected.

• Dynamic Minimum Spanning Forest: Maintain a dynamic undirected graph, where queries ask for
the size of a minimum spanning forest.

• Dynamic Planarity Testing: Maintain a dynamic undirected graph, such that edge insertions are guar-
anteed to maintain that the graph is planar, and where queries ask whether inserting a specific new
edge would result in a non-planar graph.

Corollary 1.6. Theorem 1.3 holds for Dynamic Entire Graph Connectivity, Dynamic Minimum Spanning
Forest, and Dynamic Planarity Testing.

Corollary 1.6 follows from some straightforward reductions given in [PD06, Section 9].

1.6 Our Technique and Related Work

Next, we discuss our plan of attack for using the online communication model along with other ideas to
prove our data structure lower bounds, Theorems 1.2 and 1.3, and we compare it with the approaches of past
work. A more detailed overview of our proofs is given later in Section 3.

Our high-level strategy is similar to previous techniques based on communication complexity for prov-
ing cell-probe lower bounds [PT11, Yu16, WY16]. We first “decompose” the computation being done into
several communication games, and show that an efficient data structure would induce efficient protocols
for these games. We then prove communication lower bounds for these games, ruling out these supposed

4

efficient protocols. The communication games we wind up with consist of a random sequence of interleaved
updates and queries divided into two consecutive blocks of operations. Roughly speaking, in each commu-
nication game, the first block is only revealed to Alice while the second block is only revealed to Bob. All
other operations are revealed to both players. The goal of the game is for Alice and Bob to cooperatively
answer all the queries in Bob’s interval.

The choice of what communication model to use in this strategy is crucial. The first step, transforming a
fast data structure into an efficient protocol, can be done more efficiently in a stronger model (e.g. random-
ized over deterministic). On the other hand, the second step, proving communication lower bounds, is more
difficult in a stronger model. Designing the right communication model to balance these two proof phases
is a crucial ingredients in these types of proofs.

In this paper, we analyze the communication games in our online communication model. Compared
to other models used in previous work, our model has a more natural correspondence to the task that data
structures face: answering queries in sequential order. Studying these communication games in our online
communication model yields a more fine-grained view of the situation. See Section 3 and Section 5.3 for
more details on this connection between online communication complexity and dynamic data structures.

1.6.1 Group Range Problem

To illustrate this point, consider the communication games induced by the Group Range Problem. When one
analyzes these games in the classical communication models considered by past work, where both players
receive their inputs at once, there is a protocol which is too efficient to prove a tight lower bound2. In other
words, it is provably impossible to use any of the previous communication models at this point in the proof;
the communication game is simply not “hard” in any of them. We will see that these communication games
are hard enough to prove strong lower bounds in our online communication model.

As stated before, Pǎtraşcu and Demaine [PD04b] proved a Ω(log n) lower bound for the Partial Sums
problem (queries want entire product rather than a single bit), when no error is allowed in answering queries.
Their information-transfer technique does not apply directly to our problem, since it relies on the fact that
each query outputs many bits and hence reveals a lot of information, and that the data structure has no errors.
Their technique was later generalized [PD06] to prove lower bounds for problems with single-bit output, but
their argument mostly focuses on the query which the data structure spends the least amount of time on. It
is hard to apply this generalization directly when both overall running time and overall accuracy need to be
taken into account. However, it is worth noting that their argument does apply to our Group Range Problem
if only zero-error data structures are considered.

1.6.2 Dynamic Connectivity

The high-level structure of our Dynamic Connectivity lower bound proof is close to that of Pǎtraşcu and
Demaine’s proof [PD06]. To prove an Ω(n log n) lower bound on the total running time onO(n) operations,
both proofs reduce the task to proving that given an initial graph, k updates and k queries, if we perform
the updates on the initial graph and then ask the k queries, then there must be a big, Ω(k)-size intersection
between the set of cells probed and written to during the insertions, and the set of cells probed during the
queries. Intuitively, we need to show that the data structure must learn enough information about the updates
in order to answer the queries.

The two proofs then diverge from this point onwards. Pǎtraşcu and Demaine first set up a hard distribu-
tion on updates and queries such that when the answers to all k queries are Yes, one is able to reconstruct
the k updates exactly based on these queries. Then they use an encoding argument to show that if the data

2For some G, Bob has a succinct encoding of his queries and can send the compressed input to Alice in order to solve the
problem more efficiently than the trivial protocol would.

5

structure only probes o(k) such cells, then the k updates can be encoded very efficiently, contradicting an
information theoretical lower bound that they prove using the distribution itself. Roughly speaking, they
encode the k updates so that one is able to “simulate” a data structure on any sequence of k queries after
the updates based only on the encoding. Then one can iterate over all possible queries, simulate the data
structure on all of them, and find the one with k Yes answers, which can be used to reconstruct the updates.

Since the information about updates is only hidden in the all-Yes queries, and one needs to simulate
on a large number of queries before k Yes queries are found, Pǎtraşcu and Demaine’s argument fails if the
data structure is allowed high two-sided error. In fact, their proof only applies to the case where the error
probability of each query is 1/nc for some large constant c. It is not hard to prove that under their input
distribution, one will not be able to learn much from the simulations if the error probability of each query is
higher than about 1/

√
n.

In order to resolve this issue in our Dynamic Connectivity lower bound, we first construct a different
hard distribution such that not only the all-Yes queries, but even a random set of queries reveals a sufficient
amount of information about the updates with high probability. To prove our lower bound, we then use a
very different encoding argument, based on the transcript of an online communication protocol. We prove
that if an efficient data structure exists, then there is an efficient online communication protocol for the
problem where Alice receives the k updates, Bob receives the k queries one at a time, and the goal is to
answer all queries. Our encoding argument is more similar to those used in [CGL15] and [WY16]. See
Section 3.2 for a more detailed overview of our approach.

Fredman and Saks [FS89] and Ramamoorthy and Rao [RR16] proved a lower bound for the insert-
only version of Dynamic Connectivity, where deletion updates are not allowed. They proved that for data
structures with worst-case update time and constant error probability, the insert-only version of the problem
has to take Ω(log n/ log log n) time per operation. However, the insert-only regime is very different from
our fully dynamic regime. For worst-case data structures, the log n/ log logn bound is tight [Blu85, Smi90].
If we allow amortization, the standard union-find solution solves the problem inO(α(n)) time per operation.
Thus, it is difficult to apply their technique to the fully dynamic regime.

1.7 Organization

We first formally define the online communication model in Section 2, and then in Section 3 we give an
overview of all three of our lower bound proofs. Thereafter we prove our main results: we prove the online
set intersection lower bound in Section 4, then in Section 5 we prove the cell-probe lower bound for the
Group Range Problem, and in Section 6 we prove the cell-probe lower bound for Dynamic Connectivity.
Finally, in Appendix A we prove our further results about the Group Range Problem.

2 The Online Communication Model

In this section, we define the online communication model, and then throughout the rest of the paper we
present some approaches for proving lower bounds in it. We intentionally try to keep the model quite
general. In Section 4, we showcase our approach by proving a tight lower bound for the natural variation
of set-intersection for this setting, and thereafter we use the model to prove cell-probe data structure lower
bounds.

In the online communication model, there are two players, Alice and Bob. Alice is given her entire input
X ∈ X at the beginning. Bob will be given his input Y1, Y2, . . . , Yk ∈ Y gradually. The two of them want
to compute f1(X,Y1), f2(X,Y2), . . . , fk(X,Yk) under the following circumstances:

1. The game consists of k stages. The players remember the transcript from previous stages.

6

2. At the beginning of Stage i for i ∈ [k], Yi is revealed to Bob.

3. Next, the players communicate as if they were in the classical communication model. After that, Bob
must output fi(X,Yi).

4. At the end of Stage i, Yi is revealed to Alice, and the players proceed to the next stage.

Note that the number of stages, k, is fixed and known up-front when designing a protocol. In a deter-
ministic (resp. randomized) online communication protocol, the players communicate as if they were in the
deterministic (resp. randomized) communication model in the second step of each stage.

We desire protocols that use the minimum amount of total communication. A protocol is free to perform
a different amount of communication in each stage. However, there is a natural tension on the proper time
to communicate: in earlier stages the players have less information, but they still need to solve their current
task at hand before they can proceed. Later on, we will see that the total communication will correspond
nicely with the amortized cost of data structure operations.

3 Proof Overviews

3.1 Online Set Intersection Lower Bound

In this section we give a high-level overview of how we prove our communication lower bound for online
set intersection (OSI). Although the lower bound for OSI is not explicitly used in our data structure lower
bounds later, the data structure lower bounds do use online communication lower bounds for other problems
which we prove using some common techniques. Our OSI lower bound is, in a sense, a warm-up for the
more complex proofs to come.

The main idea behind our OSI lower bound is a very general reduction showing how online communi-
cation lower bounds can be proved using techniques from offline communication lower bounds. Consider
an offline communication problem called the Index problem, where Alice is given a set X ⊆ {1, 2, . . . , n}
of size |X| = k, and Bob is only given a single element y ∈ {1, 2, . . . , n}, and their task is to determine
whether y ∈ X . One can view the OSI problem as k iterations of Alice and Bob solving the offline Index
problem.

That said, it is insufficient to simply prove a lower bound for the Index problem. Since Alice has the
same set X in all k iterations, Bob can learn information about it throughout the rounds of the protocol, and
so it is plausible that later rounds can be completed with less communication than earlier rounds. In order
to circumvent this issue, we prove:

Lemma 3.1. (informal) There is a protocol for OSI which in total uses g(n, k) bits of communication in
expectation if and only if there is a protocol for Index where

1. Alice first sends O(g(n, k)) bits in expectation, then
2. Alice and Bob speak an additional O(g(n, k)/k) bits in expectation.

The high-level idea for proving the ‘only if’ direction of Lemma 3.1 is that Alice can begin by telling
Bob a cleverly-crafted message containing the information that Bob would learn about X during the OSI
protocol on a random sequence of inputs. Thereafter, Alice and Bob can pretend they are in the ‘easiest’
round of their OSI protocol, which only takes O(g(n, k)/k) bits in expectation to solve. Once we prove
Lemma 3.1, it remains to prove a lower bound for the Index problem in the usual offline communication
model, which can be doine using standard counting techniques.

We actually prove a more general version of Lemma 3.1 for any online communication problem in which
Alice and Bob are computing the same function f = fi in each round (in the case of OSI, f is the Index
problem). Unfortunately, for our data structure lower bound proofs, the communication games do not have
this property, and more care will be needed.

7

3.2 Data Structure Lower Bounds

In this section, we give a streamlined overview of our data structure lower bound proofs. The proofs of
our lower bounds for Group Range and Dynamic Connectivity both have a similar high-level structure. In
both proofs, the first step is to design a hard input distribution. The distribution is supported on sequences
of operations consisting of O(n) mixed updates and queries. Then by Yao’s minimax principle [Yao77],
it suffices to prove a lower bound against deterministic data structures dealing with inputs drawn from this
distribution.

Next, to prove a lower bound of Ω(n log n) for answering the random sequence, we use an idea from [PD04a],
which reduces proving a lower bound on total running time to proving lower bounds for many subproblems.
Each subproblem is defined by two adjacent intervals of operations of equal length from this random se-
quence, which are denoted by IA and IB , e.g., IA is the interval consisting of the 17th to the 32nd operation
in the sequence, and IB is the interval consisting of the 33rd to the 48th operation. In each subproblem,
instead of the running time (i.e., the number of cell-probes), we are interested in the number of cells that are
probed in both intervals IA and IB . A counting argument from [PD04a] shows that
• if for every k and adjacent interval pair (IA, IB) of length k, at least Ω(k) cells are probed in both IA

and IB ,
• then the total running time is at least Ω(n log n).

In order to prove a lower bound when the data structure’s goal is only to maximize the probability of
answering (1/2 + δ)-fraction of the queries correctly, we generalize the argument, and show that
• if for every δ′, k and adjacent interval pair (IA, IB) of length k, the probability that o(k) cells are

probed in both IA and IB and (1/2 + δ′)-fraction of the queries in IB is correct is exp(−δ′2k),
• then the probability that total running time is o(n log n) and (1/2+δ)-fraction of the queries is correct

in total is exp(−δ2n).
Thus, the tasks boil down to proving such lower bounds for all subproblems.

3.2.1 Online Communication Simulation

We now focus on a single subproblem (IA, IB). We would like to show that if a data structure answers
a (1/2 + δ)-fraction of the queries in IB correctly, then it must probe many cells in IB which were also
probed and written to in IA. Intuitively, if a data structure probes very few cells in IB that are probed in IA,
then it learns very little information about the updates in IA. Thus, if the answer to a random query would
reveal one bit of information about the updates in IA, but the data structure has learned a negligible amount
of information about IA, then the data structure cannot hope to answer the query with a nonnegligible
advantage above 1/2. To formulate the above intuition, we model this process by an online communication
game.

Communication Game. We define one communication game for each interval pair (IA, IB). Fix two
intervals IA = IA(v) and IB = IB(v) consisting of k updates and queries each, all the operations O prior
to these intervals, all the queries QA in IA and all the updates UB in IB . That is, the only undetermined
operations up to the end of IB are the updates in IA and the queries in IB; everything else is common
knowledge to Alice and Bob. We embed these undetermined operations into a communication game. In the
associated online communication game G = G(v,O,QA, UB), X consists of the updates in IA, and Yi is
the ith query in IB . The goal of Stage i is to compute the ith query in IB .

Now we present (an informal version of) our main lemma, which connects the data structures to online
communication.

Lemma 3.2 (informal). For any data structure D, there is a protocol PD for the communication game
G(v,O,QA, UB) such that

8

1. Bob sends no message;

2. For every β ∈ (0, 1), the probability that

• Alice sends o(k log n) bits, and

• PD answers a (β − o(1))-fraction of the fi(X,Yi)’s correctly

is at least the probability conditioned on O,QA, UB that

• o(k) cells are probed in both IA and IB by D, and

• D answers a β-fraction of queries in IB correctly.

For any data structure D, we construct the protocol PD as follows.

1. (Preprocessing) Recall that Alice knows all the operations up to the end of IA and the updates in IB ,
and Bob knows all the operations prior to IA and all the operations in IB . First, Alice simulates D up
to the end of IA, and Bob simulates D up to the beginning of IA and skips IA. Denote the memory
state that Alice has at this moment by MA. Next, the players are going to simulate operations in IB .

2. (Stage i - Alice’s simulation) Since the (i−1)-th query is revealed to Alice at the end of the last stage,
Alice first continues her simulation of D up to right before the i-th query. Alice then sends Bob the
cells (their addresses and contents in MA) that are

• probed during this part of the simulation, and

• probed during IA, and

• not probed in the previous stages.

3. (Stage i - Bob’s simulation) Bob first updates his memory state according to Alice’s message: For
each cell in the message, Bob replaces its content with the actual content in MA. This is the first time
D probes these cells, since otherwise Alice would have sent them earlier, and so their contents remain
the same as in MA. Bob then continues his simulation of D up to the beginning of i-th query.

4. (Stage i - query answering) Bob now simulates D on query Yi. During the simulation, Bob pretends
that he has the right memory state ofD for the query, even though he skipped IA, and has only received
partial information from Alice about it. He then outputs whatever answer D gives him. Finally, Bob
rolls back his copy of D to the version right before this query (after the simulation described in the
previous step). Even though he was assuming his copy of D is correct, it may have actually made a
mistake, and at the beginning of the next step, Alice will tell Bob what cells he should have queried
and changed.

The key observation to make about the above protocol is that Bob might only give a different answer to
query Yi than the real data structure D would have if D would probe a cell that was written to during IA
while answering Yi. Moreover, at the beginning of the next stage, Alice would then tell Bob the true value
which that cell should have had. Hence, each cell which D would write to in IA and probe in IB can cause
Bob to make at most one mistake. As such, if D would only probe a negligible number, o(k) of cells in both
IA and IB , then Bob similarly gives the same answer as a correct D would to all but a negligible number of
his queries.

3.2.2 Online Communication Lower Bounds

The tasks now reduce to proving online communication lower bounds. We prove the communication lower
bounds for Group Range and Dynamic Connectivity using different approaches.

9

Communication lower bounds for Group Range. We design the hard distribution such that the k updates
in IA have entropy about k log n. Hence, if Alice sends only o(k log n) bits to Bob, then Bob knows very
little about those updates. In particular, we carefully design the queries such that there is a Θ(k log n)-bit
encoding of the k updates, and each query is essentially asking for one random bit of this encoding. Then
on average, every bit is still close to unbiased even after Bob sees Alice’s message. That is, Bob will not be
able to predict the answer with much better probability than 1/2.

Furthermore, we prove the above conditioned on whether Bob answered the previous queries correctly.
Therefore, the sequence of numbers consisting of, for each 1 ≤ i ≤ k, the number of correct answers in the
first i queries minus its expected value, forms a supermartingale. Applying the Azuma-Hoeffding inequality
shows that the probability that at least a (1/2 + δ)-fraction of the queries is correct is at most exp(−δ2k).

Communication lower bounds for Dynamic Connectivity. The lower bound for the Dynamic Connec-
tivity problem is proved in a different way. To prove the communication lower bound, we first show that
it suffices to prove that the probability that all k queries are correct is at most 2−(1−o(1))k. This would in
particular imply that the probability that all k queries are wrong is also at most 2−(1−o(1))k. In fact, for any
fixed sequence of choices of whether each query is correct or not, we show that this sequence happens with
probability no more than 2−(1−o(1))k. This is, in particular, at most a 2o(k) factor more than the probability
of achieving the fixed sequence by outputting uniformly independent bits. This implies that the probability
that a (1/2 + δ)-fraction of the queries is correct is at most 2o(k) times the probability of the same event
when all the bits are independent, which is exp(−δ2k).

Next, we prove that when the inputs to the communication problem are independent and Bob does not
speak, we may assume without loss of generality that Alice only speaks before the first stage,3 which we
call the Monologue lemma:

Lemma 3.3 (Monologue Lemma (informal)). Suppose that Alice’s inputX and Bob’s inputs Y1, . . . , Yk are
independent, and there is a protocol P such that:

1. Only Alice talks.
2. At most C bits are sent.
3. All k queries are answered correctly with probability p

Then there is another protocol P ′ with the following properties:
1. Only Alice talks, and she only does so in the first stage.
2. C +O(log 1/p) bits are sent in expectation.
3. All k queries are answered correctly with probability at least p.

Using this lemma, we will be able to prove the communication lower bound. Assume for the sake of
contradiction that Alice sends o(k log n) bits and Bob answers k queries correctly with probability at least
2−0.99k. The high-level idea is to let Alice simulate the protocol and send a message about her input, which
takes o(k log n) bits. Since Bob is able to complete the protocol with no further communication, we know
that a random sequence of k queries can be answered correctly based solely on this message with probability
2−0.99k. The players then treat the public random string as repeated samples of queries. On average, there is
one entirely-correct sample of queries in every 2−0.99k samples from the public randomness. Thus, it only
takes about 0.99k bits for Alice to specify each sample that would be answered entirely correctly by Bob.
Ideally, each of these samples of k queries reveals k bits of information about Alice’s input. That is, in the
ideal situation, Alice will be able to save about 0.01k bits each time at the cost of sending o(k log n) extra
bits in the beginning. If Alice managed to repeat this much more than 0.001 log n times, and each time
revealed about k extra bits of information, she would have revealed 0.001k log n bits of information in total
using only (0.00099 + o(1))k log n bits, which yields a contradiction.

3Note that even if Bob does not speak during an online communication protocol, Alice still learns what Bob’s inputs are each
time Bob finishes answering a query.

10

4 Online Set-Intersection Lower Bound

Online Set-Intersection. In the online set-intersection problem (OSI), Alice is given one set X of size
k over the universe [n]. In each stage, Bob is given an input Yi ∈ [n], which is an element in the same
universe. The goal of this stage is to verify whether Yi ∈ X . Equivalently, the inputs are two (multi-)sets
X,Y ⊆ [n] of size k each. Each element of the set Y is revealed one by one. The goal is to compute their
intersection.

Theorem 4.1. For n ≥ k2, any zero-error OSI protocol using public randomness must have expected total
communication cost at least Ω(k log log k).

It is not hard to see that Ω(|X∩Y | log n) is also a lower bound, since Alice and Bob need to confirm that
their elements in common are actually equal; in other words, our combined lower bound is Ω(k log log k +
|X ∩ Y | log n). Before we prove Theorem 4.1, we give a protocol which shows that this bound is tight.

Lemma 4.2. There is a zero-error OSI protocol using public randomness with expected communication cost
O(k log log k + |X ∩ Y | log n).

Proof. The protocol is as follows:

1. The players use public randomness to sample two uniformly random hash functions h1 : [n] → [k2]
and h2 : [k2]→ [k log k], and define h : [n]→ [k log k] by h = h2 ◦ h1.

2. Alice sends Bob the set h(X) in O(log
(
k log k
k

)
) = O(k log log k) bits4.

3. For each Yi:

(a) If h(Yi) is not in h(X), Bob returns “NO” immediately.

(b) Otherwise, Bob sends Alice h1(Yi), and Alice tells Bob whether it is in h1(X). If not, Bob
returns “NO” immediately.

(c) Otherwise, for each Xj ∈ X such that h1(Xj) = h1(Yi), Alice and Bob determine whether
Xj = Yi. They do this with the zero-error protocol for equality which uses O(log n) bits of
communication if Xj = Yi and O(1) bits of communication in expectation if Xj 6= Yi. If
Xj = Yi they return “YES”, and if xj 6= Yi for each such Xj ∈ X , they return “NO”.

For each Yi /∈ X , the probability that h(Yi) ∈ h(X) is at most 1/ log k. Since it takes O(log k) bits for Bob
to send h1(Yi) to Alice, the total expected communication cost for stage 3b over all i with Yi /∈ X is O(k).
Similarly, for each Yi /∈ X , the expected number of Xj ∈ X such that h1(Xj) = h1(Yi) is ≤ k · 1

k2 = 1/k,
and so the total expected communication cost for stage 3c over all i with Yi /∈ X is O(1). Thus, the above
protocol has the claimed total communication cost.

In the following, we prove the communication lower bound. First by Yao’s Minimax Principle [Yao77],
we may fix an input distribution and assume the protocol is deterministic. Now let us consider the following
hard distribution.

4Recall that for any integers n ≥ m > 0 we have
(
n
m

)
≤

(
n·e
m

)m. Hence,
(
k log k
k

)
≤ O(log k)k.

11

Hard distribution. We take the first k2 elements from the universe, and divide them into k blocks of size
k each. X will contain one uniformly random element from each block independently. Each Yi will be a
uniformly random element from the first k2 elements. Different Yi’s are chosen independently.

The high-level idea of the proof is to first reduce from OSI to a classic (non-online) communication
complexity problem. In particular, we consider the problem solved in each stage of the OSI problem:
Alice is given a set of k elements from a universe of size n and Bob is given a single element from the same
universe, and their goal is to determine if Bob’s element is in Alice’s set. This is precisely the index problem.
Then we focus on the stage that costs the least amount of communication, and show an index lower bound
with respect to this stage. The hard distribution for OSI induces the following hard distribution for index.

Hard distribution for index. Divide the first k2 elements of the universe into k blocks of size k each.
Alice’s set X consists of one uniformly random elements from each block independently. Bob’s element y
is chosen from the first k2 elements uniformly at random.

We now prove a general lemma which relates protocols for “symmetric” online communication problems
(in which each round is essentially the same problem) with protocols for classical communication problems.
Note that when applied to OSI, the associated single-round problem is index. In other words, a protocol
for OSI can be transformed into a very rigid protocol for index, which will be easier for us to bound.
Additionally, since we prove an iff statement, we know that this transformation is lossless (up to constants).

Lemma 4.3. Suppose we have a problem in our online communication model and associated input distri-
bution D over X × Yk with the following properties:

1. The function that Alice and Bob want to compute in each round, fi(X,Yi), does not depend on the
round number i.

2. Conditioned on Alice’s inputX ∈ X , Bob’s inputs Y1, . . . , Yk ∈ Y are identically (but not necessarily
independently) distributed.

The associated single-round classical problem and associated input distribution are as follows. Alice is
given an input X ∈ X and Bob is given an input Y ∈ Y , and they want to compute f1(X,Y). Their inputs
are obtained by drawing an input (X,Y1, . . . , Yk) from D, giving Alice X , and giving Bob Y = Y1.

There is a protocol for the online problem which uses O(g(n, k)) bits in expectation if and only if there
is a protocol for the associated single-round problem where Alice first sends a message of expected length
O(g(n, k)) bits and then Alice and Bob only speak an additional O(g(n, k)/k) bits in expectation.

Proof. We first prove the more nuanced forward direction. Suppose we have such a protocol P for the
online problem; we want a protocol P ′ for the associated single-round problem with the above properties.

The key idea is to focus on the stage where the players send the least bits in expectation. Choose
i ∈ [k] such that the players only speak O(g(n, k)/k) bits in expectation in stage i. To solve the associated
single-round problem on (X,Y), we use the following protocol P ′:

• The players pretend that they were given an online input where Alice received X and Bob received
Yi = Y . They use public randomness to sample Y1, . . . , Yi−1 according to D.

• Alice has all the information for the first i − 1 stages, so she simulates those stages of P for both
players. Note this is possible because P is an online protocol, and hence this simulation does not
depend on any of Yi, . . . , Yk. Alice then sends Bob the entire transcript.

• Alice and Bob then communicate to simulate stage i of P , continuing from the transcript that Alice
sent in the previous step.

12

• Bob outputs P ’s decision about fi(X,Yi).

In this protocol P ′, the first message is sent by Alice in step (2). It has expected length no more than
the transcript of P , which is O(g(n, k)). The players then simulate stage i in step (3). Since the imaginary
input follows distribution D, the expected communication in this step is O(g(n, k)/k). Since the goal of
stage i in the online problem is to compute fi(X,Yi), which is precisely f1(X,Y) by our assumption about
f and choosing Yi = Y . Hence the output of P ′ is correct is P is correct.

We finish with the easier reverse direction. Suppose we have such a protocol P ′ for the associated
single-round problem; we want a protocol P for the online problem with the above properties.

By construction, when following P ′, Alice first sends a message with O(g(n, k)) bits in expectation.
This message can only depend on her input. Our protocol P also begins with Alice sending this message
before Bob begins speaking. Now, in each stage, Bob is given an input Yi. Alice and Bob can simulate P ′

on (X,Yi), but skipping the initial message from Alice since it has already been sent.
In our protocol P , Alice sends O(g(n, k)) bits in expectation in her first message. Then in each stage,

only O(g(n, k)/k) bits in expectation are transmitted between the players. Note that we just used the as-
sumption that Yi and Y1 are identically distributed conditioned on X; this is why P ′ has the usual expected
communication cost when run on (X,Yi). Thus the total communication cost is O(g(n, k)) bits in expecta-
tion.

Let P ′ be a zero-error protocol for index such that Alice first sends c0 bits in expectation, and then Alice
and Bob communicate for cA and cB bits respectively (in expectation). The following lemma lower bounds
c0, cA, cB .

Lemma 4.4. For sufficiently large k, any such P ′ must have either

• c0 ≥ 1
7k log k, or

• cA ≥ c0 · 2−13 max{cB ,1}·26c0/k .

The main idea of the proof is to let Alice simulate Bob. For simplicity, let us first assume the protocol
has three rounds: Alice sends c0 bits, then Bob sends cB bits, finally Alice sends cA bits. To simulate Bob,
Alice goes over all possible messages that Bob could send, then for each message, sends Bob what she
would say if she received that message. If Bob sends at most cB bits in worst case, Alice will be able to
complete the above simulate in c0 + cA ·2cB bits of communication. Then Bob will output whether his input
Yi is in Alice’s set X . In particular, Alice’s message depends only her input X , and Bob can do so for any
Yi. That is, Bob will be able to recover the set X based only on this message, which yields a lower bound
on c0, cA, cB .

Proof of Lemma 4.4. Without loss of generality, we may first assume cB ≥ 1. By Markov’s inequality and
a union bound, for any C ≥ 2, with probability at least 1− 2/C, Alice sends no more than C · cA bits and
Bob sends no more than C · cB bits after Alice’s first message. The next step is to let Alice simulate the
entire protocol, and turn it into one-way communication.

More specifically, the transcript π of a conversation between Alice and Bob is a binary string, in which
each bit represents the message sent in the chronological order. Given π and a fixed protocol, there shall be
no ambiguity in which bits are sent by which player. That is, for any π, we can always decompose it into
(πA, πB), where πA is a binary string obtained by concatenating the bits sent by Alice in the chronological
order, and similar for πB . On the other hand, given (πA, πB), there is a unique way to combine them into a
single transcript π, since a prefix of the transcript uniquely determines the player who speaks the next. We
know that with probability at least 1 − 2/C, |πA| ≤ C · cA and |πB| ≤ C · cB . In the new protocol, after
Alice sends the first c0 · k bits, she goes over all 2C·cB strings s of length at most C · cB . For each s (in

13

alphabetical order), she sends the first C · cA bits of πA based on her input assuming πB = s. That is, Alice
tells Bob that “if s was your first C · cB bits of the conversation, then here is what I would say for my first
C · cA bits.” In total, she sends another C · cA · 2C·cB bits. Thus, Bob can figure out the answer based only
on the above messages, with probability 1 − 2/C (over the random input pairs). To balance the lengths of
two messages, we set C = 1

2cB
log c0

cA
. If C < 2, then we have log c0

cA
< 4cB , and thus

cA > c0 · 2−4cB ,

which implies the second inequality in the statement. Otherwise, the above argument holds, and we have

C · cA · 2C·cB = C · cA ·
√
c0

cA

=
cA
2cB
·
(√

c0

cA
log

c0

cA

)
≤ cA ·

(√
c0

cA
log

√
c0

cA

)
≤ cA ·

c0

cA
= c0.

Thus, Alice sends at most 2c0 bits in expectation in total. This message only depends on her input
X . By Markov’s inequality, for at least 2/3 of the X’s, Alice sends no more than 6c0 bits. By Markov’s
inequality again, for at least 2/3 of the X’s, the probability (over a random y) that Bob can figure out if
b ∈ A based only on Alice’s first message is at least 6/C. Since there are kk different possible X’s, at least
kk/3 different X’s have both conditions hold. Thus, there must be kk/3 · 2−6c0 such X’s that Alice sends
the same message M . Denote this set of X’s by X . Moreover, when M is the message Bob receives, there
are at least (1 − 6/C)k2 different y’s such that Bob can figure out the answer based only on the value of y
and M . Denote this set of y’s by Y . In the combinatorial rectangle R = X × Y , for every y ∈ Y , either
y ∈ X for every X ∈ X , or y /∈ X for every X ∈ X . That is, R is a column-monochromatic rectangle5 of
size (kk/3 · 2−6c0)× (1− 6/C)k2.

On the other hand, for the index problem, in any column-monochromatic rectangle R = X × Y , the
answer is “YES” in no more than k columns of Y (the element is in the set). This is because each setX ∈ X
has size k. In order to upper bound the number of y ∈ Y that is not in any X , let ri for 1 ≤ i ≤ k be the size
of the intersection of Y and the i-th block of the universe. Thus, the number of X’s that avoids all y ∈ Y is
at most

(k − r1)(k − r2) · · · (k − rk) ≤
(
k − 1

k
(r1 + · · ·+ rk)

)k
by the AM-GM inequality. That is, at most k2 − k|X |1/k y are not in any X . Overall, we have |Y | ≤
k + k2 − k|X |1/k. Combining this with the parameters from the last paragraph, we get

(1− 6/C)k2 ≤ k + k2 − k
(

(kk/3 · 2−6c0)
)1/k

.

Simplifying the inequality yields
6/C ≥ 2−6c0/k · 3−1/k − 1/k.

When c0 <
1
7k log k, we have 2−6c0/k · 3−1/k − 1/k > 12

13 · 2
−6c0/k for sufficiently large k. Pluging-in the

value of C(= 1
2cB

log c0
cA

) and simplifying, we obtain

cA ≥ c0 · 2−13cB/2
−6c0/k

.

This proves the lemma.
5A rectangle with the same function value in every column.

14

Shorthand Operation
u0 Update(0,UG)
q0 Query(0,U[n],U[s])
u1 Update(2,UG)
q1 Query(0,U[n],U[s])
u2 Update(1,UG)
q2 Query(0,U[n],U[s])
u3 Update(3,UG)
q4 Query(0,U[n],U[s])

Figure 1: Structure of our random input sequence (n = 4). Here, US is an entry drawn from the uniform
distribution on set S.

Proof of Theorem 4.1. For any OSI protocol with total communication cost c, by Lemma 4.3 and Lemma 4.4,
we have either

• c ≥ 1
7k log k, or

• c/k ≥ c · 2−13 max{c/k,1}·26c/k
.

The second inequality simplifies to max{c/k, 1}·2Θ(c/k) ≥ Ω(log k). Thus, we must have c ≥ Ω(k log log k).

5 The Group Range Problem

The goal of this section is to prove our main result:

Theorem 1.2 (restated). There exists a distribution over n updates and queries for the Group Range Prob-
lem with binary encoding of the group elements e : G → {0, 1}s, such that for any randomized cell-probe
data structure D with word size w = Θ(log n), which with probability p answers at least a (1

2 + δ) frac-
tion of queries correctly and spends εn log n total running time, we must have p ≤ exp(−δ2n), as long as
s ≤ (1 + ε) log |G|, δ2 � ε ≥ Ω(1/ log n), and n is sufficiently large.

For convenience, we will assume that n is a power of two. A similar argument applies to the general
case. We will also say that the data structure succeeds on an input when the event described occurs: it
answers a (1

2 + δ) fraction of queries correctly and spends at most εn log n total running time.
Our proof is divided into three steps. First, we construct a random input sequence so that we can

apply Yao’s minimax principle and consider a determinstic data structure. Second, we consider various
subproblems of this sequence. We show that the data structure must do well on at least one of them,
but with some additional structure on how it probes cells when solving this subproblem. Third, we use
the data structure on this subproblem to produce a communication protocol for a problem in our online
communication complexity model.

5.1 Step One: The Hard Distribution

Our random input sequence for D has the following essential properties:

(i) Update and query operations are interleaved.

(ii) If we look at any contiguous window of operations, the update operations are always somewhat spread
out over all elements.

15

Blocks B0 B1 B2 B3 B4 B5 B6 B7

Level 0 IA(v1) IB(v1)

Level 1 IA(v2) IB(v2) IA(v3) IB(v3)

Level 2 IA(v4) IB(v4) IA(v5) IB(v5) IA(v6) IB(v6) IA(v7) IB(v7)

Figure 2: Division into subproblem intervals (n = 8).

v1

v2 v3

v4 v5 v6 v7

B0 B1 B2 B3 B4 B5 B6 B7

Level 0:

Level 1:

Level 2:

Figure 3: Our subproblems correspond to nodes of a balanced binary tree (n = 8).

(iii) Each query operation checks a random prefix of the sequence.

Regarding the first property, our sequence consists of 2n alternating update and query operations:
(u0, q0, u1, q1, . . . , un−1, qn−1).

Next, we define the update operations ui, keeping property (ii) in mind. For this, we use a standard
trick: the reversed binary representation. Let revs(·) reverse s-bit integers, e.g. revs(1) = 2s−1 and
revs(2

s − 1) = 2s − 1. The ith update operation sets group element revs(i) to a uniform random group
element.

We finish by defining the query operations qi. For each query operation, we need a range and the index
of a bit. Our range will be [0, R], where R is drawn uniformly from {0, 1, . . . , n− 1}. The bit index will be
selected uniformly at random over all indices.

Figure 1 shows what a random input looks like in the n = 4 case. Yao’s minimax principle guarantees
that since D is a randomized structure with guarantees on worst-case inputs, there must be a deterministic
data structure D′ with the same guarantees on a random input sequence of this form.

5.2 Step Two: Identifying Key Subproblems

In this section, we give the formal details on how to identify key subproblems of a data structure problem
that we will be able to later transform into online communication games. We begin by describing these
subproblems, and later prove several key properties about them. Suppose we have a data structure prob-
lem which involves updates (operations which produce no output) and queries (operations which produce
output). We also have a hard input distribution, which produces input sequences consisting of n operation
blocks. Each block contains nb operations. Hence, input sequences have N = n · nb operations in total.

As shown in Figure 2, each of our subproblems designates two equally-sized adjacent intervals of blocks.
The earlier interval is IA (Alice’s interval), and the later interval is IB (Bob’s interval). In the first subprob-
lem, Alice’s interval is the first half of the input sequence and Bob’s interval is the second half. In the
second subproblem, Alice’s interval is the first quarter; Bob’s interval, the second quarter. Roughly speak-
ing, we keep recursively dividing Alice’s interval and Bob’s interval to get smaller subproblems. Note that
our subproblems overlap quite a bit; each phase can be found in Θ(log n) subproblems.

To be more formal, consider a balanced binary tree with (log2 n+ 1) levels (depicted in Figure 3). The
operation blocks are the leaves of this tree. Such a tree has n− 1 internal nodes: v1, . . . , vn−1, where v1 is
the root node and the children of node vi are nodes v2i (left) and v2i+1 (right). Consider the subtree rooted

16

at v; the leaves of this subtree form a contiguous interval of operation blocks. We denote the first (left)
half of this interval as IA(v), and the second (right) half as IB(v). Each internal node v corresponds to a
subproblem, which we denote with the interval pair (IA(v), IB(v)). For each subproblem, we are interested
in the number of memory cells that the data structure probes at least once in IA, and at least once in IB .
Intuitively speaking, this captures the amount of information being stored about updates which is later used
to answer queries. We need some additional notation to discuss this tree and the cells being probed:

Definition 1. The set of nodes in level j is denoted `(j) and consists of {v2j , . . . , v2j+1−1}. The set of cells
that the data structure probes when processing the phases of IA(v) is PA(v) (P stands for probes). Similarly,
the set of probed cells when processing IB(v) is denoted PB(v).

We restate our focus using this new notation: for each subproblem, we are interested in the value of
|PA(v) ∩ PB(v)|. We now state the general reduction that we aim to prove in this subsection.

Theorem 5.1. Suppose that there is a data structure problem along with a hard distribution for it over
sequences of n blocks consisting of nb operations each, for a total of N = nnb operations. Next, suppose
there exists a constant c ∈ (0, 1), value ε0 > 0, and a bivariate convex function g(x, y), whose value is
non-decreasing in x and non-increasing in y, so that the following is true: for any data structure D, any
subproblem (IA(v), IB(v)) where IB(v) consists of k ≥ n1−c blocks, any εv ≥ 0 and δv ∈ [0, 1/2], the
probability conditioned on all operations before IA(v) that the following hold:

• |PA(v) ∩ PB(v)| ≤ εv · knb,

• D answers a (1
2 + δv)-fraction of queries in IB(v) correctly,

is at most exp (−g(δv, εv)knb). Then the probability that all the following hold:

• D probes at most εN log n cells,

• D answers a (1
2 + δ)-fraction of all queries correctly,

is at most exp(nc · logN) · exp
(
−g(δ − 3/

√
c log n, ε/c) ·N

)
as long as δ ≥ 3/

√
c log n.

Proof. For convenience, when the data structure meets the first set of conditions for a subproblem (i.e.,
efficient and accurate for this subproblem), we will say that it “succeeds” at the subproblem. Similarly,
when it meets the second set of conditions for an input (i.e., efficient and accurate overall), we will say that
it “succeeds” on that input.

In this proof, we need to maintain both efficiency and accuracy guarantees when identifying the right
subproblems. We begin by explaining the efficiency conditions and their relation to total cell probes.

Consider the sum
∑

j∈[logn]

∑
v∈`(j) |PA(v) ∩ PB(v)|. Each time the data structure probes a cell, it

contributes to at most a single term in this summation: the one where its previous access to the cell was
in PA(v) and its current access is in PB(v). Hence this sum is upper bounded by the total number of cell
probes. When the data structure succeeds on an input, we know that:∑

j∈[logn]

∑
v∈`(j)

|PA(v) ∩ PB(v)| ≤ εN log n

in addition to correctly answering a (1
2 + δ) fraction of all queries.

Our plan of attack is to apply the first set of conditions for a subproblem to all subproblems in an entire
level. Our first task is to identify the right level. In addition to this level being efficient and accurate, it also
cannot be in the the bottom of the tree, since our assumption requires k ≥ n1−c. The following definitions
will help us in the process of identification:

17

000

001 010

011

100

101 110

111

Hamming Weight 0

Hamming Weight 1

Hamming Weight 2

Hamming Weight 3

Figure 4: Blocks lie at vertices of a hypercube. In this example, n = 8 and there is only one query per block.
Queries answered correctly are shaded, and incorrect queries are not shaded. Even though 5

8 = 62.5% of
queries in the overall hypercube are correct, the average small subhypercube Hj only has 1+2+2

12 = 41.6̄%
of its queries correct, and no small hypercube Hj has more than 2

4 = 50% of its queries correct.

Definition 2. Let δj be a random variable so that a (1
2 + δj) fraction of the queries in ∪v∈`(j)IB(v) are

answered correctly. Let εj be a random variable so that
∑

v∈`(j) |PA(v) ∩ PB(v)| = εjN .

Therefore, the above inequality translates to∑
j∈[logn]

εj ≤ ε log n. (1)

At first blush, it may seem that if our data structure manages to answer many queries correctly, it must
do so over all intervals IB(v). Unfortunately, the matter is not so simple. Some of our queries may be
duplicated a logarithmic number of times over different intervals IB(v), while others only show up once.
For example, in Figure 2, queries in B0 do not show up in any subproblems, while queries in B7 show up
in three subproblems. As our binary tree helpfully suggests, the secret to this behavior lies in the binary
representation. Suppose we have a query in Bi; if we write i as a binary number, we know the path we need
to walk down the tree to get to Bi; we walk left at level j if the jth bit (starting from most-significant) is
zero, and right if it is one. But walking left or right exactly dictates whether Bi will be in IA(v) or IB(v).

The takeaway is that we can visualize our blocks as vertices of the (d = log n)-dimensional Boolean
hypercube H . The Hamming weight of a block tells us how many levels it appears in the IB of. If we look
at all IB(v)’s for all v in level j, we get a lower-dimensional hypercube Hj = {x ∈ H | xj = 1}. Suppose
we label every vertex of the big hypercube H (which corresponds to a block) with the fraction of queries
answered correctly. We want to show that an average small hypercube Hj still has a reasonable fraction of
correct queries. Figure 4 depicts the situation and demonstrates that the fraction may decrease. We aim to
bound this loss.

Since a node of Hamming weight w contributes to exactly w subhypercubes, the worst case labelling
occurs when nodes with the lowest Hamming weight are assigned correct queries first. Suppose (1

2 + δ)-
fraction of nodes have Hamming weight at most W , i.e., let W be the largest integer such that

W∑
w=0

(
d

w

)
≤
(

1

2
+ δ

)
2d.

Therefore, we have
∑W

w=d d
2
e+1

(
d
w

)
≥ (δ − 3/

√
d)2d. Then the average fraction of correct queries in a

random subhypercube is at least:

1

d

W∑
w=0

(
d

w

)
· w · 2−(d−1) =

1

d

dd/2e∑
w=0

(
d

w

)
· w · 2−(d−1) +

1

d

W∑
w=dd/2e+1

(
d

w

)
· w · 2−(d−1)

18

≥
dd/2e∑
w=1

(
d− 1

w − 1

)
· 2−(d−1) +

1

d

W∑
w=dd/2e+1

(
d

w

)
· d

2
· 2−(d−1)

≥ 1

2
+

W∑
w=dd/2e+1

(
d

w

)
· 2−d

≥ 1

2
+ δ − 3/

√
log n.

We have managed to get a bound on the accuracy over levels:

avg
j∈[logn]

δj ≥ δ − 3/
√

log n,

where avgj∈S aj := 1
|S|
∑

j∈S aj is the average value. However, recall that we want to avoid the bottom
levels of the tree, since we need k ≥ n1−c. Hence we restrict to the top L = c log n levels. By applying the
same proof to only top L levels, we have

avg
j∈[L]

δj ≥ δ − 3/
√
c log n.

We now have the accuracy half of our task of identifying the right level. We want to wind up showing
that when the data structure succeeds on its input, there is some level j ∈ [L] such that g(δj , εj) is large.

By Equation (1), we have avgj∈[L] εj ≤ ε/c . Hence by Jensen’s inequality, we know that

avg
j∈[L]

g(δj , εj) ≥ g(avg
j∈[L]

δj , avg
j∈[L]

εj)

≥ g(δ − 3/
√
c log n, ε/c),

and therefore, there exists some level j with large g(δj , εj) value:

max
j∈[L]

g(δj , εj) ≥ g(δ − 3/
√
c log n, ε/c).

Note that in the above inequality, we used the convexity and monotonicity of f .
Whenever our data structure succeeds on its input, there must be some level j ∈ [L] with this guarantee

on δj and εj . Hence to upper bound its probability, it suffices to prove for every level j ∈ [L], the probability
that g(δj , εj) is large is tiny. Then an application of union bound over all levels j would prove the theorem.

We have finished identifying our level of interest, and want to repeatedly apply the first set of conditions
to all of its subproblems. Analogous to how we defined accuracy parameters δj and efficiency parameters
εj for levels, we can define these parameters for each subproblem:

Definition 3. Let δv be a random variable so that a (1
2 + δv) fraction of the queries in IB(v) are answered

correctly. Let εv be a random variable so that |PA(v) ∩ PB(v)| = εvknb where k is the number of operation
blocks in IB(v).

Fix two sequences {δv}v∈`(j) and {εv}v∈`(j) with the correct averages:
∑

v∈`(j) δv = n
k δj and

∑
v∈`(j) εv =

n
k εj . We will apply the hypothesis to each subproblem v ∈ `(j) with good parameters (δv, εv) and εv. By
noticing that all the interval pairs (IA(v), IB(v)) are disjoint, k ≥ n1−c, and by using Jensen’s inequality,
we have the probability that for all v ∈ `(j):

• |PA(v) ∩ PB(v)| ≤ εv · knb and

19

• D answers a (1/2 + δv)-fraction of queries in IB(v) correctly

is at most:

∏
v∈`(j)

exp(−g(δv, εv) · knb) = exp

− ∑
v∈`(j)

g(δv, εv) · knb

= exp

(
− avg
v∈`(j)

g(δv, εv) · nnb

)

≤ exp

(
−g

(
avg
v∈`(n)

δv, avg
v∈`(n)

εv

)
N

)
≤ exp

(
−g(δ − 3/

√
c log n, ε/c) ·N

)
.

We can finish by taking a union bound over all possible sequences {δv}v∈`(j) and {εv}v∈`(j). There are

at most
(N+n/k

n/k

)
possibilities for the first sequence and

(εjN+n/k
n/k

)
for the second sequence, so the probability

of level j having good guarantees can be at most:(
N + n/k

n/k

)
·
(
εjN + n/k

n/k

)
· exp

(
−g(δ − 3/

√
c log n, ε/c) ·N

)
≤ exp(n/k · log knb) · exp

(
−g(δ − 3/

√
c log n, ε/c) ·N

)
≤ exp(nc · logN) · exp

(
−g(δ − 3/

√
c log n, ε/c) ·N

)
The last inequality holds because our k was at least n1−c. This completes the proof of Theorem 5.1.

We now relate the lower bound on subproblems that we will prove with our desired data structure lower
bound, Theorem 1.2. We will need the following lemma about subproblems, whose proof is deferred to the
next subsection.

Lemma 5.2. Suppose we have two intervals IA = IA(v) and IB = IB(v) consisting of k updates and
queries each. Then the probability that

• |PA(v) ∩ PB(v)| ≤ εv · k and

• D answers a (1/2 + δv)-fraction of queries in IB(v) correctly

conditioned on all operations O before IA(v) is at most

exp(−(δv − β · (
√
ε+
√
εv))

2 · k)

for some constant β > 0, as long as s ≤ (1 + ε) log |G|, k � log n, and δv − β · (
√
ε+
√
εv) ≥ 0.

Since Theorem 5.1 has a convexity requirement, we will also need the following technical lemma about
the convexity of our error function:

Lemma 5.3. For any β > 0 and ε ≥ 0, the function g(x, y) = (max{0, x− β√y − β
√
ε})2 is convex over

(x, y) ∈ [0,∞)× [0,∞).

20

Proof. First, we write g(x, y) = g1(g2(x, y)), where g1(z) = z2 and g2(x, y) = max{0, x−β√y−β
√
ε}.

We will prove that g2(x, y) is convex over (x, y) ∈ [0,∞)× [0,∞). Combining that with the fact that g1 is
convex and nondecreasing over z ∈ [0,∞), and that the output of g2 is always nonnegative, we will get that
g is convex.

The max of two convex functions is convex. g3(x, y) = 0 is a constant function, so it is convex. It
suffices to prove that g4(x, y) = x− β√y − β

√
ε is convex as well. We do so by showing that it is the sum

of two convex functions: g5(x, y) = x− β
√
ε and g6(x, y) = −β√y. The former is linear, so it is convex.

We compute the second derivative of g6, since it only depends on a single variable.

g6(y) = −β√y

g′6(y) = −β
2
y−1/2

g′′6(y) =
β

4
y−3/2

Hence for nonnegative y, g6 is convex. Combining our convexity claims, the original function g is convex
over the desired range.

We now have the tools necessary to prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 5.3, we know that our error function g is convex when δv, εv ≥ 0. Hence
we can invoke Theorem 5.1 with c = 1/2, since we only need that k � log n. Note that Lemma 5.2 required
that δv − β · (

√
ε +
√
εv) ≥ 0, but when this is not true we can always use the trivial probability bound of

1 = e0 (this is why our error function g has a max{0, ·}). Also, note both the subproblem lower bound and
resulting data structure lower bound share the same bound on s.

This theorem invocation tells us that the probability that the data structure succeeds is at most:

exp(
√
n logN) · exp(−

(
max{0, δ − 3/

√
0.5 log n− β

√
2ε− β

√
ε}
)2
·N)

≤ exp(
√
n logN) · exp(−

(
δ − 3/

√
0.5 log n− β

√
2ε− β

√
ε
)2
·N)

The first exponential is dominated by the second. Since we assumed δ �
√
ε and δ � Ω(1/

√
log n),

the second exponential is simply exp(−δ2 ·N), completing the proof.

5.3 Step Three: The Communication Game

The main goal of this step is to prove Lemma 5.2. The key idea is to show how an efficient data structure
can be used to produce an efficient communication protocol for a particular communication game, and then
to rule out the possibility of an efficient communication protocol, hence proving that the original efficient
data structure could not exist. We begin by defining the communication game on interval pairs we will be
focusing on, which uses our online communication model from Section 2.

Communication Game We define one communication game for each interval pair (IA, IB). Fix two in-
tervals IA = IA(v) and IB = IB(v) consisting of k updates and queries each, all operationsO prior to these
intervals, all queries QA in IA and all updates UB in IB . That is, the only undetermined operations up to
the end of IB are the updates in IA and the queries in IB . We embed these operations into a communication
game. In the associated online communication game G = G(v,O,QA, UB), X consists of the updates in
IA, and Yi is the ith query in IB . The goal of Stage i is to compute the ith query in IB .6

6Note that the previous queries do not affect the output of the ith query.

21

Input Distribution The input X is sampled as a random set of updates in IA(v) and (Y1, . . . , Yk) as a
random set of queries in IB(v) under our hard distribution for the Group Range problem.

Lemma 5.4. Consider two intervals IA(v) and IB(v), consisting of k updates and queries each. Let the
operations prior to them be O, the queries in IA(v) be QA, the updates in IB(v) be UB . For any data
structure D and εv, there is a protocol PD for the communication game G(v,O,QA, UB) such that

1. Alice sends 2εv · kw + 1 bits;

2. Bob sends no message;

3. For every δv, the probability that PD answers (1/2 + δv − εv)-fraction of the fi(X,Yi)’s correctly is
at least

Pr [|PA ∩ PB| ≤ εv · k,D answers a (1/2 + δv)-fraction of queries in IB correctly | O,QA, UB] .

Lemma 5.5. For any protocol P for G(v,O,QA, UB) and εv, δv where:

1. Alice sends O(εvk · log n) bits, and

2. Bob sends no message

must have

Pr[P answers (1/2 + δv − εv)-fraction of the fi(X,Yi)’s correctly] ≤ exp(−(δv −O(
√
ε+
√
εv))

2 · k).

Lemma 5.2 follows directly from applying both Lemma 5.4 and Lemma 5.5. Hence it remains to prove
these two lemmas.

Proof of Lemma 5.4. The idea is that the players simulate D as operations are revealed, and Alice sends
some necessary information to Bob. Consider the following protocol PD:

1. (Preprocessing) Recall that Alice knows all operations up to the end of IA and the updates in IB , Bob
knows all operations prior to IA and all operations in IB . First, Alice simulates D up to the end of IA,
and Bob simulates D up to the beginning of IA and skips IA. Denote the memory state that Alice has
at this moment by MA. Next, the players are going to simulate operations in IB .

2. (Stage i - Alice’s simulation) Since the (i − 1)-th query is revealed to Alice in the last stage, Alice
continues the simulation up to the i-th query. Alice sends Bob the cells (their addresses and contents
in MA) that are

• probed during this part of the simulation, and

• probed during IA, and

• not probed in the previous stages.

That is, Alice sends Bob all cells in PA ∩ PB that are just probed for the very first time among all
stages so far.

3. (Stage i - Bob’s simulation) Bob first updates his memory state according to Alice’s message: For
each cell in the message, Bob replaces its content with the actual content in MA. Since this is the first
timeD probes these cells, their contents remain the same as inMA. Bob then continues the simulation
up to i-th query.

22

4. (Stage i - query answering) Bob simulates D on query Yi. During the simulation, Bob pretends that
he has the right memory state for the query, even though he has skipped IA, and only has received
partial information about it. Then he outputs the same answer as D does. Finally, Bob rolls back the
memory to the version right before this query (after simulation described in Step 3). That is, since the
simulation on this query may be incorrect, Bob does not make any real changes to the memory in this
step.

5. As soon as Alice has sent 2εvk ·w + 1 bits (where w is the word-size), the players stop following the
above steps, and output uniform random bit for all queries from this point.

Analyzing the Protocol It is easy to verify that Bob sends no message, and due to the last step, Alice
always sends no more than O(εvk · log n) bits (word-size w = Θ(log n)). Thus, PD has the first two
properties claimed in the lemma statement. In following, we are going to show that whenever |PA ∩ PB| ≤
εvk and (1/2 + δv)-fraction of queries in IB are correct, PD answers at least (1/2 + δv − εv)-fraction of the
queries correctly, which implies the third property.

In Step 2, Alice only sends Bob cells in PA ∩ PB . Moreover, each cell in the intersection will only be
sent once - in the stage when it is probed by D the first time. Since sending the address and content of a
cells takes 2w bits, as long as |PA ∩ PB| ≤ εvk, the last step will not be triggered, and the players follow
the first four steps. Let us now focus on Step 4, query answering. Although Bob pretends that he has the
right memory state, which might not always hold, indeed for all queries during which D does not probe any
cell in PA that is not in Alice’s messages, Bob will perform a correct simulation. That is, as long as D does
not probe any “unknown” cell in PA ∩ PB , Bob will simulate D correctly. In the other words, each cell in
PA ∩ PB can only lead to one incorrect query simulation among all k queries. When |PA ∩ PB| ≤ εvk, on
all but εvk queries, Bob’s output agrees with the data structure. Thus, at least (1/2 + δv − εv)-fraction of
the queries will be answered correctly, and this proves the lemma.

To rule out the possibility of an efficient communication protocol for our problem, and prove Lemma 5.5,
the main idea is to show that Bob has only learned very little information about the updates before each query
Yi. Alice’s message can only depend on X and the previous queries, which are independent of Yi. Thus,
the probability that Bob answers each query correctly must be close to 1/2. Finally, we obtain the desired
probability bound from an application of the Azuma-Hoeffding inequality.

Proof of Lemma 5.5. Let R be the public random string, and Mi be Alice’s message in Stage i. Let Ci be
the indicator variable for correctly computing the i-th function fi(X,Yi). We first show that until Stage i,
Bob has learned very little about X even conditioned on C1, . . . , Ci−1, and thus could answer Yi correctly
with probability barely greater than 1/2. Formally, we will prove by induction on i that

Pr[Ci = 1 | C1, . . . , Ci−1] ≤ 1

2
+O(

√
ε+
√
εv).

Fix a sequence c1, . . . , ci−1 ∈ {0, 1}. For simplicity of notation, denote the eventC1 = c1, . . . , Ci−1 = ci−1

by Wc. By induction hypothesis, we have Pr[Wc] ≥ 2−O(i) ≥ 2−O(k). Now conditioned on Wc, we upper
bound the probability that P correctly answers the i-th query:

Pr[P correctly computes fi(X,Yi) |Wc]

=
1

ns

∑
q=(l,b)∈[n]×[s]

Pr[P correctly computes fi(X, q) |Wc] (2)

23

Equality (2) is due to the fact that Yi is uniform and independent of the previous inputs.

≤ 1

2
+

1

ns

∑
q=(l,b)∈[n]×[s]

E
R,Y1,...,Yi−1,M1,...,Mi|Wc

∣∣∣∣Pr[fi(X, q) = 1 | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc]−
1

2

∣∣∣∣
(3)

Inequality (3) holds because since Bob answers the query q based only on R, Y1, . . . , Yi−1,M1, . . . ,Mi, his
advantage over 1

2 of answering correctly is at most the bias of the conditional probability of fi(X, q).

≤ 1

2
+

1

ns

∑
q=(l,b)∈[n]×[s]

Θ
(√

1−H(fi(X, q) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)
)

(4)

Inequality (4) is due to Jensen’s inequality and the fact that for a binary random variable Z such that Pr[Z =
1] = 1

2 ± ε, its entropy is H(Z) = 1−Θ(ε2).

≤ 1

2
+ Θ

√√√√ 1

ns

∑
q=(l,b)∈[n]×[s]

(1−H(fi(X, q) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc))

 . (5)

Finally, Inequality (5) is from another application of Jensen’s inequality.
Furthermore, we have

1

ns

∑
q=(l,b)∈[n]×[s]

H(fi(X, q) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)

≥ 1

ns

∑
l∈[n]

H(a≤l(X, i) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc) (6)

≥ 1

ns

∑
o∈[n/k]

H(a≤o(X, i), a≤o+n/k(X, i), . . . , a≤o+(k−1)n/k(X, i) | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)

(7)

a≤t(X, i) is the product of first t elements of a right before i-th query of IB if the updates in IA isX , i.e., the
group element that q = (t, ∗) queries. Inequality (6) and (7) is by the subadditivity of entropy and definition
of the query function.

≥ 1

ns

∑
o∈[n/k]

(H(X | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)− s) (8)

Inequality (8) is by our construction of the update sequence. The updates in IA are evenly spaced. Thus,
evenly spaced query can recover X (possibly except one element, which has entropy at most s).

=
1

ks
·H(X | R, Y1, . . . , Yi−1,M1, . . . ,Mi,Wc)−

1

k
(9)

≥ 1

ks
· (H(X | R, Y1, . . . , Yi−1,Wc)−H(M1, . . . ,Mi | R, Y1, . . . , Yi−1,Wc))−

1

k
(10)

Inequality (10) is by the chain-rule for conditional entropy.

≥ 1

ks
·H(X | R, Y1, . . . , Yi−1,Wc)−O(εv)−

1

k
(11)

24

Inequality (11) is due to the fact that Alice sends no more than O(εvk log n) bits and s = Θ(log n).

≥ 1

ks
·
(
k log |G| − log

1

Pr[Wc]

)
−O(εv)−

1

k
(12)

Inequality (12) is by the fact that X is uniform and independent of R, Y1, . . . , Yi−1. For uniform X , we
have H(X |W) ≥ H(X)− log 1

Pr[W] for any event W .

≥ log |G|
s
−O

(
1

s

)
−O(εv)−

1

k
≥ log |G|

s
−O(εv + ε), (13)

Inequality (13) is by the induction hypothesis that Pr[Wc] ≥ 2−O(k) and ε ≥ Ω(1/ log n)� 1/k.
Combining the above inequalities, we have

Pr[P correctly computes fi(X,Yi) |Wc] ≤
1

2
+O

(√
1− log |G|

s
+O(εv + ε)

)
≤ 1

2
+O

(√
ε+
√
εv
)
.

We have shown that conditioned on whether P successfully computes first i − 1 function values, the
probability that it succeeds on the next is always upper bounded by 1

2 +O
(√
ε+
√
εv
)
. Hence the random

variables for the cumulative number of correct answers minus out cumulative upper bounds form a super-
martingale, and we can apply the Azuma-Heoffding inequality [Hoe63]. The probability that (1/2+δv−εv)-
fraction of the function values are computed correctly is at most

exp(−(δv −O(
√
ε+
√
εv))

2 · k).

This proves the lemma.

6 Dynamic Connectivity Lower Bound

In this section, we prove our lower bound for dynamic connectivity.

Theorem 1.3 (restated). There exists a distribution over O(n) updates and queries for the dynamic con-
nectivity problem, such that for any randomized cell-probe data structure D with word-size w = Θ(log n),
which with probability p answers at least a (1

2 + δ)-fraction of the queries correctly and spends εn log n
total running time, we must have p ≤ exp(−δ2n) as long as δ2 � 1/ log(1/ε) and ε ≥ Ω(1/ log n) and n
is sufficiently large. Moreover, the graph is always a forest throughout the sequence of updates.

The high level strategy is very similar to the Group Range lower bound proof. We first design a hard
distribution (Section 6.1). Then we decompose the computation into many subproblems (Section 6.2).
Finally, we prove via online communication for each subproblem, if the data structure is too efficient, then
the probability of answering (1/2+δ)-fraction of the queries correctly is exponentially small (the remaining
subsections).

6.1 Hard Distribution

In this subsection, we describe the hard distribution D for dynamic connectivity. Without loss of generality,
let us assume the number of vertices n = B(B + 1) + 1 for some integer B, and B is a power of two. Our

25

z

V0

Figure 5: The initialized graph when B =
4.

z

Figure 6: A graph before querying whether
a vertex is connected to either v2,1 or v2,2.

hard distribution is based on [PD06], supported on sequences of O(n) operations. The data structure will
have to maintain a graph on n vertices: a special vertex z and B(B + 1) vertices partitioned into B + 1
layers Vi = {vi,j : 1 ≤ j ≤ B} for 0 ≤ i ≤ B. For any sequence of operations sampled from the hard
distribution, the edges inserted will be either between the special vertex z and some other vertex or between
vertices in adjacent layers, vi,j ∈ Vi and vi+1,j′ ∈ Vi+1. Moreover, the edges between any two adjacent
layers will always form a perfect matching before every query.

Now let us describe the O(n) random operations. We first initialize the graph by inserting O(n) edges:
Insert(vi−1,j , vi,j) for all 1 ≤ i, j ≤ B. That is, we first create a fixed graph as shown in Figure 5. After
the initialization, we start to update the graph by replacing the identity matchings between adjacent layers
by random perfect matchings. These B matchings will be replaced in a fixed order, which we will specify
below. Due to technical reasons, the distribution of the new random matchings is deferred to Section 6.5.
The only property we will use for now is that the B matchings are “almost uniform and independent”. More
formally, we have the following proposition, whose proof is deferred to Section 6.5 as well.

Proposition 6.1. For 1 ≤ i ≤ B, denote byMi the random variable indicating the i-th updated matching in
chronological order. Then for any 0 ≤ k ≤ B, and any m1, . . . ,mk in the support of the first k matchings
in D, conditioned on Mi = mi for all 1 ≤ i ≤ k, the distribution for the remaining B − k matchings is a
uniform distribution with support size at least 2−B−1(B!)B−k.

The operations after the initialization are partitioned into B operation blocks Oi for 0 ≤ i ≤ B − 1. In
operation block Oi, we will focus on the layer VrevlogB(i).7 For simplicity of notation, let ri = revlogB(i).
We first replace the matching between Vri and Vri+1. That is, we first delete(vri,j , vri+1,j) for all 1 ≤
j ≤ B. Then, we generate a random permutation F : [B] → [B], and insert(vri,j , vri+1,F (j)). These
permutations are sampled from a distribution satisfying the property in Proposition 6.1. After replacing the
matching, we do B queries, each of which is of form “whether vertex u is connected to any vertex in the
set {vri,j : 1 ≤ j ≤ B/2} (the top half of Vri).” They are not standard connectivity queries. However, it
is possible to implement them with a few extra insertions and deletions. To do this, we begin by inserting
B/2 edges: insert(z, vri,j) for all 1 ≤ j ≤ B/2. Next, we do B queries query(z, u) for independent and
uniformly random u. Finally, we delete theB/2 edges inserted earlier: delete(z, vri,j) for all 1 ≤ j ≤ B/2
(see Figure 6). Each Oi consists of 4B operations. Thus, the sequence has O(n) operations in total.

6.2 Identifying Key Subproblems

In this section, we relate the lower bound on subproblems that we will prove with our desired data structure
lower bound, Theorem 1.3. As a reminder, here is the reduction theorem that we will be using:

7Write i as a t-bit binary number, revt(i) is the number with its bits reversed. See Section 5 for the definition.

26

Theorem 5.1 (restated). Suppose that there is a data structure problem along with a hard distribution for
it over sequences of n blocks consisting of nb operations each, for a total of N = nnb operations. Next,
suppose there exists a constant c ∈ (0, 1), value ε0 > 0, and a bivariate convex function g(x, y), whose
value is non-decreasing in x and non-increasing in y, so that the following is true: for any data structure
D, any subproblem (IA(v), IB(v)) where IB(v) consists of k ≥ n1−c blocks, any εv ≥ 0 and δv ∈ [0, 1/2],
the probability conditioned on all operations before IA(v) that the following hold:

• |PA(v) ∩ PB(v)| ≤ εv · knb,

• D answers a (1
2 + δv)-fraction of queries in IB(v) correctly,

is at most exp (−g(δv, εv)knb). Then the probability that all the following hold:

• D probes at most εN log n cells,

• D answers a (1
2 + δ)-fraction of all queries correctly,

is at most exp(nc · logN) · exp
(
−g(δ − 3/

√
c log n, ε/c) ·N

)
as long as δ ≥ 3/

√
c log n.

We will be proving the following bound on subproblems in the next subsection:

Lemma 6.2. Suppose we have two intervals IA(v) and IB(v) consisting of k operation blocks each. Then
the probability conditioned on all operations O before IA(v) that

• |PA(v) ∩ PB(v)| ≤ εv · kB and

• (1
2 + δv)-fraction of the queries in IB(v) are answered correctly

is at most exp((−δ2
v + β/ log(1/εv))kB) for some constant β > 0, as long as k ≥ B1/8, 3

w < εv <
logn
3w

and εv < δv, where w is the word-size.

Since Theorem 5.1 has a convexity requirement, we will also need the following technical lemma about
the convexity of our error function:

Lemma 6.3. For any β > 0, the function g0(x, y) = max{0, x2 − β
ln 1/y −

β
lnw/3} is convex over (x, y) ∈

[0, 1]× (0, 1/e2].

Proof. The max of two convex functions is convex. g1(x, y) = 0 is a constant function, so it is convex. It
suffices to prove that g2 = x2 − β

ln 1/y is convex as well. We do so by showing that it is the sum of two

convex functions: g3(x, y) = x2 − β
lnw/3 and g4(x, y) = − β

ln 1/y . It is easy to see that g3 is convex; it is
really a single-variable function with second derivative g′′1(x) = 2. Hence our main task is to show g4 is
convex as well.

We first compute the second derivative of g4, since it also only depends on a single variable. We use a
combination of chain, product, and quotient rules:

g4(y) = − β

ln 1/y

g′4(y) = −0− β(y)(−1/y2)

ln2 1/y

= − β

y ln2 1/y

27

g′′4(y) = −
0− β

[
(y)(2 ln 1/y)(y)(−1/y2) + (1)(ln2 1/y)

]
y2 ln4 1/y

=
β
[
−2 ln 1/y + ln2 1/y

]
y2 ln4 1/y

Note that when y ∈ (0, 1), the final denominator is always positive. Additionally, since β > 0, we only care
about whether:

−2 ln 1/y + ln2 1/y ≥ 0

−2 + ln 1/y ≥ 0

ln 1/y ≥ 2

1/y ≥ e2

y ≤ 1/e2

Hence for y ∈ (0, 1/e2], g4 is convex. Combining our convexity claims, the original function g0 is convex
over the desired range.

Now, we are ready to show that we meet the condition for Theorem 5.1 and prove Theorem 1.3.

Proof of Theorem 1.3. Note that the requirement of Lemma 6.2 that k ≥ B1/8 can be satifsfied by choosing
c = 7/8 and n, the number of blocks of operations, to be B. We define

g(x, y) :=

max{0, x2 − β

lnw/3} y = 0

max{0, x2 − β
ln 1/y −

β
lnw/3} y ∈ (0, 1/e2)

0 y ≥ 1/e2

for some large enough constant β. It is not hard to verify that g is continuous, non-decreasing in x and
non-increasing in y. By Lemma 6.3, g is also convex over [0, 1]× [0,∞).

Furthermore, we claim that the probability conditioned on all operations O before IA(v) that

• |PA(v) ∩ PB(v)| ≤ εv · kB and

• (1
2 + δv)-fraction of the queries in IB(v) are answered correctly

is at most exp(−g(δv, εv)kB).
Since w = Θ(log n), we make β large enough so that when εv ≥ logn

3w , g(δv, εv) = 0. Thus, the claim
is trivially true in this case. When εv ≥ δv, since β is large enough, we have

δ2
v − β/ log(1/εv) ≤ δ2

v − β/ log(1/δv) < 0.

That is, g(δv, εv) = 0 and the claim is true. When εv < δv and 3
w < εv <

logn
3w , g(δv, εv) ≤ max{0, δ2

v −
β/ log(1/εv)}, the claim is true by Lemma 6.2. Finally, when εv ≤ 3/w, g(δv, εv) ≤ max{0, δ2

v −
β/ log(w/3)}, and the claim is true by monotonicity and Lemma 6.2.

By Theorem 5.1, D succeeds with probability at most:

exp(B7/8 · log n) · exp

−
δ − 3√

7
8 log n

2

− β

log 7
16ε

 · n
 .

Since δ2 � 1/ log(1/ε), ε ≥ Ω(1/ log n), and n sufficiently large, this probability is upper bounded by
exp(−δ2n). This proves the theorem.

28

6.3 Communication Game

In this subsection, we will prove Lemma 6.2 using online communication.

Communication Game. We define an online communication game for each interval pair (IA(v), IB(v)).
Let O be the operations before IA, QA be the queries in IA and UB be the updates in IB . In the online
communication game G = G(v,O,QA, UB), Alice’s input X is the updates in IA, Bob’s input Yi is the ith

query in IB . The goal of stage i is to answer the ith query.
The inputs (X,Y1, . . .) are sampled according to the distribution D for the data structure and the known

operations, i.e. they are jointly sampled conditioned on O, QA and UB . It is easy to verify that all the
queries Yi are independent, and they are independent of X .

To prove Lemma 6.2, we will apply a similar strategy as the proof for the Group Range lower bound. We
will first apply Lemma 5.4 to obtain an efficient communication protocol from an efficient data structure,
which roughly preserves the fraction of correct queries. Then to prove the communication lower bound, we
are going to apply the following generalized Chernoff bound:

Theorem 6.4 ([PS97, IK10]). Let X1, . . . , Xn be n Boolean random variables. Suppose that there are
0 ≤ µi ≤ 1, for 1 ≤ i ≤ n, and λ > 0, for all S ⊆ [n],

Pr [∧i∈SXi = 1] ≤ λ ·
∏
i∈S

µi.

Let µ = (1/n)
∑n

i=1 µi. Then for any 1 ≥ δ ≥ µ,

Pr

[
n∑
i=1

Xi ≥ δn

]
≤ λ · 2−nD(δ||µ),

where D(δ||µ) = δ log δ
µ + (1− δ) log 1−δ

1−µ is the binary relative entropy function.

Remark 1. It is easy to verify that D((1 + α)µ||µ) ≥ 1
2α log(1 + α) · µ. Thus, we also have

Pr

[
n∑
i=1

Xi ≥ (1 + α)µn

]
≤ λ · 2−

1
2
α log(1+α)µn.

That is, in order to upper bound the probability the protocol answers (1/2 + δ)-fraction of the queries
correctly, it suffices to show that for every subset S of the queries, the probability that they are all correct is
very close to 2−|S|. In fact, it even suffices to prove it when S is the set of all queries in IB .

Lemma 6.5. Let G(v,O,QA, UB) be a communication game defined as above with k operation blocks in
IA(v) and IB(v). If k ≥ B1/8 and the min-entropy of input X is at least k logB! − 2kB,8 then for any
protocol P and εv where:

1. Alice sends εvkB · logB bits, and

2. Bob sends no message

must have
Pr[P answers all queries correctly] ≤ 2−(1−γ)kB,

where γ = 24/ log(1/εv), as long as 9
logB < εv <

1
2 .

8The min-entropy of X is at least c if and only if no singleton x has Pr[X = x] ≥ 2−c.

29

Assuming the above lemma (which we will prove in Section 6.5), we will be able to prove the probability
of answering (1/2 + α)-fraction of the queries correctly is tiny.

Lemma 6.6. Let G(v,O,QA, UB) be a communication game defined as above with k operation blocks in
IA(v) and IB(v). If k ≥ B1/8 and the min-entropy of input X is at least k logB! − 2kB, then for any
protocol P , δv and εv where:

1. Alice sends εvkB · logB bits, and

2. Bob sends no message

must have

Pr[P answers (
1

2
+ α)-fraction queries correctly] ≤ 2(−2α2+24/ log(1/εv))kB,

as long as 9
logB < εv <

1
2 and εv < δv.

Proof of Lemma 6.6. For 1 ≤ i ≤ kB, let Xi be the indicator variable for the event that the i-th query in
IB is answered correctly by protocol P . For any S ⊆ [kB], define PS to be the protocol such that PS does
exactly the same thing as P except that it outputs independent random bits on every query that is not in S.
Then the probability that PS answers all queries correctly is exactly Pr[∧i∈SXi = 1] ·2|S|−kB . On the other
hand, by Lemma 6.5, we have this probability is at most 2−(1−γ)kB for γ = 24/ log(1/εv). Therefore,

Pr[∧i∈SXi = 1] ≤ 2γkB · 2−|S|.

By Theorem 6.4, we have

Pr

[
kB∑
i=1

Xi ≥ (
1

2
+ α)kB

]
≤ 2γkB · 2−D(1

2
+α|| 1

2
)kB

≤ 2(−2α2+24/ log(1/εv))kB

by setting µi = 1/2, δ = 1
2 + α and λ = 2γkB .

Proof of Lemma 6.2. Fix one sequence O of operations before IA in the support of D. By Proposition 6.1,
conditioned on O, the sequence of remaining updates (X , UB and the updates after the intervals R) has
support size at least 2−B−1(B!)B−|O|. Then if we sample a random UB , the probability that the remaining
updates have a small support is small: ∑

UB :|supp(X,R|O,UB)|<2−2kB ·(B!)|X|+|R|

Pr[UB | O]

<
∑

UB :|supp(X,R|O,UB)|<2−2kB ·(B!)|X|+|R|

2−2kB · (B!)|X|+|R|

2−B−1(B!)B−|O|

≤ 2−2kB+B+1,

where supp(X,R | O,UB) is the support of X and R conditioned on O and UB . On the other hand, for
every possible assignment x to X , we have

Pr[X = x | O,UB] =
∑
r

Pr[X = x,R = r | O,UB]

≤ (B!)|R|/|supp(X,R | O,UB)|.

30

q1 q2 q3 q4
Y1

Y2

Figure 7: After Alice sees her input X , she can simulate protocol P for all possible sequences Y1, . . . , Yk
that Bob could receive. She can organize these results into a tree, and she knows whether Bob will answer
a particular input Yi = qj correctly (solid blue line) or incorrectly (dashed red line). In the tree above, all of
Bob’s queries are answered correctly only when his input is one of three specific sequences.

When |supp(X,R | O,UB)| ≥ 2−2kB · (B!)|X|+|R|, we have

Pr[X = x | O,UB] ≤ 22kB · (B!)−|X|.

That is, the min-entropy ofX conditioned onO andUB is at least k logB!−2kB. Thus, over the randomness
of UB , the min-entropy of X is at least k logB!− 2kB with probability at least 1− 2−2kB+B+1.

Finally by Lemma 5.4, Lemma 6.6 and union bound, the probability conditioned on O that

• |PA(v) ∩ PB(v)| ≤ εv · k and

• all queries in IB(v) are answered correctly

is at most

2−2kB+B+1 + 2(−2(δv−εv)2+24/ log(logn/3wεv))kB < exp((−δ2
v + β/ log(1/εv))kB)

for some constant β > 0.

6.4 The Monologue Lemma

One of the running themes in this work is that online protocols are much easier to reason about if we only
need to reason about a single round. Keeping with this trend, we now prove that if an online protocol only
has Alice speak (i.e. she is monologuing), then she might as well do it at the very beginning.

Lemma 6.7 (Monologue Lemma). Suppose we have a problem in our online communication model and as-
sociated input distributionD overX×Yk with the property that Alice’s inputX and Bob’s inputs Y1, . . . , Yk
are independent. Furthermore, suppose we have a randomized protocol P such that for all of Alice’s in-
puts X ∈ X , with at least probability p (over Bob’s inputs) all of the following events occur (the protocol
“succeeds”):

1. Only Alice talks.

2. At most C bits are sent.

3. All of Bob’s queries are answered correctly.

Then there is another randomized protocol P ′ with the following properties:

31

1. Only Alice talks, and she only does so in the first stage.

2. C + log 1/p+O(log log 1/p) bits are sent in expectation.

3. All of Bob’s queries are answered correctly with probability at least p.

Proof. We first assume without loss of generality that P is deterministic; we have an input distribution and
can apply Yao’s minimax principle, even if P is a public-coin protocol.

Here is the protocol P ′ on input X,Y1, . . . , Yk:

1. Alice and Bob look at the public randomness and interpret it as a sequence of fake draws of Bob’s
input from the input distribution D. Alice computes the first draw which, when combined with her
input X , would be succeeded on by P .

2. In this fake draw, Bob would get some inputs Ỹ1, . . . , Ỹk. Alice knows these inputs, so she can
simulate protocol P on her real input combined with the fake draw (X, Ỹ1, . . . , Ỹk). She sends the
index of the fake draw and the resulting transcript to Bob as her only communication for P ′.

3. In round i, Bob receives his real input Yi. Bob uses his knowledge of the fake input and resulting
transcript to simulate protocol P on the hybrid input (X, Ỹ1, . . . , Ỹi−1, Yi) up to round i. He outputs
whatever it does for round i.

By construction, only Alice talks and she only does so in the first round. Let us analyze Alice’s message
length. Since the chance of finding a satisfactory fake draw is at least p, the expected index is at most 1

p .
Note that the index can be unbounded. A standard approach to encoded an unbounded number x takes
log x+O(log log x) bits. By Jensen’s inequality and the concavity of the log function, the expected number
of bits to send an index is log 1/p+O(log log 1/p). Since we find an input that protocol P succeeds on, the
transcript component is at most C bits.

The difficult part of the proof is proving the last property. We want to show that we lose nothing
by performing this hybrid input procedure (and it is here that we will use the fact that Bob’s inputs are
independent). We will show that the probability that P ′ succeeds on all queries is at least the probability that
P succeeds on all queries. This would show that P ′ answers all queries correctly with probability at least p,
completing the proof.

Fix Alice’s input X ∈ X . We think of Bob’s possible input sequences as a complete k+1-layer, |Y|-ary
tree. This tree is depicted in Figure 7. Every root-to-leaf path represents a possible input sequence; the edge
that the path takes from layer i to i+ 1 corresponds to Yi. Denote by P (i, Yi) the probability that Bob’s ith

input is Yi. We can write a root-to-leaf as an input sequence for Bob: L = (Y1, . . . , Yk). The probability
that L occurs is:

Pr[L] =
k∏
i=1

P (i, Yi).

Suppose v is a node in this tree. We denote the probability that Bob answers his next query correctly
conditioned on being at v by C(v). The probability that our protocol succeeds when it uses the fake input
L = (Ỹ1, . . . , Ỹk) is exactly: ∏

v∈L
C(v).

The probability that our protocol is correct when it uses a random fake input L is:∑
L succeeds

[
Pr[L] ·

∏
v∈LC(v)

]∑
L succeeds Pr[L]

32

We want to show this is at least the success probability of the original protocol, which is:∑
L succeeds

Pr[L].

That is, we want to show

∑
L succeeds

Pr[L] ·
∏
v∈L

C(v) ≥

(∑
L succeeds

Pr[L]

)2

Our plan is to prove this by inducting over the tree. For any node u in the tree, define:

g(u) :=
∑

L succeeds, descendant of u

Pr[L | u] ·
∏

v∈L, descendant of u

C(v)

P (u) :=

∑
L succeeds, descendant of u

Pr[L | u],

where Pr[L | u] is the probability that L occurs conditioned on reaching node u. For L = (Y1, . . . , Yk) and
u depth d, we have

Pr[L | u] =
k∏
i=d

P (i, Yi).

Our inductive hypothesis is that g(u) ≥ P (u)2. When u is the root of the tree, we get the original claim.
The base case is easy: if u is a leaf, then both sides are 0 or 1, depending on whether u’s root-to-leaf

path succeeds or not. Now, suppose the hypothesis holds for all children of u, and we want to show it
holds for u in layer i. Let the children of u on at least one successful root-to-leaf path be u1, u2, . . . , um
which correspond to Bob’s ith input being q1, q2, . . . , qm, respectively. We finish with an application of
Cauchy-Schwarz:

g(u) =
m∑
j=1

P (i, qj) · C(u) · g(ui)

≥
m∑
j=1

P (i, qj) · C(u) · P (ui)
2

= C(u) ·

 m∑
j=1

P (i, qj) · P (ui)
2

≥

 m∑
j=1

P (i, qj)

 m∑
j=1

P (i, qj) · P (ui)
2

≥

 m∑
j=1

P (i, qj) · P (ui)

2

= P (u)2.

Hence we have proved our inductive hypothesis for all nodes in the tree and in particular, the root. This
proves that protocol P ′ has at least a p probability overall of being correct on all queries. Hence we managed
to prove all the desired properties about P ′.

33

Our corollary removes the assumption that for every one of Alice’s inputs, the protocol P must maintain
the probability of success, instead it only requires the protocol to have a good overall success probability.
We tack on the restriction that the functions f1, . . . , fk are binary, but it is possible to prove a version for
larger domains.

Corollary 6.8 (Monologue Corollary). Suppose we have a problem in our online communication model
and associated input distribution D over X × Yk with the property that Alice’s input X and Bob’s inputs
Y1, . . . , Yk are independent. Furthermore, suppose we have a randomized protocol P with the following
properties:

1. Only Alice talks.

2. At most C bits are sent.

If all functions f1, . . . , fk are boolean-valued, then there is another randomized protocol P ′ with the fol-
lowing properties:

1. Only Alice talks, and she only does so in the first round.

2. C + k +O(log k) bits are sent in expectation.

3. The probability that P ′ answers all queries correctly is at least much as that of P .

Proof. To apply the Monologue lemma, we must have a lower bound on the success probability for every
input X . However for any protocol, we can always have Alice use one bit in the very beginning to indicate
whether, for her input X , the protocol has at least a 2−k chance of getting all queries correct (over the
randomness of Bob’s inputs). If it does have such a chance, then they proceed normally. Otherwise, Alice
says no more and Bob outputs uniformly random bits for every query; then he has at least a 2−k probability
since the functions are boolean-valued. This increases the number of bits transmitted by one, while now for
every input the success probability is at least 2−k. The corollary then follows by the Monologue lemma.

6.5 Communication Lower Bound

In this subsection, we prove Lemma 6.5. The dynamic graph has B matchings between B+ 1 layers of size
B each. IA and IB both consist of k operation blocks and start at ck-th and (c+ 1)k-th operation blocks in
the sequence respectively for some integer c. By the property of rev and the fact that k is a power of two,
Alice’s and Bob’s inputs have the following properties:

• k matchings are updated in IA, which we will refer to as the missing matchings, as they are the only
information about the graph that Bob does not know;

• k matchings are updated in IB , which we will refer to as the replaced matchings;

• after each matching update in IB , we “query” the layer adjacent to it, i.e., B random queries of form
whether a node is connected to the top half of this layer are asked; we refer to these layers as the
queried layers;

• the k missing matchings and the k replaced matchings are interleaved.

To prove Lemma 6.5, the first step is to apply Corollary 6.8. We may assume without loss of generality,
Alice only speaks before the first stage and her message length is at most εvkB · logB+ log 1/2−kB + 1 ≤
(1 + εv logB)kB +O(logB).

34

The high-level idea to prove Lemma 6.5 is to let Alice send the first message about her input (i.e.,
the missing matchings) of length at most (1 + εv logB)kB + O(logB). Since Bob is able to complete
the protocol with no further communication, a random sequence of kB queries can be answered correctly
based solely on this message with probability 2−(1−γ)kB . The players then treat the public random string
as repeated samples of queries. On average, there is one all-correct sample of queries in every 2(1−γ)kb

samples. Thus, it takes only about (1− γ)kB bits for Alice to specify each sample that would be answered
all correctly by Bob. Ideally, every kB queries may reveal kB bits of information about Alice’s input.
That is, in the ideal situation, Alice will be able to save about γkB bits each time at the cost of sending
(1+εv logB)kB extra bits in the beginning. If Alice managed to repeat it much more than (1+εv logB)/γ
times, and each time reveal about kB extra bits of information, she would have compressed her input below
the information theoretical lower bound, yielding a contradiction.

Of course, not every set of x queries reveals about x bits of information. In the following, we derive a
sufficient condition for this property (Lemma 6.11), and show that this condition happens with extremely
high probability (Lemma 6.9, Lemma 6.10).

By the construction of our hard distribution, each of the k queried layers can only be queried in the same
operation block. Therefore, at different queries to the same layer, the graph remains fixed. Let us consider
the followingB+1 answer matricesA0, A1, . . . , AB . Each matrix is associated to a layer, and of sizeB×k.
Each row of the matrix corresponds to a node in this layer, and each column corresponds to a queried layer.
The value in entry Ai,j,l indicates whether node vi,j is connected to the top half of the l-th queried layer, in
the graph at the time of the query to this queried layer. Basically, these B + 1 matrices store the answers to
all possible queries that could appear in IB . We will state the sufficient condition in terms of these matrices,
and we will first give two technical definitions below.

Let us fix a (small) subset L of the queried layers. L induces a natural partition of the vertices into
2|L| equivalent classes: restrict each matrix to the columns corresponding to L, there are 2|L| possible
assignments to each row (node); two nodes are in the same equivalent class if the two corresponding rows in
their matrices are identical. On average, each equivalent class contains B/2|L| nodes from each layer. We
say the sequence of k missing matchings is regular for this game G(v,O,QA, UB) if this is “approximately
true” for every small subset L and every layer.

Definition 4. The sequence of k missing matchings is regular for game G(v,O,QA, UB) if for every subset
L of queried layers with |L| ≤ 1

2 logB, every equivalent class induced by L and every layer, the size of the
intersection between the layer and the equivalent class is at most 2B/2|L|.

It is easy to show by concentration, a uniformly random sequence of k missing matchings is regular with
extremely high probability.

Lemma 6.9. A uniformly random sequence of k missing matchings is regular with probability at least
1− exp(−B1/2).

Proof. Fix a set of queried layers L with |L| ≤ 1
2 logB, one equivalent class induced by L with assignment

cl in the l-th entry of the row for l ∈ L and one layer i. Let Xj be the indicator variable for the event that
vi,j is the equivalent class, i.e., Ai,j,l = cl for all l ∈ L. Since there is at least one missing layer between
any two queried layers, for any set S ⊂ L, we have

Pr[∧j∈SXj = 1] ≤
(
B/2

B
· B/2− 1

B − 1
· · · · · B/2− |S|+ 1

B − |S|+ 1

)|L|
≤ 2−|S|·|L|.

35

Thus, by Theorem 6.4 and Remark 1 (setting µi = 2−|L| and α = 1)

Pr[
B∑
j=1

Xj > 2B/2|L|] ≤ 2−
1
2
B/2|L| ≤ 2−

1
2
B1/2

,

i.e., the probability that the size of intersection between this equivalent class and Vi i more than 2B/2|L| is
at most exp(−B1/2).

Finally, by union bound and the fact that there are at most exp(log2B) small sets L, exp(logB) equiv-
alent classes per set, and exp(logB) layers, we prove the lemma.

Before any communication, Bob starts with most entries in these B + 1 matrices unknown. Each time
when Bob learns the answer to one query, he will be able to fill in about B/k entries in these matrices
directly. That is, Bob knows the graph except the missing matchings at the time of the query. There are B/k
layers between any two missing matchings. By the transitivity of connectivity, Bob will be able to fill in one
entry in each of the B/k answer matrices (unless the node is before the first missing matching or after the
last, in which case Bob may only fill in fewer entries).

We say a set of queries Q is evenly-spreading if Q does not contain any query on the left of the leftmost
missing layer, and when Bob fills in the entry values according to the above procedure for all queries in
Q, no entry is filled in for more than once (no two queries reveal exactly the same bit) and in all matrices
associated to a layer on the immediate right side of a missing matching, each row has no more than 1

2 logB
entries filled in (not too many queries reveal bits about the same node). Formally, we define evenly-spreading
as follows.

Definition 5. Let Q be a set of queries. For every vertex u that is in the immediate right layer of a missing
matching (the layer with the larger index), let Qu be the set of all queries q = (v, L) in Q such that in the
graph when layer L is queried, u and v are connected without using edges from the missing matchings, i.e.,
Bob knows u and v are connected and the answer to q directly translates to one answer to (u, L). We say Q
is evenly-spreading if no query (v, L) ∈ Q has v on the left of the leftmost missing matching, and for each
Qu,

• Qu does not contain two queries (v, L) with the same L, and

• |Qu| ≤ 1
2 logB.

Note that the definition of evenly-spreading does not depend on the missing matchings. The following
lemma shows that it is extremely likely to find evenly-spreading subset from a large random set of queries.

Lemma 6.10. Let Q(1), . . . , Q(t) be t independent samples of Bob’s inputs. Then the multi-set Q =
∪ti=1Q

(i) has an evenly-spreading subset of size (1− γ/2)tkB with probability at least

1− 2−
1
18
γtkB log logB

2t

as long as t ≤ 1
4 logB, k ≥ B1/8, γ > 1/ logB and B is sufficiently large.

Proof. Similar to the above definition, for every vertex u that is on the immediate right layer of a missing
matching, let Qu be the multi-set of all queries q = (v, L) in Q such that in the graph when layer L is
queried, u and v are connected without using edges from the missing matchings.

The largest evenly-spreading subset of Q can be obtained by taking the union of the largest subset Q′u
of each Qu, such that

36

1. Q′u does not contain two queries (v, L) with the same L, and

2. |Q′u| ≤ 1
2 logB.

Thus, it suffices to prove
∑

u |Q′u| ≤ (1 − γ/2)tkB with extremely small probability. Since
∑

u |Qu| ≥
(1− 1/k)tkB,

∑
u |Q′u| ≤ (1− γ/2)tkB would imply that either

1. at least γtkB/4 − tB queries (v, L) belong to the same Q′u with some other query with the same L,
or

2.
∑

u max{|Qu| − 1
2 logB, 0} ≥ γtkB/4.

We will show either case happens with very small probability, and by union bound, we have the desired
probability. The probability that the first case happens is at most(

k2B

γtkB/4− tB

)
·
((

tkB/k2

2

)
· 1

B2

)γtkB/4−tB
≤ (4ek/γt)γtkB/4−tB · (t/k)γtkB/2−2tB

= (4et/γk)γtkB/4−tB

= 2−(1
4
γk−1)tB·log γk

4et

≤ 2−
1
40
γktB·log B

t .

By Chernoff bound and union bound, the probability that the second case happens is at most

Pr

[
∃C,∀u ∈ C, |Qu| ≥

1

2
logB,

∑
u∈C
|Qu| ≥

1

2
|C| logB + γtkB/4

]

≤
kB∑
c=1

(
kB

c

)
· 2−

1
2

(1
2
c logB+ 1

4
γtkB−ct) log

1
2 c logB+ 1

4 γtkB

ct

≤

1
2
γtkB/ logB∑

c=1

(
kB

c

)
· 2−

1
8
γtkB·log logB

2t

+
kB∑

c= 1
2
γtkB/ logB+1

(
kB

c

)
· 2−

1
8
c logB log logB

2t

≤
(

ekB

γtkB/2 logB

)γtkB/ logB

· 2−
1
8
γtkB·log logB

2t

+
∑

c≥ 1
2
γtkB/ logB+1

(
ekB

γtkB/2 logB

)c
· 2−

1
8
c logB·log logB

2t

=
∑

c≥ 1
2
γtkB/ logB

2
c log

(
2e logB
γt

)
· 2−

1
8
c logB·log logB

2t

≤
∑

c≥ 1
2
γtkB/ logB

2−(1
8
−o(1))c logB·log logB

2t

≤ 2−
1
17
γtkB log logB

2t .

Finally, by union bound, we prove the desired result.

37

The following lemma asserts that it is a sufficient condition that the sequence of k missing matchings is
regular and the set of queries Q is evenly-spreading for each query to reveal about one bit of information.

Lemma 6.11. For any set of evenly-spreading queries Q, given the answers to Q, there is an encoding
scheme for the k missing matchings such that any regular sequence of missing matchings is encoded in
2kB + kB logB − |Q| bits.

Proof. We first present the encoding scheme.

Encoding. Fix queries Q, given the k missing matchings, one encodes them as follows.

1. Write down A0;

2. For each vertex u that is in the immediate right layer of a missing matching, find the setMu of vertices
u′ on the left of the same missing matching, such that for all queries q = (v, L) ∈ Qu, (u, L) and
(u′, L) have the same answer, sort Mu alphabetically, write down the index of the vertex in this sorted
list that u is connected to.

Decoding. Next, we show that given the answers to Q and the encoding, one can reconstruct the missing
matching.

1. Read A0 from the encoding;

2. For i = 0 to B, derive Ai+1 from Ai (recall that Ai is the B × k 0-1 matrix storing all answers to
queries that could be asked in IB and of form (u, L) where u is in layer i):

i) if the matching between layer i and i + 1 is not updated in either IA or IB , then this matching
is known (hardwired in game G), and Ai+1 can be obtained from Ai by permuting the rows
according to this matching (see Figure 8);

ii) if the matching between the two layers is a replaced matching, then the matchings before and after
the replacement are both known,9 and the time of the replacement is also known, Ai+1 can be
obtained by permuting the columns corresponding to a query that happens after the replacement,
according the new matching (see Figure 9);

iii) if the matching between the two layers is a missing matching, go over all u in layer i + 1, find
and sort Mu,10 then find the vertex that u is connected to from the encoding, which recovers the
missing matching and Ai+1 can be obtained by permuting the rows of Ai (see Figure 10).

Analysis. Since the encoding explicitly writes down for each u adjacent to a missing matching, among all
possible neighbors of u based on the answers to Q, the vertex it is connected to, the decoding procedure will
successfully find its neighbor, which recovers the missing matchings.

The first part A0 costs kB bits. When the sequence of k missing matchings is regular, since Q is evenly-
spreading, it costs log(2B/2|Qu|) = logB + 1− |Qu| bits to specify the neighbor of u on the other side of
the missing matching. We also have

∑
|Qu| = |Q|. Thus, the total encoding length is

kB +
∑
u

(logB + 1− |Qu|) = 2kB + kB logB − |Q|.

This proves the lemma.
9The matching before the replacement is always the identity matching.

10This can be done since we already know Ai, and we also know the answers to all queries q = (v, L) ∈ Qu, which has the
same answer as (u, L).

38

010110

010110101011

101011

111101 111101

010000

010000

Ai Ai+1

Figure 8: Case i) fixed
matching.

010110

101011

111101

010000

010000

101110

111101

010011

Ai Ai+1

Figure 9: Case ii) replaced
matching. First three entries
are before the update, last
three entries are after the up-
date.

010110

101011

111101

010000

?????0

??0?1?

?1????

1????1

Ai Ai+1

Figure 10: Case iii) miss-
ing matching. All possible
matching edges are listed.

Updates in the hard distribution D. Before proving the communication lower bound, let us first finish
describing the updates in the hard distribution. The goal here is to design a distribution which satisfies the
property in Proposition 6.1 and is supported on regular inputs for every game (in order to apply Lemma 6.11).
We begin with the uniform distribution over all (B!)B sequences of new matchings conditioned on Alice’s
inputs being regular in all Θ(B) communication games. Denote this distribution by Dreg. By union bound,
a uniformly random sequence of updates induces regular inputs for all Θ(B) games with probability at least
1− exp(−B1/2) > 1/2. Thus, Dreg has support size at least 1

2(B!)B .
Next, we refine Dreg so that the distribution will satisfy the property in Proposition 6.1. The refinement

has B rounds. Denote the distribution after round i by Di, and D0 = Dreg. Denote by Ml the random
variable indicating l-th updated matching in chronological order. We will show by induction that Di has
the following property: for all 0 ≤ j ≤ i and any m1, . . . ,mj in the support of Di, the distribution for the
remainingB− j matchings conditioned onMl = ml for all 1 ≤ l ≤ j is a uniform distribution with support
size at least 2−i−1(B!)B−j . It is easy to verify that

• D0 satisfies this property, and

• if DB satisfies this property, then by setting D = DB , Proposition 6.1 follows.

It remains to show how to do each round of the refinement and complete the induction step. In round
i, we go over all possible values m1, . . . ,mi+1. If the remaining B − (i + 1) matchings have support size
smaller than 2−(i+1)−1(B!)B−(i+1) conditioned on Mj = mj for all 1 ≤ j ≤ i + 1, then we remove all
sequences that start with (m1, . . . ,mi+1) from the support. Let the new uniform distribution be Di+1. By
definition, for j = i+ 1 and any m1, . . . ,mj in the support ofDi+1, the support size of the remaining B− j
matchings conditioned on these j matchings is at least 2−(i+1)−1(B!)B−(i+1), which satisfies the property.
For any 0 ≤ j ≤ i, and m1, . . . ,mj in the support, the support size of the remaining B − j matchings
conditioned on these j matchings is reduced by at most

(B!)i−j+1 · 2−(i+1)−1(B!)B−(i+1) = 2−(i+1)−1(B!)B−j .

However, by induction hypothesis, the support size in Di which we begin with is 2−i−1(B!)B−j . Thus,
when 0 ≤ j ≤ i, the support size is also at least 2−(i+1)−1(B!)B−j . This proves Proposition 6.1.

Now we are ready to prove Lemma 6.5.

Proof of Lemma 6.5. Assume for contraction, there is a a too-efficient communication protocol P for game
G(v,O,QA, UB), where Alice’s first message length is (1 + εv logB)kB + O(logB), and Bob answers

39

all queries correctly with probability at least 2−(1−γ)kB . By Markov’s inequality, for at least 2−(1−γ)kB−1-
fraction of Alice’s inputs X , the probability that Bob answers all queries in S correctly with probability at
least 2−(1−γ)kB−1 conditioned on Alice’s input being X . Denote this subset of Alice’s input by X . We have
PrX [X ∈ X] ≥ 2−(1−γ)kB−1. Since the min-entropy of X is at least k logB!− 2kB, we have

log |X | ≥ k logB!− 2kB − (1− γ)kB − 1 > kB logB − 5kB.

We are going to design a too-efficient encoding scheme for X using this hypothetical protocol, assuming
there is a shared random string between the encoder and the decoder.

Encoding. Given a sequence of k missing matchings from X and a shared random string, we are going to
encode it as follows.

1. Simulate P as Alice, assuming the k missing matchings are the input. Write down Alice’s first mes-
sage to Bob.

2. View the shared random string as infinite samples of sequences of queries in IB (according to the
input distribution). Divide the them into chunks of t = 4εv

γ log n samples each, and index chunks by
natural numbers. Write down the index of the first chunk such that for all samples in the chunk, Bob
will be able to answer all queries correctly based on Alice’s first message. (Note that this number can
be unbounded, and such a number x can be encoded in log x+O(log log x) bits.)

3. Let Q be the largest evenly-spreading subset of the set of all queries in this chunk, in case of a tie,
let Q be the lexicographically first one. Encode the missing matchings using the encoding scheme
described in Lemma 6.11.

Decoding. The following decoding procedure recovers the missing matchings.

1. Simulate P as Bob, read Alice’s first message.

2. Read the index of the first all-correct chunk. For each sample in the chunk, simulate P as Bob to
answer all the queries in it.

3. Find Q and use the decoding procedure in Lemma 6.11 to reconstruct the missing matchings given
the answers to Q.

Analysis. By Lemma 6.11, the decoding procedure above successfully reconstructs the missing matchings,
since the sequence of missing matchings is regular, Q is evenly-spreading and all queries in Q are answered
correctly.

Now let us analyze the number of bits used in the encoding procedure. In Step 1, it takes (1 +
εv logB)kB + 1 bits to write down Alice’s message. In Step 2, each sample is correct with probability
at least 2−(1−γ)kB−1. Thus, each chunk is all correct with probability at least 2−((1−γ)kB+1)t. Thus, the
expected index of the first all-correct chunk is at most 2((1−γ)kB+1)t. By concavity of the logarithm, it takes
at most ((1− γ)kB + 1)t+O(logB) bits to write down this index in expectation. By Lemma 6.11, Step 3
takes 2kB + kB logB − |Q| bits.

On the other hand, t = εv
6 log(1/εv) < 1

4 logB and γ > 1/ logB. By Lemma 6.10 and the fact that
Pr[W |E] ≤ Pr[W]/Pr[E], we have

Pr[|Q| < (1− γ/2)tkB | the chunk is all correct] ≤ 2−
1
18
γtkB log logB

2t /2(−(1−γ)kB−1)t

≤ 2tkB(1− 1
18
γ log logB

2t
).

40

Since γ = 24/ log(1/εv), we have

γ log
logB

2t
= γ log

γ

8εv

=
24

log(1/εv)
log

3

εv log(1/εv)

> 20

for εv < 1. Thus, the probability that |Q| < (1 − γ/2)tkB is at most 2−
1
9
tkB . In expectation, Step 3 takes

at most
2kB + kB logB − E[|Q|] ≤ 2kB + kB logB − (1− 2−

1
9
tkB)(1− γ/2)tkB.

Finally, summing up all three steps, the expected total encoding length is at most

(1 + εv logB)kB + ((1− γ)kB + 1)t+O(logB) + 2kB + kB logB − (1− 2−
1
9
tkB)(1− γ/2)tkB

≤ εvkB logB + (1− γ)tkB +O(logB) + 3kB + kB logB − (1− γ/2− 2−
1
9
tkB)tkB

≤ εvkB logB − γtkB/2 +O(logB) + 3kB + kB logB

≤ −εvkB logB +O(logB) + 3kB + kB logB

≤ kB logB − 6kB +O(logB)

< log |X |

for sufficiently large B.
Thus, there is a way to fix the public random string such that a uniformly random element from X can

be encoded using strictly fewer than log |X | bits in expectation, yielding a contradiction.

Acknowledgment

We would like to thank Pritish Kamath for pointing out an improvement to our original online set intersection
protocol.

References

[Ajt88] Miklós Ajtai. A lower bound for finding predecessors in yao’s cell probe model. Combinator-
ica, 8(3):235–247, 1988.

[BF02] Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem and related prob-
lems. J. Comput. Syst. Sci., 65(1):38–72, 2002.

[BH11] George F Burkhard and Eric T Hoke. Transfer matrix optical modeling. 2011.

[Blu85] Norbert Blum. On the single-operation worst-case time complexity on the disjoint set
union problem. In STACS 85, 2nd Symposium of Theoretical Aspects of Computer Science,
Saarbrücken, Germany, January 3-5, 1985, Proceedings, pages 32–38, 1985.

[CGL15] Raphaël Clifford, Allan Grønlund, and Kasper Green Larsen. New unconditional hardness
results for dynamic and online problems. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1089–1107,
2015.

41

[CP10] Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. ACM SIGACT
News, 41(3):59–85, 2010.

[DF04] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley Hoboken,
2004.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data struc-
tures. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 345–354, 1989.

[HK99] Monika R Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM (JACM), 46(4):502–516, 1999.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American statistical association, 58(301):13–30, 1963.

[HW07] Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjoint-
ness. Theory of Computing, 3(1):211–219, 2007.

[IK10] Russell Impagliazzo and Valentine Kabanets. Constructive Proofs of Concentration Bounds,
pages 617–631. 2010.

[LD69] YK Lin and BK Donaldson. A brief survey of transfer matrix techniques with special reference
to the analysis of aircraft panels. Journal of Sound and Vibration, 10(1):103–143, 1969.

[LW17] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication. In
SODA, pages 2182–2189, 2017.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. In STOC, pages 103–111, 1995.

[Pǎt07] Mihai Pǎtraşcu. Lower bounds for 2-dimensional range counting. In STOC, pages 40–46,
2007.

[PD04a] Mihai Pǎtraşcu and Erik D Demaine. Lower bounds for dynamic connectivity. In STOC, pages
546–553, 2004.

[PD04b] Mihai Pătraşcu and Erik D Demaine. Tight bounds for the partial-sums problem. In SODA,
pages 20–29, 2004.

[PD06] Mihai Pătraşcu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
Journal on Computing, 35(4):932–963, 2006.

[PRI99] Leif AA Pettersson, Lucimara S Roman, and Olle Inganäs. Modeling photocurrent action spec-
tra of photovoltaic devices based on organic thin films. Journal of Applied Physics, 86(1):487–
496, 1999.

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an
extension of the chernoff–hoeffding bounds. SIAM J. Comput., 26(2):350–368, April 1997.

[PT11] Mihai Pătraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots. In
STOC, pages 559–568, 2011.

42

[PYF03] Peter Peumans, Aharon Yakimov, and Stephen R Forrest. Small molecular weight organic
thin-film photodetectors and solar cells. Journal of Applied Physics, 93(7):3693–3723, 2003.

[RR16] Sivaramakrishnan Natarajan Ramamoorthy and Anup Rao. Simplified data structure lower
bounds for dynamic graph connectivity. Electronic Colloquium on Computational Complexity
(ECCC), 23:167, 2016.

[She14] Alexander A Sherstov. Communication complexity theory: Thirty-five years of set disjoint-
ness. In International Symposium on Mathematical Foundations of Computer Science, pages
24–43. Springer, 2014.

[Smi90] Michiel H. M. Smid. A data structure for the union-find problem having good single-operation
complexity. ALCOM: Algorithms Review, Newsletter of the ESPRIT II Basic Research Actions
Program, 1990.

[ST81] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pages 114–122. ACM, 1981.

[Tho00] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the thirty-
second annual ACM symposium on Theory of computing, pages 343–350. ACM, 2000.

[WY16] Omri Weinstein and Huacheng Yu. Amortized dynamic cell-probe lower bounds from four-
party communication. In FOCS, pages 305–314, 2016.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In FOCS, pages 222–227, 1977.

[Yao81] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM (JACM), 28(3):615–628,
1981.

[Yu16] Huacheng Yu. Cell-probe lower bounds for dynamic problems via a new communication
model. In STOC, pages 362–374, 2016.

A Further Results about the Group Range Problem

A.1 Groups versus Monoids

One key property of groups needed for our proof is the invertibility. Consider generalizing to the Monoid
Range Problem, which considers general monoids instead of groups. Monoids are sets closed under an
associative operation and have an identity element (notice they do not have the invertibility property). We
show that our lower bound does not hold for the Monoid Range Problem:

Theorem 1.5 (restated). There exists a family of monoids (Gn)n such that the Monoid Range Problem can
be solved in O

(
logn

log logn

)
time per operation.

Proof. Consider the following family of monoids. We use × to denote the operator and 0 to denote the
identity element, and ? to denote a special element. The family has the following property: for any elements
x, y ∈ Gn we have that x× y = ? unless x or y is 0 (in which case their product equals the other, due to the
identity property).

See Table 1 for small examples of these monoids. One way to think about these monoids is that the
elements are zero, singletons, or products of more than one singleton (?).

43

× 0 ?

0 0 ?
? ? ?

× 0 1 ?

0 0 1 ?
1 1 ? ?
? ? ? ?

× 0 1 2 ?

0 0 1 2 ?
1 1 ? ? ?
2 2 ? ? ?
? ? ? ? ?

Table 1: Multiplication tables for G2, G3, and G4.

Thus, the product of a sequence of elements in Gn is ? if there are more than one non-zero element;
the product is 0 if all elements are zeros; the product is the only if non-zero element if there is exactly
one. To efficiently maintain the range product of a Gn sequence, we use a segment tree of branching factor
B = Θ(log n).

The data structure Assume without loss of generality, that n is a power of B. Each node of the tree at
depth i is associated with a (contiguous) subsequence of length n/Bi. Dividing the associated subsequence
of a node E into B subsequences evenly, the j-th child of E is associated with the j-th subsequence.
In particular, the root is associated with the entire sequence, the j-th child of the root is associated with
((j− 1) ·n/B+ 1)-th element to (j ·n/B)-th element, and each leaf is associated with a singleton. In each
node E of the segment tree, the data structure maintains

(1) for each child of E, the minimum of two and the number of non-zero elements in their associated
subsequences, i.e., if there is none or one or more than one non-zero element;

(2) if there is exactly one non-zero element in the associated subsequence of E, what this element is.

Note that Part (1) costs O(1) bits for each child, thus O(B) = O(log n) bits in total, and Part (2) costs
O(log n) bits to indicate the element. Thus, both parts can be stored in O(1) words for each node.

Updates Upon receipt of an update ai := x, the data structure iteratively updates the information in the
tree bottom-up. It is not hard to verify that this update could only affect the nodes associated with some
subsequence consisting of i. It first finds the leaf associated with {i}, and updates the two parts according to
the value of x. Once all descendants of a node E are up-to-date, Part (1) of E can be updated by checking
Part (1) of the only child of E affected by the update. From the updated Part (1) of E, one can figure out if
there is exactly one non-zero element in the associated subsequence and which subtree it is in if there is. By
checking Part (2) of the relevant subtree, the data structure will be able to update Part (2) of E. Updating
each node takes O(1) time, only O(logB n) nodes are affected by the update. Thus, the total update time is
O(log n/ log log n).

Queries Recall that each child Ei of the root node is associated with a subsequence of length n/B. To
answer the query ai×· · ·×aj , the data structure first breaks [i, j] into subsequences S1, S2, . . . , Sm, such that
S2, . . . , Sm−1 are associated to Ea, . . . , Ea+m−2 for some a, S1 and Sm are subsequences of the associated
subsequences of Ea−1 and Ea+m−1 respectively. By accessing Part (1) of the root node, the data structure
learns whether there is none, exactly one or more than one non-zero elements in S2, . . . , Sm−1. Then it
recurses on S1 in the subtree rooted at Ea−1 and Sm in the subtree rooted at Ea+m−1. By combining the
answer from three parts, it will be able to output the answer to the query. It is not hard to verify that at each
depth, at most two nodes of the tree may be recursed on. The query algorithm spends O(1) time in each
node. Thus, the total query time is O(log n/ log logn).

Therefore, we conclude that the Monoid Range Problem with this particular family of monoids can be
solved in O(log n/ log log n) time per operation.

44

A.2 The Matrix Range Problem

In this section, we show that for a particular group G, even maintaining one particular bit (say the last bit)
of the whole product

∏n
i=1 ai is hard. The group G we focus on is the general linear group of invertible

matrices over the field Fp for constant p, namely G = GL(
√

log n,Fp).
The binary encoding of matrices we would like to focus on is the encoding of a matrix as the concate-

nation of its entries. Hence, queries will return a bit about an entry of the matrix product. We call the
Group Range Problem with G = GL(

√
log n,Fp) and this encoding the Matrix Range Problem. However,

since not all
√

log n ×
√

log n matrices over Fp are invertible, this is not the most concise encoding of
GL(
√

log n,Fp). We remark that our desired encoding is nonetheless concise enough for Theorem 1.2 to
hold:

Lemma A.1. Theorem 1.2 holds for the Matrix Range Problem.

Proof. Consider the group of
√

log n ×
√

log n invertible matrices over the field Fp where p is constant.
Recall that this group has |GL(

√
log n, p)| =

∏√logn−1
i=0 (pn − pi) elements (see e.g. [DF04, page 413]).

We would like to represent this group in usual matrix format, i.e. as the concatenation of the representations
of their entries. This representation uses log n log p bits. On the other hand, notice that log |GL(n, p)| ≥
(log n−

√
log n) log p, so Theorem 1.2 implies that our lower bound holds for this setting.

The Matrix Product Problem is the same as the Matrix Range Problem, except that instead of being able
to query for (a bit of) any entry of the product of the matrices in any subinterval, we are only allowed to query
for (a bit of) the bottom-right entry of the product of the entire range of matrices. Despite this substantial
restriction on the types of queries allowed, we find that the Matrix Range Problem can be reduced to the
Matrix Product Problem such that our lower bounds from the previous section still apply to the Matrix
Product Problem.

Lemma A.2. If the Matrix Product Problem for n matrices of dimension d× d can be solved in amortized
T (n, d) time per operation, then the Matrix Range Problem n matrices of dimension d× d can be solved in
amortized O(T (n, d+ 1)) time per operation.

Proof. The inspiration for the reduction is the following fact: Let ei denote the ith standard basis vector, i.e.
the vector of length n whose entries are all 0 except for its ith entry which is 1. For any d × d matrices A,
B, and C, consider the following product of three (d+ 1)× (d+ 1) matrices:

D =

[
A 0
eTj′ 1

] [
B 0
0T 1

] [
C ei′
0T 1

]
In the resulting matrix D, the bottom right entry D(d+1)(d+1) is equal to (Bi′j′ + 1).
The reduction is hence as follows. For any sequence M1,M2, . . . ,Mn of d × d matrices, and any two

indices 1 < i < j < n, consider the following product of (d+ 1)× (d+ 1) matrices:

D =

[
M1 0
0T 1

] [
M2 0
0T 1

]
· · ·
[
Mi−1 0

eTj′ 1

] [
Mi 0
0T 1

]
· · ·
[
Mj 0
0T 1

] [
Mj+1 ei′

0T 1

]
· · ·
[
Mn 0
0T 1

]
Similar to before, the bottom right entry D(d+1)(d+1) will be equal to the (i′, j′)th entry of the product

Mi · · ·Mj plus one. To deal with i = 1, then no matrix has eTj′ as its bottom row. The first d entries of the
right column of D will be the i′th column of M1 · · ·Mj . There is a similar case for j = n.

Updates to the original sequence of d × d matrices can be translated directly into updates to the new
sequence of (d+ 1)× (d+ 1) matrices. Queries to the original sequence result in at most four updates and
a query on the new sequence. This completes the proof.

Corollary 1.4 (restated). Theorem 1.2 holds for the Matrix Product Problem.

45

A.3 Upper Triangular Matrices

We further restrict our focus to the group G of invertible upper triangular matrices. In some applications,
only upper triangular matrices are sufficient instead of the full general linear group of all invertible matrices,
and the proof of Lemma A.2 does not immediately imply that the Upper Triangular Matrix Product Problem
has a Theorem 1.2 style of lower bound, as our gadget would make one matrix no longer upper triangular.
Nonetheless, we are able to prove the lower bound via a modification of Lemma A.2.

Lemma A.3. If the Upper Triangular Matrix Product Problem for n matrices of dimension d × d can be
solved in amortized T (n, d) time per operation, then the Matrix Range Problem n matrices of dimension
d× d can be solved in amortized O(T (2n+ 1, 2d)) time per operation.

Proof. The reduction uses the following identity: Let N(i,j) denote the d × d matrix which has all entries
0 except its (i, j) entry is 1. For any d × d upper triangular matrices A, B, and C, we have the following
identity of 2d× 2d upper triangular matrices:[

A 0

0 I

] [
N(1,j) 0

0 I

] [
B 0

0 I

] [
I N(i,1)

0 I

] [
C 0

0 I

]
=

[
ABjC B(i,j)

0 I

]
,

where Bj is the all zeroes matrix except that its first row is the jth row of B, and B(i,j) is the all zeroes
matrix except that its top right entry is the (i, j) entry of B.

Similar to before, to maintain the sequenceM1, . . . ,Mn of d×dmatrices, we will maintain the following
sequence of 2d× 2d matrices:[

I 0

0 I

] [
M1 0

0 I

] [
I 0

0 I

] [
M2 0

0 I

] [
I 0

0 I

]
· · ·
[
I 0

0 I

] [
Mn 0

0 I

] [
I 0

0 I

]
.

To query the (i, j) entry of the product MaMa+1 · · ·Mb, we change the (2a−1)th matrix to
[
N(1,j) 0

0 I

]
,

and change the (2b + 1)th matrix to
[
I N(i,1)

0 I

]
, and then our desired value is the top right entry of the

product of all the matrices.

Corollary A.4. Theorem 1.2 holds for the Upper Triangular Matrix Product Problem.

B Applications of the Group Range Problem

Physics

One example in the areas of optics and computer graphics is the propagation of electromagnetic waves
through different media. The transfer-matrix method from optics describes how to analyze the propagation
of such waves by computing a product of characteristic matrices, one corresponding to each medium. In
optical modeling experiments, physicists sometimes need to quickly determine how making changes to one
characteristic matrix alters the overall product, a computational task described by our problem. Some forms
of ray tracing in computer graphics also use this transfer matrix analysis [PRI99, PYF03, BH11].

The transfer matrix method is also used in some mechanical engineering problems, like in the design of
aircraft panels. Due to the details of these mechanics problems, the matrices involved are typically upper-
triangular matrices. [LD69]

In many of these applications, one is only interested in being able to query the product of the entire
sequence of matrices, rather than querying arbitrary subintervals of matrices. We show that, when G is the

46

group of invertible matrices, or the group of invertible upper triangular matrices, our lower bound still holds
even if only an entry of the product of the entire sequence of matrices can be queried.

Dynamic Permanent for Banded Matrices

Consider the following data structure problem. We want to keep track of the permanent of an n× n matrix
M over some finite field Fp. To keep the problem tractable (because Permanent is NP-complete), we restrict
attention to the case where M is a band matrix, i.e. Mi,j is nonzero only when |i− j| ≤ k for some constant
k. We want to support the following two operations:

• Update(i, j,∆), which updates Mi,j ←Mi,j + ∆ but only for |i− j| ≤ 1.

• Query(), which returns the permanent of M .

It turns out that this problem is reducible to the Matrix Range Problem. Consider the k = 1 case, and
treat the permanent as the sum of weights of perfect matchings of a bipartite graph G = ([n], [n], E), we
define Pi to be the sum of weights of perfect matchings of the bipartite graph Gi = ([i], [i], E ∩ ([i]× [i])).
Because of the banded property of the matrix, there are only two vertices that vertex i on the left hand side
of the graph can be matched to: vertex i − 1 or vertex i on the right hand side. Furthermore, if left i is
matched to right i− 1 then left i− 1 must be matched to right i. Hence:

Pi = Pi−1Mi,i + Pi−2Mi−1,iMi,i−1[
Pi
Pi−1

]
=

[
Mi,i Mi−1,iMi,i−1

1 0

] [
Pi−1

Pi−2

]
[

Pn
Pn−1

]
=

[
Mn,n Mn−1,nMn,n−1

1 0

]
· · ·
[
M2,2 M1,2M2,1

1 0

] [
M1,1

1

]

Therefore it suffices to keep a Matrix Range which stores the n − 1 matrices
[
Mi,i Mi−1,iMi,i−1

1 0

]
. Each update to the Dynamic Permanent data structure results in exactly one update to the Matrix Range
data structure, and a query to the Dynamic Permanent data structure can be answered by querying for the
top row (two entries) of the product of the entire range.

Modulo the fact that these matrices may not be invertible (if Mi−1,iMi,i−1 = 0), our results show that
this approach to the problem should cost Ω(log n) time per operation. In particular, our lower bound for
the Matrix Product Problem showed that this problem is still hard even when queries only request the entire
range of matrices and not arbitrary subintervals.

47

	Introduction
	Online Communication Model
	Online Set Disjointness
	Group Range Problem
	Dynamic Connectivity
	Further Results
	Group Range Problem
	Dynamic Connectivity

	Our Technique and Related Work
	Group Range Problem
	Dynamic Connectivity

	Organization

	The Online Communication Model
	Proof Overviews
	Online Set Intersection Lower Bound
	Data Structure Lower Bounds
	Online Communication Simulation
	Online Communication Lower Bounds

	Online Set-Intersection Lower Bound
	The Group Range Problem
	Step One: The Hard Distribution
	Step Two: Identifying Key Subproblems
	Step Three: The Communication Game

	Dynamic Connectivity Lower Bound
	Hard Distribution
	Identifying Key Subproblems
	Communication Game
	The Monologue Lemma
	Communication Lower Bound

	Further Results about the Group Range Problem
	Groups versus Monoids
	The Matrix Range Problem
	Upper Triangular Matrices

	Applications of the Group Range Problem

