
Fillable arrays with constant time operations and a single bit of

redundancy

Jacob Teo Por Loong∗ Jelani Nelson† Huacheng Yu‡

February 9, 2018

Abstract

In the fillable array problem one must maintain an array A[1..n] of w-bit entries subject to random
access reads and writes, and also a fill(∆) operation which sets every entry of A to some ∆ ∈ {0, . . . , 2w−
1}. We show that with just one bit of redundancy, i.e. a data structure using nw + 1 bits of memory,
read/fill can be implemented in worst case constant time, and write can be implemented in either
amortized constant time (deterministically) or worst case expected constant (randomized). In the latter
case, we need to store an additional O(lgn) random bits to specify a permutation drawn from an 1/n2-
almost pairwise independent family.

1 Introduction

A classic dynamic data structural problem is that of the fillable array [AHU74, Exercise 2.12]. In this
problem, one wants to maintain an array A[1..n] with entries in {0, . . . , 2w−1} subject to the following three
operations:

• write(i,∆): A[i]← ∆

• fill(∆): A[i]← ∆ for all i = 1..n

• read(i): returns A[i]

Note read(i) may not be defined, if A[i] was never set due to a lack of a previous fill or write(i, ·) operation
since the data structure’s initialization. In this case, we allow the return value to be arbitrary (in fact, the
data structures we present here return 0 in this case, or some other pre-decided constant).

Most popular programming languages have some data structure implemented in its standard library
supporting all these operations. For example, arrays in C/C++ can support fill via a call to memset,
and a method even named fill is implemented in C++ (for ForwardIterator), Python (numpy.ndarray),
and Java (Arrays). In fact, arrays in Java must be filled with some value upon initialization as part of the
language specification [Ora17].

The standard approach to implementing a fillable array uses nw bits of memory, and in the word RAM
model supports write/read each in O(1) worst-case time and fill in time O(n), simply via n sequential
writes. Recently [HK17] showed this is best possible for any data structure using nw bits of memory. But
what if we allow our data structure to use just a single bit of extra memory? Is is possible to then achieve

∗National University of Singapore High School of Math & Science. jacobtpl@gmail.com. Work done while participating in
the Research Science Institute, sponsored by the Center for Excellence in Education, in Summer 2017.
†Harvard University. minilek@seas.harvard.edu. Supported by NSF grant IIS-1447471 and CAREER award CCF-1350670,

ONR Young Investigator award N00014-15-1-2388 and DORECG award N00014-17-1-2127, an Alfred P. Sloan Research Fel-
lowship, and a Google Faculty Research Award.
‡Harvard University. yuhch@g.harvard.edu. Supported in part by ONR grant N00014-15-1-2388, a Simons Investigator

Award, and NSF grant CCF-1565641.

1

G L N

B

Figure 1: The organization of array B in linked list mode. B is divided into three subarrays, G, L, N, and each
cell is a w-bit word. The white cells in the array are unused in linked list mode, except during the process
of conversion into naive mode triggered by numActive reaching n/CL after a write.

all operations in worst case constant time? Despite the ubiquity of this problem, this basic question is
unanswered.

For a data structure using nw + r bits of memory, we denote the value of r as the redundancy. The
goal is to use as little redundancy as possible while supporting all three operations quickly. We assume the
word RAM model with word size w = Ω(lg n), so that at the very least indexing into A can be performed in
constant time. A textbook exercise [AHU74, Exercise 2.12] shows that it is possible to achieve redundancy
r = 2n dlg2 ne + dlg2(n+ 1)e + w bits while supporting all three operations mentioned above in worst case
time O(1). As in previous work, we refer to this data structure as the “folklore” solution. The same running
time was achieved with better redundancy r = (1 + o(1))n by Navarro [Nav13]. Most recently, Hagerup and
Kammer gave a solution with read/write time O(t), fill time O(1), and redundancy r = dn/(w/(Ct))te
for some constant C > 1 for any desired integer 1 ≤ t ≤ lg2 n [HK17]. All these times are worst case. For
t = lg2 n, redundancy r = 1 is achieved.

Our main contribution. We show it is possible to achieve O(1) time for all three operations with redun-
dancy r = 1 if one settles for amortized complexity for write and worst-case complexity for read and fill.
We also show that it is possible to replace the amortized O(1) complexity for write with O(1) worst case
expected running time, via a randomized data structure. In this case though, we need to store an additional
O(lg n) random bits to specify a permutation drawn from a 1/n2-almost pairwise independent family.

We point out here that simultaneously and independently of our work, Katoh and Goto in [KG17]
showed an even stronger result: namely that redundancy r = 1 is achievable even while supporting all three
operations in worst case O(1) time. They additionally achieve this result when the elements stored in A are
b bits each for any b = O(w), whereas we assume b = Θ(w).

When describing our solutions, we assume n is larger than some fixed constant since otherwise the trivial
solution with O(n) fill time performs all operations in worst case time O(1) with zero redundancy. We
also henceforth use [k] to denote {1, . . . , k} for integer k.

2 Amortized solution

We here describe and analyze our amortized solution, which is quite simple. The data structure operates in
two modes and maintains a single mode bit which we refer to as naive. If naive is set to True, then we
are in naive mode. If set to False, then we are in linked list mode. The single bit to store naive is the sole
redundant bit in our representation, yielding r = 1. This data structure, in either mode, also maintains an
array B[1..n] such that each B[i] is a w-bit word. The data structure, when first initialized, starts in linked
list mode.

We first describe naive mode. In this mode, we maintain the invariant that B[i] = A[i] for all i = 1 . . . n.
Thus write(i,∆) is implemented by performing the operation B[i]← ∆, and read(i) is executed by simply
returning B[i]. To execute fill(∆), we set naive to False then initialize the data structure into linked list
mode with value ∆ (this initialization is to be explained shortly).

Memory layout in linked list mode is depicted in Figure 1, together with the one extra naive bit not
depicted there (set to False). We say an index i ∈ [n] is active if it has been written since the most recent

2

initialization into linked list mode. G has size 2 and stores the argument ∆last to the last fill call, as well
as the number numActive of active indices. L is an instance of the folklore data structure for an array with
dlg2 ne bit cells (sufficiently large to server as pointers into N), and with array length n/CL for a constant
CL > 1 to be determined later. We abuse notation and let L[j]← ∆ denote L.write(j,∆) and let L[j] denote
the value returned by L.read(j). The main idea is that for each j ∈ [n/CL], L[j] is a pointer to the head
node of a doubly linked list which contains all active indices i in the range {(j − 1) ·CL + 1, . . . , j ·CL}. For
any such i, there is a node in the linked list containing the pair (i, A[i]). Note that the linked list pointed
to by L[j] is guaranteed to have at most CL = O(1) nodes. As mentioned in Section 1, L occupies at most
3n/CL + 2 ≤ 4n/CL cells in B. The actual linked list nodes are then allocated in the N array, which has a
length that will be determined later. Each linked list node occupies 4 w-bit cells, to store prev and next

pointers (which are stored as indices into N), as well as the two values i and A[i] corresponding to that
node. Null pointers are represented by the value n, which is unambiguous since N has size much less than n.
The number of allocated nodes will always be equal to numActive, and thus whenever we wish to allocate
a new node, we will do so by incrementing numActive then using memory cells in the length-4 subarray
N[(4 · (numActive− 1) + 1)..(4 · numActive)].

Now we describe how to perform operations in linked list mode. To perform fill(∆), no matter which
mode we are in when the fill was called, we set naive to False and do L.fill(null) (as mentioned
previously, null can be unambiguously represented by the value n in this context). We also set numActive

to 0 and ∆last to ∆. Initializing the entire data structure at the beginning of the operation sequence is
identical, except that we set ∆last to be 0 (or whatever other pre-specified constant we would like to return
when an A[i] value has never been set). Answering a read(i) query is also simple. Set j ← b(i− 1)/CLc. We
first check whether L[j] is null. If so, we return ∆last. Otherwise, we traverse the linked list L[j]. If this list
contains a node with a pair with index i, then we return the associated value in that node. Otherwise, we
return ∆last. Note fill takes worst-case constant time as does read. This is because all read/write/fill
operations on L take constant time, and traversing L[j] during a read takes time O(CL) = O(1).

The most involved operation to implement is the write(i,∆) operation, which we now describe. We
first determine whether i was already active before this write by performing the steps of read(i). For
j = b(i− 1)/CLc as defined above, note i is active iff L[j] 6= null and the linked list L[j] contains a node with
stored index i. If i was already active, we simply ovewrite ∆ as the associated value in the linked list node
containing i. Otherwise, we increment numActive then allocate a new node v containing (i,∆) and insert it
to the front of the linked list L[j]. If L[j] was null, then we set L[j] to the first cell of v in N. The main issue
with this solution is that once numActive is sufficiently large, we will run out of memory. This is because,
on top the memory used to store G, L, every active index also uses up 4 memory cells in N. Since the number
of active indices can be as big as n and B only contains n < 4n cells, we may run out of memory in N if the
number of active indices becomes too large.

To avoid the above issue, we convert from linked list mode to naive mode whenever numActive becomes
too large; in particular, whenever it reaches n/CL. Note then N need only be of length 4n/CL. To perform
this conversion, we first set naive← True. We then set all white cells in B (see Figure 1) to 0. We then loop
from j = n/CL down to j∗, for j∗ also to be determined later, and for each such j we free all nodes in L[j].
To free a node v with prev/next pointers to v.prev and v.next and storing index v.i and value v.val, we
first set B[v.i]← B[v.val]. We then set the next pointer of N[v.prev] and prev pointer of N[v.next] to point
to each other, if not null. We then move the last node stored in N (which is stored in the 4 cells starting at
4 ·(numActive−1)+1, inclusive) into the 4 cells of N that used to store v. We then decrement numActive. In
this way, during conversion into naive mode numActive keeps track of the number of active indices that are
yet to be converted into the naive representation. Note that if we divide A into contiguous blocks of length
CL, then active indices are converted into the naive representation in descending block order (though the
order of conversion within a block may be arbitrary since linked lists are not sorted by index). We choose
the value j∗ to be such that the j∗th block of indices in A is the closest block immediately to the right of
the indices used in storing L. In this way, the conversion continues until we pause midway, when we have
converted all blocks of indices that do not intersect G, L, N.

We now describe how to complete the conversion into naive mode, that is to convert all the indices in the

3

remaining blocks 1, . . . , j∗−1. Let the white part of the array B (see Figure 1) be denoted as subarray H. The
idea here is to use gaps of three consecutive zeroes in H to represent linked list nodes. Our goal is to build a
linked list using the memory in these gaps to store all indices pointing to cells in G, L, N that are waiting to be
converted. Let us now set some values. Note G, L, N combined use at most 2 + 4n/CL + 4n/CL = 8n/CL + 2
cells. As mentioned in Section 1, we can assume n is larger than some constant. In particular, we assume
n ≥ 2CL so that 8n/CL+2 ≤ 9n/CL. Thus we have j∗−1 ≤ 9n/C2

L+1 ≤ 10n/C2
L assuming also n ≥ C2

L/9,
and thus have at most 10n/CL indices remaining to be converted. We need to make sure these cells can all
be written into the gaps in H. Note H has length at least (1− 9/CL)n and contains a total of at most n/CL
entries that are not zero (due to conversions of indices in blocks j∗ and above). Thus H contains at least
b(1− 12/CL)n/3c disjoint gaps of three consecutive zero entries. We need b(1− 12/CL)n/3c ≥ 10n/CL to
ensure these items all fit in the gaps and H, and thus it suffices to set CL = 50 for n ≥ 10. Thus overall we
have assumed n ≥ max{2CL, C2

L/9, 10} = 350. We then use two pointers to simultaneously walk over the
first numActive nodes in N while walking over H, copying nodes into the gaps of three consecutive zeroes to
form a link list in the gaps of H. We also use a single register during the conversion process to store the first
cell of the first gap of three in H (i.e. so that we know the head of the linked list). After we have finished
copying over the remaining indices in N to the gaps in H, we then walk over the B entries used to store G, L, N
then set them all to zero, then walk over the linked list in the gaps in H and write the values of all these
indices into their respective indices in index sections G, L, N. We then perform one more walk over this gap
linked list and rewrite zero in all its cells.

Note that this conversion process from linked list mode back to naive mode takes time O(n), which can be
charged to the n/CL active indices since the last fill. Thus overall this conversion process takes amortized
time O(1).

Theorem 1. There is a deterministic data structure implementing fillable arrays with one bit of redundancy,
supporting worst-case O(1) time for read/fill and O(1) amortized time per write.

3 Randomized solution

In this section, we present a randomized implementation of a fillable array providing constant time per
operation in expectation in the worst-case, and using one bit of redundancy. In fact, read and fill will
take O(1) time with probability 1, whereas each write will run in expected time O(1). Our analysis assumes
oracle access to a permutation F drawn from an 1/nr-almost r-wise independent distribution of permutations
on the set [n] for an even r ≥ 2. As we show in Appendix A.1, such an F can be stored in O(lg n) bits
of space and evaluated in worst-case constant time on any i ∈ [n], and it can be found in expected time
poly(lg n) in pre-processing (see Remark 9). We use the following standard definition of δ-almost k-wise
independent permutation families. See for example [KNR09].

Definition 2. Let D1, D2 be distributions over a finite set Ω. The variation distance between between D1

and D2 is

‖D1 −D2‖ :=
1

2

∑
ω∈Ω

|D1(ω)−D2(ω)|

We say that D1, D2 are δ-close if ‖D1 −D2‖ ≤ δ.

Definition 3. Let U{nk} denote the uniform distribution over the set of all k-tuples of distinct integers in
[n]. A set Π of permutations on [n] is δ-almost k-wise independent if for every k-tuple of distinct elements
x1, . . . , xk ∈ [n], the distribution (f(x1), . . . , f(xk)) for uniformly random π ∈ Π is δ-close to U{nk}.

The high-level idea of the randomized solution is similar to the amortized solution presented in the
previous section. The data structure will have two modes: the naive mode and the linked list mode. In the
amortized solution, the only operation that takes more than constant time is when we need to convert the
data structure from linked list mode to naive mode, which takes linear time. However, this only happens
after Θ(n) write operations after a fill. To obtain expected worst-case constant time, the main idea is to

4

gradually convert to naive mode over the Θ(n) write operations. Since we put the last CL elements into the
last linked list, it allows us to fill the last CL words of the array with their current values by going over the
last linked list, and delete the last linked list. Then we can view our data structure as in linked list mode
for the first n− CL elements and in naive mode for the last CL elements. However, if we keep inserting the
elements that are in the first, say half, of the blocks, and convert to naive mode from the last blocks, we will
at some point run out of space. To avoid this issue, we apply a random permutation on the array A, and
prove that in expectation, we will “run out of space” only when there are a constant number of blocks left.
In the following, we present this approach with details.

The folklore solution with delete. The randomized solution we present in this section uses an im-
plementation of the folklore solution supporting delete operation as a subroutine. More specifically, the
subroutine maintains an array A of length n using 3n+ 2 words, supporting

• read(i): return A[i];

• write(i,∆): set A[i] to ∆;

• fill(∆): set A[i] to ∆ for all 1 ≤ i ≤ n;

• delete(n): deletes the last (n-th) element of the array A, such that the data structure only uses the
first 3(n− 1) + 2 words of the memory.

The subroutine supports every operation deterministically in constant time in worst case. We defer the
details to Appendix B.

Memory layout. As in the amortized solution, we refer to the one redundant bit as naive, which stores
the mode of the data structure. The rest of the data structure is stored in the memory B of n w-bit words.

When naive is True, the data structure is in naive mode. In this case, we store A[i] in B[F (i)] for each
i, where F is the permutation previously mentioned.

When naive is set to False, the data structure is in linked list mode. In this case, we partition the array
A into dn/CLe blocks. The j-th block contains all the entries i ∈ [n] such that (j−1) ·CL+1 ≤ F (i) ≤ j ·CL.
Each block is associated with a doubly linked list, in which, we store all elements that have been performed
a write operation on since the last fill. The n-word memory B is partitioned into five subarrays in the
following order (see Figure 2).

• G: this subarray has five words. The first four words store the pointers to the first word of the following
subarrays. The last word stores ∆last, the value to which the last fill operation sets.

• L: this subarray stores a folklore data structure for the heads of all doubly linked lists.

• N: this subarray stores all nodes in all linked lists. Each node has four fields, which are store in four
words: the pointer to its predecessor, the pointer to its successor, the index and the value. To indicated
the end of a linked list, the successor pointer of the last node will point to a word not in N, e.g., the
first word of G. The same convention applies to L when a linked list is empty, i.e., the header points to
the first word of G.

• U: this subarray is unused.

• NI: this subarray stores values of all entries that are mapped to this range by F , i.e., we set B[F (i)] = A[i]
for all F (i) in this range.

5

G L N U NI

B

Figure 2: Memory layout of the data structure in linked list mode

Operation read(i). If the data structure is in naive mode, the value of A[i] is stored in the F (i)-th word
of the memory. If the data structure is in linked list mode, we first check if B[F (i)] is in NI, i.e., A[i] is
converted to the naive mode already. If it is, we simply return B[F (i)] as in the naive mode. Otherwise, the
bi/CLc-th block contains the element A[i]. We read the folklore data structure in subarray L, and obtain
the header of the linked list associated with this block. Then we traverse this linked list to find all elements
in the block that have been written since the last fill. If A[i] is found in the linked list, we simply return
its value stored in it. Otherwise, we return ∆last.

Operation write(i,∆). If the data structure is in naive mode, we simply write the value ∆ to the F (i)-th
word. If the data structure is in linked list mode, we first read the folklore data structure to find the header
of the linked list associated with bi/CLc-th block. Next we traverse the linked list to check if A[i] is already
in it. If it is, we overwrite the value field of the node for A[i] with ∆. Otherwise, we allocate four more words
at the end of N, which can be done by increasing the pointer to subarray U by four words. Then we create a
new node there for A[i], and insert it to the linked list.

An important idea of our randomized data structure is to gradually convert to naive mode. Thus, in
addition to the above procedure, we will perform convert after each write operation.

Convert. The convert procedure converts the last CT blocks into naive mode that are not converted yet,
for some constant CT to be set later. We first check if there is sufficient unused space (U) left. To do this,
we first calculate the number of blocks k that are still in linked list mode. This number can be obtained
from the size of NI, i.e., k = (n − |NI|)/CL. If |U| ≤ k · CL · CU or k ≤ 10 for some constant CU (i.e., the
data structure is running out of space soon), we run the linear time conversion algorithm on the remaining
k blocks as in the amortized solution, and set naive to True. Note that as long as we set CU to be greater
than 0.95, the linear time conversion algorithm will have sufficient working memory as we described in the
previous section.

If |U| > k · CL · CU and k > 10, we still have enough unused space, and can safely convert the blocks.
To convert the k-th block, we first decrease the pointer to NI by CL words, and fill all of these CL words
with ∆last. Next, we traverse the k-th linked list, and for all elements in the linked list, fill the F (i)-th
word with the value of A[i]. Then, we need to delete the last linked list. When deleting a node, we may
create four unused words in the middle of N. In this case, we simply move the last node in N to this place,
update the pointers and decrease the pointer to U by four words. To delete the header, it suffices to run
the delete operation on the folklore data structure (see Appendix B). If a gap of more than four words is
created between L and N, we again move the last node here, update the pointers and decrease the pointer to
U.

Finally, we repeat the above procedure CT times to convert the last CT blocks.

Operation fill(∆). We set naive to False no matter which mode the data structure was in, and set
∆last to ∆. Then we update the pointers in G such that G has five words, L has the size of a folklore solution
on dn/CLe elements (3 dn/CLe+ 2), N and NI are empty, and U has the remaining memory. Finally we fill

the folklore data structure with pointers to the first word of G, i.e., empty all linked lists.

Analysis The correctness of the data structure is straightforward. It is also easy to verify that the only
part of the data structure that may take super-constant time is the convert procedure.

6

In the convert procedure, when too little unused space is left compared to the number of blocks remaining
(|U| ≤ k · CL · CU), we convert all remaining blocks at once. In the following, we will show that this event
happens with very small probability when the number of remaining blocks is large.

Fix a sequence of operations, and one operation in this sequence. Now we analyze the expected time
spent on this operation by the data structure. If it is a fill or a read, the data structure does not invoke
the convert procedure, and thus takes constant time in worst case. Otherwise, it is a write operation, and
if the data structure has run a linear time conversion algorithm since the last fill, this write operation
will take constant time in the worst case.

Otherwise, let kU be the number of write operations since the last fill. The data structure invokes
convert exactly once during each of the kU writes. The convert procedure converts CT blocks each time.
Thus, we will have exactly k = dn/CLe − kU · CT blocks left.

Let X be the number of entries written in those kU write operations and mapped to the first k blocks,
i.e., the number of elements that are inserted an still in linked list mode. We need to run a linear time
conversion algorithm only when |U| ≤ k · CL · CU . On the other hand, we have

|U| ≥ k · CL − |N| − |L| − |G| − 3

≥ k · CL − 4X − (3k + 2)− 8

= k · CL − 4X − 3k − 10.

That is, we run the linear time conversion algorithm, only when

X ≥ 1

4
(k · CL · (1− CU)− 3k − 10) .

However,

EX ≤ kU ·
k · CL
n
≤ n

CL · CT
· k · CL

n
=

k

CT
,

which is much smaller. Now we are going to upper bound the probability using the r-wise independence of
F . Recall that F is sampled from a distribution Dr such that F (i)’s are r-wise 1/nr-almost independent.
Let U be the uniform distribution over all permutations [n] → [n]. Let Xi be the indicator variable for the
event that F (i) ≤ k · CL, and let S be the set of kU entries that are written after the last fill.

By definition, we have the following:

• X =
∑
i∈S Xi;

• EF∼U Xi = k·CL

n ;

• for any subset T ⊆ S and |T | ≤ r, by the r-wise almost independence, we have∣∣∣∣∣ P
F∼Dr

(∧
i∈T

Xi = 1

)
− P
F∼U

(∧
i∈T

Xi = 1

)∣∣∣∣∣ ≤ 1/nr;

• for uniform F and any T ⊆ S, we have

P
F∼U

(∧
i∈T

Xi = 1

)
=
k · CL
n
· k · CL − 1

n− 1
· · · · · k · CL − |T |+ 1

n− |T |+ 1

≤
(
k · CL
n

)|T |
=
∏
i∈T

P
F∼U

(Xi = 1)

(1)

and

P
F∼U

(∨
i∈T

Xi = 0

)
≤
∏
i∈T

P
F∼U

(Xi = 0). (2)

7

Now we set CL = 100, CT = 8 and CU = 0.95, and have

≤ P
F∼Dr

(
X ≥ 1

4
(k · CL · (1− CU)− 3k − 10)

)
≤ P
F∼Dr

(
X ≥ k

4

)
≤ P
F∼Dr

(∑
i∈S

(Xi − EXi) ≥
k

8

)

≤ P
F∼Dr

((∑
i∈S

(Xi − EXi)

)r
≥
(
k

8

)r)

≤
EF∼Dr

(∑
i∈S(Xi − EXi)

)r
(k/8)r

≤
EF∼U

(∑
i∈S(Xi − EXi)

)r
+ (2|S|)r/nr

(k/8)r
. (3)

Thus, it suffices to upper bound the r-th moment of Xi−EXi when F is a uniformly random permutation.
We will first apply the following generalized Chernoff bound to upper bound the tail probability.

Theorem 4 ([PS97, IK10]). Let X be the sum of n Boolean random variables X1, . . . , Xn. Suppose that
there are 0 ≤ δi ≤ 1, for 1 ≤ i ≤ n, for all T ⊂ [n],

P(∧i∈TXi = 1) ≤
∏
i∈T

δi.

Let δ = (1/n)
∑n
i=1 δi. Then for any γ > δ,

P(X ≥ γn) ≤ e−nD(γ||δ),

where D(γ||δ) = γ ln(γ/δ) + (1− γ) ln((1− γ)/(1− δ)).

We can also prove the following inequalities about D(γ||δ) (see Appendix C):

• D(δ(1 + ε)||δ) ≥ 1
3ε

2δ for 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1/(1 + ε);

• D(δ(1 + ε)||δ) ≥ 1
3εδ for ε > 1 and 0 ≤ δ ≤ 1/(1 + ε);

• D((1− δ(1− ε))||1− δ) ≥ 1
2ε

2δ for 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1.

Now we apply Theorem 4 to (Xi)i∈S and (1−Xi)i∈S respectively. By Equation (1) and (2), we have for
any 0 < c < 1,

P
F∼U

(X ≥ (1 + c) · EX) ≤ e− 1
3 c

2 EX ,

and
P

F∼U
(X ≤ (1− c) · EX) ≤ e− 1

2 c
2 EX ,

for any c > 1,
P

F∼U
(X ≥ (1 + c) · EX) ≤ e− 1

3 cEX .

8

Now we are ready to upper bound the r-th moment:

E
F∼U

(X − EX)
r

=

∫ ∞
0

P(|X − EX| ≥ x) · rxr−1dx

= (EX)r ·
∫ ∞

0

P(|X − EX| ≥ c · EX) · rcr−1dc

≤ (EX)r ·
(∫ 1

0

e−
1
3 c

2 EX · rcr−1dc

+

∫ ∞
1

e−
1
3 cEX · rcr−1dc

+

∫ 1

0

e−
1
2 c

2 EX · rcr−1dc

)
.

Similar to the moments of Gaussian distributions and exponential distributions [Kri06], we have∫ 1

0

e−
1
3 c

2 EX · rcr−1dc < r ·
∫ ∞

0

e−
1
3 c

2 EX · cr−1dc

=
r!!

(2EX/3)r/2

for any even r; we also have ∫ ∞
1

e−
1
3 cEX · rcr−1dc < r ·

∫ ∞
0

e−
1
3 cEX · cr−1dc

=
r!

(EX/3)r
;

and similarly, ∫ 1

0

e−
1
2 c

2 EX · rcr−1dc <
r!!

(EX)r/2
.

Thus, for any even constant r, we have

E
F∼U

(X − EX)
r
< O(kr/2).

Therefore, by Equation (3), the probability that the data structure runs a O(k)-time conversion algorithm
is at most O(k−r/2), i.e., the running time on this operation is O(1) in expectation and with high probability.1

Theorem 5. There is a Las Vegas randomized implementation of the fillable arrays with one bit of redun-
dancy such that for any sequence of operations, each read/fill operation takes constant time in worst case,
and each write operation takes constant time in expectation and with high probability, assuming it has oracle
access to a permutation F drawn from a 1/nr-almost r-wise independent family of permutations over [n].

As described in Section A.1, for any integer r > 0, the permutation F from an 1/nr-almost r-wise
independent family can be represented in O(r2 lg n) bits of memory, sampled in poly(lg n) time, and evaluated
in O(r2) time.

Acknowledgments

We thank Omer Reingold explaining to us the construction in Appendix A.1, and for allowing us to include
a description of this construction.

1Note that we do not have to sum over all k, since each operation has a fixed k.

9

References

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004.

[HK17] Torben Hagerup and Frank Kammer. On-the-fly array initialization in less space. In Proceedings
of the 28th International Symposium on Algorithms and Computation (ISAAC), pages 44:1–44:12,
2017.

[Hux72] Martin N. Huxley. On the difference between consecutive primes. Inventiones Mathematicae, pages
164–170, 1972.

[IK10] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds. In
Proceedings of the 14th International Workshop on Randomization and Computation (RANDOM),
pages 617–631, 2010.

[KG17] Takashi Katoh and Keisuke Goto. In-place initializable arrays. CoRR, abs/1709.08900, 2017.

[KNR09] Eyal Kaplan, Moni Naor, and Omer Reingold. Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica, 55(1):113–133, 2009.

[Kri06] K. Krishnamoorthy. Handbook of Statistical Distributions with Applications. Chaman & Hill/CRC,
2006.

[Nav13] Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document retrieval on
sequences. ACM Comput. Surv., 46(4):52:1–52:47, 2013.

[NR99] Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-rackoff
revisited. J. Cryptology, 12(1):29–66, 1999.

[Ora17] Oracle. Java language specification, 2017. Last accessed 9/25/2017. https://docs.oracle.com/
javase/specs/jls/se7/html/jls-4.html#jls-4.12.5.

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an ex-
tension of the Chernoff–Hoeffding bounds. SIAM J. Comput., 26(2):350–368, April 1997.

A Appendix

A.1 Almost k-wise independent permutations for all n

We here describe how to obtain an O(1/nc)-almost k-wise independent permutation family Π over [n] of
size poly(n) for any n larger than some constant, such that given an O(ck lg n)-bit description of a π drawn
randomly from Π we can compute π(i) for any i in O(ck) time. Here c > 0 and k ≥ 2 may be arbitrary
integers. This construction is used in Section 3.

The starting point of the construction of Π is a 2k2/|F|-almost k-wise independent permutation family
over F2 for any field F [NR99]. For any element x = (x1, x2) ∈ F2, define x|L = x1 and x|R = x2. For any
function f : F→ F, define permutation Df over F2 as

Df (x1, x2) := (x2, x1 + f(x2)).

Theorem 6 ([NR99]). Let h1, h2 be two independent random permutations over F2 such that for every
x 6= y, P[h1(x)|R = h1(y)|R] ≤ |F|−1 and P[h2(x)|L = h2(y)|L] ≤ |F|−1. Let f1, f2 : F → F be two functions
sampled independently from a family of k-wise independent functions. Then S = h−1

2 ◦Df2 ◦Df1 ◦ h1 is a
2k2/|F|-almost k-wise independent permutation.

10

The set {x 7→
∑k−1
i=0 aix

i : ai ∈ F for i ∈ [k]} is a standard construction of a family of k-wise independent
functions. Each function in this family has O(k lg |F|) description size and takes O(k) field operations to
evaluate. It is also not hard to construct families of permutations for h1 and h2:

h1(x1, x2) := (x1, a1x1 + b1x2)

and
h2(x1, x2) := (a2x1 + b2x2, x2)

for a1, a2, b1, b2 ∈ F and b1, b2 6= 0 chosen uniformly at random. Both functions have O(lg |F|) description
size and take O(1) field operations to evaluate.

To generalize the above construction to any set size n, we make use of the following theorem.

Theorem 7 ([Hux72]). For any θ > 7/12 there exists a constant n0 > 0 such that for all n > n0, the
interval [n− nθ, n] contains Θ(nθ/ lg n) prime numbers.

We first describe how to extend the construction to an O(1/n(1−θ)/2)-almost k-wise independent family
over permutations on [n] for arbitrary integer n > n2

0 (for smaller n, one can just use the family of all
permutations on [n], which has constant size).

Pick a prime p ∈ [n1/2−nθ/2, n1/2], which we know exists by Theorem 7. Then π ∼ Π will be specified by
picking a random permutation S according to Theorem 6 (setting F = Fp) and an integer r ∈ {0, . . . , n− 1}
uniformly at random. By abuse of notation, we may also treat S as a random permutation over the set [p2].
Define shiftr(x) = x+ r mod n. Then for x ∈ [n] we define

π(x) =

{
shiftr(x), if shiftr(x) ≥ p2

S(shiftr(x)), otherwise.

It is clear that any such π is a permutation on [n] and that π(x) can be evaluated in worst case time O(1), and
furthermore a simple computation shows that Π is O(n(1+θ)/2/n)-almost k-wise independent by Theorem 6
for any constant k.

In order to decrease δ from n(1+θ)/2/n down to O(1/nc), we use the following theorem of [KNR09].

Theorem 8. [KNR09, Theorem 3.8] For a set of functions F , let F` denote the set of all functions {f1 ◦
f2 · · · f` : f1, . . . , f` ∈ F} so that |F`| = |F|`. Then if Π is a δ-almost k-wise independent permutation
family, then for any integer ` > 1, Π` is a (1

2 (2δ)`)-almost k-wise independent permutation family.

Thus to decrease δ, we can apply Theorem 8 with ` = d2c/(1−θ)e = O(c). The seed length and evaluation
time to compute π drawn randomly from Π` then both increase by only O(c) factors.

Remark 9. Note that to apply the above construction, we need to find a prime p ∈ [n1/2 − nθ/2, n1/2]
during pre-processing. By Theorem 7, there are many such primes p in this interval. In particular, we
succeed in finding a prime with probability Ω(1/ lg n) by picking a random p in this interval, which we can
then test for primality in poly(lg n) deterministically [AKS04]. Thus we can find this p with a Las Vegas
algorithm in pre-processing in expected time (and even with high probability) poly(lg n).

B Folklore solution with delete

In this subsection, we present an implementation of the folklore data structure for fillable array A of length n
using 3n+ 2 words of space. Moreover, this implementation supports an extra operation delete(n), which
deletes the last (n-th) element in A such that the data structure only uses first 3(n − 1) + 2 words of the
memory after the operation.

The data structure will maintain the following variable/arrays:

• numActive: the number of different elements written since the last fill

11

A[0] B[0] C[0] A[1] B[1] C[1] · · ·

numActive

∆last

Figure 3: Memory layout of the folklore solution.

• ∆last: the value that the last fill sets the array to

• A: the array A

• B: first numActive entries store all elements written since the last fill

• C: pointers to B, i.e., B[C[i]] = i if i is written since the last fill

All three arrays A, B and C has length n. In total, the data structure uses 3n + 2 words of space. To
accomondate the delete operation, the three arrays will be interleaved with each other in memory (see
Figure B).

Now we show how to implement the operations:

• To fill the array with ∆, it suffices to set numActive to 0, and set ∆last to ∆.

• To read A[i], we first check if C[i] ≤ numActive. If C[i] > numActive, we know i-th entry must have
not been written since the last fill. In this case, we return ∆last. If C[i] ≤ numActive, we then check
if B[C[i]] = i. If B[C[i]] = i, we return A[i]. Otherwise, we return ∆last.

• To write ∆ to A[i], we first set A[i] to ∆. Next, we check if this is the first we write to A[i] since the last
fill in the same way as we read A[i]: check if C[i] > numActive or B[C[i]] 6= i. If it is, we increment
numActive by one, set B[numActive] to i and set C[i] to numActive.

• To delete the last element, we first check if it has been written since the last fill. If it has not,
we do not have to do anything, and just ignore the last three words from now on. Otherwise, we
need to delete the record of n in B. This can be done by moving B[numActive] to B[C[n]] and setting
C[B[numActive]] to C[n].

C Inequalities about D(γ||δ)
In this section, we prove the following three inequalities:

1. D(δ(1 + ε)||δ) ≥ 1
3ε

2δ for 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1/(1 + ε);

2. D(δ(1 + ε)||δ) ≥ 1
3εδ for ε > 1 and 0 ≤ δ ≤ 1/(1 + ε);

3. D((1− δ(1− ε))||1− δ) ≥ 1
2ε

2δ for 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1.

Recall that D(γ||δ) = γ ln(γ/δ) + (1− γ) ln((1− γ)/(1− δ)).

1. By definition, D(δ(1 + ε)||δ) = δ(1 + ε) ln(1 + ε) + (1− δ(1 + ε)) ln 1−δ(1+ε)
1−δ . When ε = 0, both sides are

equal to 0. Now take the derivative with respect to ε and divide by δ on both sides, it suffices to show

ln(1 + ε)− ln
1− δ(1 + ε)

1− δ
≥ 2

3
ε

when 0 ≤ ε ≤ 1 and 0 ≤ δ < 1/(1 + ε). The left-hand side is at least ln(1 + ε), and it suffices to
prove ln(1 + ε) ≥ 2

3ε. This is true, since ln(1 + ε) − 2
3ε is concave, and ln(1 + 0) − 2

3 · 0 = 0 and
ln(1 + 1)− 2

3 · 1 > 0.

12

2. By the first bullet, the left-hand side is larger when ε = 1. Take the derivative with respect to ε and
divide by δ on both sides, it suffices to show

ln(1 + ε)− ln
1− δ(1 + ε)

1− δ
≥ 1

3

when ε > 1 and 0 ≤ δ < 1/(1 + ε). This is true, since the left-hand side is at least ln(1 + ε) ≥ ln 2 > 1
3 .

3. By definition, we have

D((1− δ(1− ε))||1− δ) = (1− δ(1− ε)) ln
1− δ(1− ε)

1− δ
+ δ(1− ε) ln(1− ε).

When ε = 0, both sides are equal to 0. Take the derivative with respect to ε and divide by δ on both
sides, it suffices to show

ln
1− δ(1− ε)

1− δ
− ln(1− ε) ≥ ε

when 0 ≤ ε, δ < 1. The left-hand side is at least − ln(1 − ε). When ε = 0, both sides are 0. Take the
derivative with respect to ε again, it suffices to show

1

1− ε
≥ 1,

which obviously holds.

13

