
Cell-Probe Lower Bounds for Dynamic Problems
via a New Communication Model

Huacheng Yu
Stanford University

353 Serra Mall
Stanford, CA, USA

yuhch123@gmail.com

ABSTRACT
In this paper, we develop a new communication model to prove a
data structure lower bound for the dynamic interval union problem.
The problem is to maintain a multiset of intervals I over [0, n] with
integer coordinates, supporting the following operations:

• insert(a, b): add an interval [a, b] to I, provided that
a and b are integers in [0, n];

• delete(a, b): delete an (existing) interval [a, b] from I;

• query(): return the total length of the union of all intervals
in I.

It is related to the two-dimensional case of Klee’s measure prob-
lem. We prove that there is a distribution over sequences of oper-
ations with O(n) insertions and deletions, and O(n0.01) queries,
for which any data structure with any constant error probability re-
quires Ω(n logn) time in expectation. Interestingly, we use the
sparse set disjointness protocol of Håstad and Wigderson [ToC’07]
to speed up a reduction from a new kind of nondeterministic com-
munication games, for which we prove lower bounds.

For applications, we prove lower bounds for several dynamic
graph problems by reducing them from dynamic interval union.

Categories and Subject Descriptors
E.1 [Data Structures]

General Terms
Algorithms, Theory

Keywords
Klee’s measure problem, lower bound, cell-probe model

1. INTRODUCTION
In computational geometry, Klee’s measure problem [14, 4, 5]

is the following: given N rectangular ranges (axis-parallel hyper-
rectangles) in d-dimensional space, compute the volume of their
union.

A classic sweep-line algorithm by Bentley [4] solves the d = 2
case inO(N logN) time: consider the line x = x0 with x0 contin-
uously increasing from −∞ to∞; the length of the intersection of
this line and the union may change only when it reaches the left or
right border of a rectangle. Bentley’s algorithm uses a segment tree
to dynamically maintain the length of the intersection efficiently.
Surprisingly, this is the best known algorithm even for an intrigu-
ing special case: all coordinates are integers within a polynomially
bounded range [0, n]. In this case, the segment tree in Bentley’s al-
gorithm is essentially used to solve the following dynamic problem,
which we call the dynamic interval union problem:

Maintain a multiset I of intervals with integer coordinates in
[0, n], supporting the following operations:

• insert(a, b): add an interval [a, b] to I, provided that
a and b are integers in [0, n];

• delete(a, b): delete an (existing) interval [a, b] from I;

• query(): return the total length of the union of all intervals
in I.

The segment tree data structure solves this dynamic problem
with O(logn) insertion and deletion time, and O(1) query time.
For the application to 2D Klee’s measure problem, there are N
insertions, N deletions and N queries to the data structure. A nat-
ural question to ask here is whether we can improve the insertion
and deletion time. However, there is a very simple reduction from
the partial sum problem showing that the slowest operation among
insertion, deletion and query needs to take Ω(logn) time (see Ap-
pendix A). Moreover, Pǎtraşcu and Demaine [21, 23] showed an
optimal trade-off between update and query time for partial sum,
which can be carried over via the reduction to show that if both in-
sertion and deletion need to be done in O(ε logn) time, then query
has to take Ω(21/ε logn) time.

This seems to be the end of the story. However, in fact, there is
no o(N logN) time algorithm known even for n = N0.51.1 When
we apply the above dynamic problem to this case, there will be N
insertions, N deletions, and only n = N0.51 queries! There will
be far fewer queries than insertions and deletions. The argument
above does not rule out the possibility of having a dynamic interval
union data structure with o(logn) update time, and O(n0.9) query
time. It is even possible to have a data structure withO(1) insertion
1There is a simple linear time algorithm for the n ≤

√
N case.

and deletion time, and O(n0.1) query time. Having such a data
structure would give a linear time algorithm for the above special
case of Klee’s measure problem, making a breakthrough on this
40-year-old problem.

Unfortunately, we show that such data structure does not exist,
even if we allow randomization, amortization and constant error
probability.

THEOREM 1. For any ε > 0 and integer n ≥ 1, there is a
distribution over operation sequences to the dynamic interval union
problem over [0, n], with O(n1−ε) insertions and deletions, and
O(nε) queries, for which any data structure that is correct on all
queries with probability at least 95% must spend Ω(ε2n1−ε logn)
probes in expectation, in the cell-probe model with word size w =
Θ(logn).

We define the cell-probe model in Section 1.1.
It is an easy exercise to show that we can use the hard distri-

bution from the theorem to obtain a new hard distribution with
Θ(n1/0.51) = Θ(N) insertions and deletions and n queries, such
that any data structure requires Ω(N logN) time on it. This lower
bound rules out the possibility of using the plain-vanilla sweep-line
algorithm with a sophisticated data structure to solve 2D Klee’s
measure problem faster than the classic algorithm. As a corollary,
the theorem also implies that o(logn) insertion and deletion time
leads to an almost linear lower bound on query time.

The type of running time considered by Theorem 1 is more gen-
eral than the amortized time. Having amortized time t(n) usually
means that the first k operations take at most k · t(n) time for every
k, but here, even if we fix the number of operations in advance, and
the data structure is allowed to use heavy preprocessing in order to
optimize the total running time, there is still no way to break the
lower bound. This notion of running time is usually what we care
about, when applying a data structure to solve some computational
problem. The only catch is that the data structure is online: it must
output an answer before seeing the next operation, which makes it
different from an offline computational problem. Moreover, using
similar techniques, we can prove the same lower bound for data
structures that correctly answer a constant fraction of the queries in
expectation. The proof is omitted in this version.

THEOREM 1′. For any ε > 0 and integer n ≥ 1, there is a
distribution over operation sequences to the dynamic interval union
problem over [0, n], with O(n1−ε) insertions and deletions, and
O(nε) queries, for which any data structure with expected fraction
of correct answers at least δ must spend Ωδ(ε

2n1−ε logn) probes
in expectation for any δ ∈ (0, 1], in the cell-probe model with word
size Θ(logn).

We prove Theorem 1 via a reduction from a more accessible in-
termediate problem called batch partial sum, for which we prove a
lower bound directly. The batch partial sum problem asks to main-
tain K sequences (Ai,j)i∈[K],j∈[B] of length B over a finite field
Fp, supporting the following operations to the sequences:2

• update(j, v): for all i ∈ [K], set Ai,ji to value vi;

• query(j): return
∑
i∈[K]

∑
l≤ji Ai,l,

provided that j and v are vectors of length K, and ji ∈ [B], vi ∈
Fp. Basically, we need to maintain K independent copies of the
partial sum problem, except that when answering queries, instead
of returning K individual prefix sums, we only need to return the
sum of these K numbers.
2In this paper, [K] stands for the set {1, 2, . . . ,K}.

THEOREM 2. For large enough integers K,B, p with p ≥ B,
there is a distribution over operation sequences to the batch partial
sum problem with O(B) updates and O(B) queries, for which any
data structure that is correct on all queries with probability≥ 95%
must spend Ω(KB log2 B/(w+ logB)) probes in expectation, in
the cell-probe model with word size w.

Note that whenK,B, p are polynomials in n and w = Θ(logn)
for some n, the lower bound becomes Ω(K logn) per operation.
Therefore, in this case, the best thing to do is just to use K par-
tial sum data structures to maintain theK sequences independently.
However, the techniques we use in the proof are very different from
the proof of the lower bound for partial sum by Pǎtraşcu and De-
maine [22]. See Section 1.3 for an overview.

Moreover, we also apply our main theorem to prove lower bounds
for three dynamic graph problems: dynamic number of strongly
connected components (or dynamic #SCC), dynamic weighted s-t
shortest path, and dynamic planar s-t min-cost flow (see Appendix B
for formal definitions). We prove that for these problems, under
constant error probability, if we spend o(logn) update time, then
queries must take n1−o(1) time. Note that a previous result of
Pǎtraşcu and Thorup [24] also implies the same trade-off for the
first two problems under zero error.

COROLLARY 2. For the following three dynamic graph prob-
lems:

(a) dynamic number of strongly connected components,3

(b) dynamic planar s-t min-cost flow,4

(c) dynamic weight s-t shortest path,5

any data structure with amortized expected update time o(logn),
and error probability ≤ 5% under polynomially many operations
must have amortized expected query time n1−o(1).

1.1 Cell-Probe Model
The cell-probe model of Yao [30] is a strong non-uniform com-

putational model for data structures. A data structure in the cell-
probe model has access to a set of memory cells. Each cell can
store w bits. The set of cells is indexed by w-bit integers, i.e., the
address is in [2w]. w is usually set to be Ω(logn), where n is the
amount of information the data structure needs to handle. 6

To access the memory, the data structure can probe a cell, which
means that it can look at the content of the cell, and then optionally
overwrite it with a new value. During an operation, the data struc-
ture based on the parameters of the operation decides which cell
to probe the first, then based on the parameters and the informa-
tion from the first probe, decides the cell to probe next, etc. Each
cell-probe (including both the address and the new value) the data
structure performs may be an arbitrary function of the parameters
of the operation and the contents in the cells previously probed dur-
ing this operation. If the operation is a query, in the end, the data
structure returns an answer based on the parameters and the con-
tents in all cells probed during this operation. The update (query
3It is to dynamically maintain the number of strongly connected
components of a directed graph, under edge insertions and dele-
tions.
4It is to maintain s-t min-cost flow on a planar graph with fixed
planar embedding, under capacity updates.
5It is to maintain s-t shortest path on a weighted directed graph,
under edge insertions and deletions.
6n is usually a polynomial in the number of operations.

resp.) time is defined to be the number of cells probed during a(n)
update (query resp.) operation.

The cell-probe model only counts the number of memory ac-
cesses during each operation, making itself a strong model, e.g.,
it subsumes the word-RAM model. Thus, data structure lower
bounds proved in this model will hold in various other settings as
well.

1.2 Previous Data Structure Lower Bounds
In 1989, Fredman and Saks introduced the chronogram method

to prove an Ω(logn/ log logn) lower bound for partial sum in their
seminal paper [10]. The lower bound is tight for maintaining a se-
quence of {0, 1}s. Ω(logn/ log logn) was also the highest lower
bound proved for any explicit data structure problem for a long
time.

In 2004, Pǎtraşcu and Demaine [22] broke this logn/ log logn
barrier using a new approach: the information transfer tree tech-
nique. They proved an Ω(logn) lower bound for the partial sum
problem with numbers in [n]. Moreover, using this new technique,
they proved an update-query time trade-off of tq log tu

tq
= Ω(logn),

where tu is the update time and tq is the query time, while earlier
approaches can only prove tq log tu = Ω(logn). Later on, the
information transfer tree technique has been used to prove several
other data structure lower bounds [21, 9, 7, 8].

In 2012, there was a breakthrough by Larsen [16] on dynamic
data structure lower bounds. Larsen combined the chronogram
method with the cell-sampling technique of Panigraphy, Talwar and
Wieder [18], and proved an Ω((logn/ log logn)2) lower bound
for the 2D orthogonal range counting problem. This lower bound
is also the highest lower bound proved for any explicit dynamic
data structure problem so far. Similar approaches were also applied
later [17, 6].

All above techniques can only be used to prove a relatively smooth
trade-off between update and query time. However, Pǎtraşcu and
Thorup [24] used a new idea to prove a sharp trade-off for the dy-
namic connectivity problem in undirected graphs. They proved that
if one insists on o(logn) insertion and deletion time, query has to
take n1−o(1) time. Besides the sharp trade-off, they also introduced
the simulation by communication games of the data structure. They
first decomposed the entire execution of the data structure on a se-
quence of operations into several communication games. For each
communication game, they showed how to turn a “fast” data struc-
ture into an efficient communication protocol. Then they proved
a communication lower bound for each game. Summing all these
lower bounds up establishes a lower bound on the total number of
probes in the entire execution.

Interestingly, Clifford, Grønlund and Larsen [6] used a com-
pletely different approach to prove a sharp trade-off in the opposite
direction. Their result implies that for several dynamic graph prob-
lems (e.g., dynamic directed connectivity and dynamic undirected
shortest path), if a data structure takes o(logn/ log logn) query
time and uses nearly linear space, it must take n1−o(1) update time.

Kaplan, Zamir and Zwick [13] also proved a sharp trade-off for
data structures supporting priority queue operations in the compari-
son model: if both insert and delete can be done in amortized
o(logn) time, then find-minmust take n1−o(1) time. In general,
a dynamic interval union data structure can be used to implement a
priority queue over [n]: present an element x by interval [x, n], the
length of the union tells us n minus the minimum value. Thus, a
similar result in the cell-probe model (and allowing constant error
probability) would imply our Theorem 1. However, it seems non-
trivial to generalize their proof to the cell-probe model, as proving
lower bounds in different models requires different techniques.

1.3 Technical Contributions
Although the batch partial sum problem is a natural generaliza-

tion of the partial sum problem, it seems hopeless to apply the infor-
mation transfer technique directly to solve our problem. It is due to
a critical difference between the two problems: in partial sum, the
lower bound proved roughly equals to the number of bits in the an-
swer to a query (logn); while in batch partial sum, the lower bound
we aim at is much larger than the size of an answer. The proof in
[22] heavily relies on the fact that in partial sum problem, after fix-
ing the values in a lot of entries in the sequence, as long as there is
still one summand in the prefix sum left uniformly at random, the
sum will also be uniformly at random. Therefore, the data structure
needs to learn a certain amount of information from the memory to
figure out the answers, even if we fix many updates. If we apply
the same technique to batch partial sum, as an answer still contains
only logn bits of information, we will again get a lower bound of
Ω(logn) per operation, while we aim at Ω(K logn). The cell-
sampling technique faces a similar problem. It can only be applied
when the number of bits used to describe a query is comparable
with the number of bits used in an answer.

The main idea of our proof is to use the simulation by commu-
nication games technique mentioned in Section 1.2. After decom-
posing into communication games, there are two things to prove:
a “fast” data structure implies an efficient communication proto-
col, and no efficient communication protocol exists. The choice of
communication model for the game is crucial. If we use a too weak
communication model, it would be hard to take advantage of the
model to design an efficient protocol given a fast data structure. If
the communication model we use is too strong, it might be difficult
or even impossible to prove a communication lower bound, espe-
cially when small chance of error is allowed. Pǎtraşcu and Thorup
gave two different simulations (transforming a data structure into a
communication protocol): one in the deterministic setting, the other
in the nondeterministic setting. The deterministic simulation itself
is not efficient enough to achieve our lower bound. The nonde-
terministic model, in our case of allowing error, would correspond
to the MAcc model [3] (or MAcc ∩ coMAcc to be more precise).
Proving a lower bound in this model is usually very difficult. In
our application, the communication problem we want to prove a
lower bound for is closely related to the inner product problem.
Namely, Alice and Bob get n-dimensional binary vectors x and y
respectively and the goal is to compute the inner product 〈x, y〉 over
F2. There is a clever MAcc ∩ coMAcc protocol by Aaronson and
Wigderson [1] which solves the inner product problem with only
Õ(
√
n) bits of communication. It costs much less than one would

expect, which suggests that it might even be impossible to prove a
desired (linear) lower bound for our problem in this strong model.

To overcome this obstacle, we define a new communication model
(see Section 3 for the definition and a comparison with other com-
munication models), which is weaker than MAcc ∩ coMAcc, so that
we are capable of proving a desired communication lower bound.
Moreover, we will be able to achieve the same performance of
transforming data structure into protocol as in the nondeterminis-
tic model. Interestingly, in order to have less requirement on the
power of communication model, we use an elegant protocol for
computing sparse set disjointness by Håstad and Wigderson [12] as
a subroutine:

THEOREM 3 (HÅSTAD AND WIGDERSON). In the model of
common randomness, R0(DISJ

n
k) = O(k) for instances of disjoint

sets and R0(DISJ
n
k) = O(k + logn) for non-disjoint sets.

DISJnk is the following problem: Alice and Bob get sets X and
Y of size k over a universe [n] respectively, their goal is to com-

pute whether the two sets are disjoint. R0(DISJ
n
k) stands for the

minimum expected communication cost by any zero-error protocol
which computes DISJnk .

As we will see later, this new communication model has the
power of nondeterminism. It is also restricted enough so that we
can apply the classic techniques for proving randomized commu-
nication lower bounds. Using this model, we prove the first sharp
update-query trade-off under constant error probability.

1.4 Overview
The remainder of this paper is organized as follows. In Section 3,

we present the reduction from batch partial sum to dynamic inter-
val union, and define the new communication model and the new
simulation. In Section 4, we prove a communication lower bound
in this new model, which completes the proof of our main result.
In Section 5, we apply the main theorem to several dynamic graph
problems. Finally, we conclude with some remarks in Section 6.

2. PRELIMINARIES
In the deterministic communication complexity setting [29], two

players Alice and Bob receive inputs x ∈ X and y ∈ Y respec-
tively. Their goal is to collaboratively evaluate a function f on
their joint input (x, y). The players send bits to each other accord-
ing to some predefined protocol. At each step, the protocol must
specify which player sends the next bit based on the transcript (the
bits sent so far). The sender decides to send a bit 0 or 1 based on the
transcript and his/her input. It the end, the answer f(x, y) can only
depend on the entire transcript. In the setting with public random-
ness, the players have access to a common random binary string of
infinite length. Besides the sender’s input and the transcript, each
message may also depend on these random bits. The players have
infinite computational power. The cost of a protocol is the number
of bits communicated, i.e., the length of the transcript.

DEFINITION 1. For function f with domain X ×Y , the matrix
M(f) is a |X | × |Y| matrix, with rows indexed by X and columns
indexed by Y . The entry in row x and column y is the function
value f(x, y).

DEFINITION 2. A combinatorial rectangle or simply a rectan-
gle in M(f) is a set X × Y for X ⊆ X and Y ⊆ Y .

DEFINITION 3. A monochromatic rectangle in M(f) is a com-
binatorial rectangle in which the function value does not vary.

DEFINITION 4. Let µ be a distribution over X × Y . A α-
monochromatic rectangle under µ is a combinatorial rectangleX×
Y such that there is a function value v, αµ(X×Y) ≤ µ((X×Y)∩
f−1(v)), i.e., a combinatorial rectangle with at least α-fraction of
the input pairs having the same function value.

A classic result [15] in communication complexity is that every
protocol in the deterministic setting with worst-case communica-
tion costC induces a partitioning ofM(f) into 2C monochromatic
rectangles. Each rectangle corresponds to one possible transcript,
i.e., when the players are given an input pair in this rectangle,
the corresponding transcript will be transmitted. A similar result
shows that every randomized protocol with low error probability
induces a partitioning into rectangles, such that most of the rect-
angles are nearly monochromatic (α-monochromatic with α close
to 1). Proving there is no large monochromatic rectangle or nearly
monochromatic rectangle in M(f) would imply communication
lower bounds in deterministic or randomized setting respectively.

3. LOWER BOUND FOR DYNAMIC INTER-
VAL UNION

In this session, we will prove our main result, a lower bound for
the dynamic interval union problem, via a reduction from the batch
partial sum problem. Then we present the framework of proving a
lower bound for batch partial sum, and will defer some of its details
to Section 4.

THEOREM 1 (RESTATE). For any ε > 0 and integer n ≥ 1,
there is a distribution over operation sequences to the dynamic
interval union problem over [0, n], with O(n1−ε) insertions and
deletions, and O(nε) queries, for which any data structure that is
correct on all queries with probability at least 95% must spend
Ω(ε2n1−ε logn) probes in expectation, in the cell-probe model
with word size w = Θ(logn).

THEOREM 2 (RESTATE). For large enough integers K,B, p
with p ≥ B, there is a distribution over operation sequences to the
batch partial sum problem with O(B) updates and O(B) queries,
for which any data structure that is correct on all queries with prob-
ability ≥ 95% must spend Ω(KB log2 B/(w + logB)) probes in
expectation, in the cell-probe model with word size w.

Assuming Theorem 2, we can prove Theorem 1 via the follow-
ing reduction. The idea is similar to the proof of Proposition 1 in
Appendix A.

PROOF OF THEOREM 1. Take prime p = Θ(nε), B = Θ(nε)
with B ≤ p, and K = n/Bp = Θ(n1−2ε). We are going to show
that we can solve the batch partial sum problem with this setting of
the parameters given a dynamic interval union data structure over
[0, n]. We first concatenate theK sequences into one long sequence
of length KB, such that Ai,j will be ((i − 1) · B + j)-th number
in the long sequence, and try to maintain the whole sequence using
one dynamic interval union data structure. Then we associate each
number in the long sequence with a segment of length p in [0, n]
such that the k-th number in the long sequence is associated with
[(k − 1) · p, k · p]. We use the length of interval in the associated
segment to indicate the value of the number. That is, we always
maintain the invariant that for k-th number in the long sequence
with non-zero value v, we have exactly one interval [(k−1)·p, (k−
1) · p+ v] intersecting its associated segment.

To set k-th number to a new value v′, if before the operation it
had value v 6= 0, we first call delete((k− 1)p, (k− 1)p+ v) to
reset the number. Then if v′ 6= 0, we call insert((k− 1)p, (k−
1)p + v′) to update its new value to v′. Therefore, as an update
of the batch partial sum problem is just setting K numbers to new
values, it can be implemented using O(K) insertions and deletions
of the dynamic interval union problem, with O(K) extra probes to
determine what the old value was and to record the new value.

To answer query(j), we first insert intervals that correspond to
associated segments of the (ji + 1)-th number to the last number
in sequence i for i ∈ [K], to set everything we are not querying
to be “in the union”, no matter how much they were covered by
intervals before. That is, we insert [((i − 1)B + ji) · p, iB · p]
for each sequence i. Then we do one query, which will return the
sum of all numbers as if each number not in the query was set to p
(or 0 modulo p). This number modulo p is exactly the answer we
want. At last, we do K deletions to remove the temporary intervals
we inserted earlier for this query, and return the answer. There-
fore, every query of batch partial sum can be implemented using
O(K) insertions and deletions, and one query of the dynamic in-
terval union.

Thus, any sequence ofO(B) updates andO(B) queries of batch
partial sum can be implemented using O(KB) = O(n1−ε) inser-
tions and deletions, O(B) = O(nε) queries of dynamic interval
union, and extra O(K) = O(n1−ε) probes. However, by The-
orem 2, there is a hard distribution consisting of O(B) updates
andO(B) queries, which requires Ω(KB log2 B/(w+logB)) =
Ω(ε2n1−ε logn) probes in expectation in the cell-probe model with
word size w = Θ(logn). By the above reduction, this hard dis-
tribution also induces a distribution over operation sequences for
dynamic interval union with desired number of updates, queries
and lower bound on the number of probes. This proves the theo-
rem.

By setting ε =
√
tu/ logn in Theorem 1, we get the following

corollary.

COROLLARY 1. Any dynamic interval union data structure that
answers all queries correctly in a sequence of O(n) operations
with probability ≥ 95% with expected amortized insertion and
deletion time tu and query time tq must have

tq ≥ tun1−
√
tu/ logn.

In particular, tu = o(logn) implies that tq = n1−o(1).

In the following, we are going to prove a lower bound for the
batch partial sum problem. We will first specify a hard distribution
over operation sequences. Then by Yao’s Minimax Principle [28],
it suffices to show that any deterministic data structure that answers
all queries correctly with high probability under this input distribu-
tion must be inefficient. To show this, we will consider a collection
of communication games corresponding to different parts of the op-
eration sequence (different time periods). For each communication
game, if the data structure is fast within the corresponding time
period under certain measure of efficiency, then the game can be
solved with low communication cost. On the other hand, we will
prove communication lower bounds for all these games. Summing
these lower bounds up, we will be able to prove that the entire exe-
cution cannot be efficient.

Hard distribution D. Without loss of generality, assume B is
a power of 2, and B = 2b. The operation sequence will always
have B updates and B queries occurring alternatively: U0, Q0,
. . ., UB−1, QB−1, where the Ut’s are updates, and the Qt’s are
queries. The operations are indexed by integers between 0 andB−
1, or they can be viewed as being indexed by b-bit binary strings
(which corresponds to the binary representation of the integer). We
may use either of these two views in the rest of the paper without
further mention. Let t be a binary string, rev(t) be the string with
t’s bits reversed. For each Ut, we set it to update(j, v) with
ji = rev(t) and vi independently uniformly chosen from Fp for
every i. For each Qt, we set it to query(j) with ji independently
and uniformly chosen from [B]. Different operations are sampled
independently. Indicate this distribution by D.

Communication game. A random sequence of operations sam-
pled from D always has 2B operations with interleaving updates
and queries. Let us fix two consecutive intervals IA, IB of opera-
tions (with IA before IB) in the sequence, e.g., let IA be 10th to
23rd operations, and IB be 24th to 32nd operations. Define the
communication game G(IA, IB) between two players Alice and
Bob to be the following: sample a sequence from D, Alice is given
all operations except for those in IB , Bob is given all operations
except for those in IA, their goal is to cooperatively compute the

answers to all queries in IB by sending messages to each other al-
ternatively.

Given a deterministic batch partial sum data structure, a natural
way to solve this game is to let Bob first simulate the data structure
up to the beginning of IA, then skip all the operations in IA and
try to continue simulating on IB . Every time Bob needs to probe a
cell, if it was probed in IA, he sends a message to Alice asking for
the new value, otherwise he knows exactly what is in the cell from
his own simulation. The challenge for Bob is to figure out which
cells were probed. Our main idea is to introduce a prover Merlin,
who knows both Alice and Bob’s inputs. Merlin will tell them this
information in a unique and succinct way. Moreover, the players
will be able to verify whether the message from Merlin is exactly
what they expect, and will be able to solve the task efficiently if it
is. This motivates the following definition of a new communication
model.

Communication modelM. Draw an input pair (x, y) from a
known distribution. Alice is given x, Bob is given y and Merlin is
given both x and y. Their goal is to compute some function f(x, y).
As part of the communication protocol, the players must specify a
unique string Z(x, y) for every possible input pair, which is the
message Merlin is supposed to send. A communication procedure
shall consist of the following four stages:

1. Merlin sends a message z to Alice and Bob based on his input
pair (x, y);

2. Alice and Bob communicate based on (x, z) and (y, z) as in
the classic communication setting with public randomness.
Merlin does not see the random bits when sending the mes-
sage z;

3. Alice and Bob decide to accept or reject;

4. if the players accept in Stage 3, they return a value v.

In this model, we say a protocol computes function f with error
ε and communication cost C, if

1. Alice and Bob accept in Stage 3 if and only if Merlin sends
what he is supposed to send, i.e., z = Z(x, y) (with proba-
bility 1),

2. when z = Z(x, y), the value v they return equals to f(x, y)
with probability≥ 1−ε over the input distribution and public
randomness,

3. when z = Z(x, y), the expected number of bits communi-
cated between the three players in Stage 1 and 2 is no more
than C over the input distribution and public randomness.

Remark. The public randomness used in Stage 2 does not help the
players in general. Nevertheless, we still keep it in the definition
for the sake of neatness of our proof.
Z(x, y) can be viewed as a question that the players want to ask

Merlin about their joint input. One can potentially design more ef-
ficient protocols in this model than in the classic communication
model if verifying the answer to this question is easier than com-
puting it.

Comparison with other communication models. One cru-
cial difference between popular nondeterministic models (for ex-
ample, NPcc ∩ coNPcc, MAcc ∩ coMAcc) and our new model is
the uniqueness of the certificate Z. In the classic nondetermin-
istic models, the protocol must satisfy that the function value is

1 (or is 0) if and only there is a certificate that makes the play-
ers accept (with high probability). It is possible that some inputs
have multiple such certificates. In terms of proving communica-
tion lower bound by the rectangle argument, multiple certificates
correspond to a covering of the communication matrix by rectan-
gles, while unique certificate corresponds to a partitioning of the
matrix. When error is allowed in the protocol, partitioning of the
communication matrix into rectangles allows us to “distribute” the
error into rectangles, and concludes that most rectangles must be
nearly monochromatic. However, this argument does not hold if it
is a covering, because error part of the matrix may appear in many
different rectangles. It is possible that the overall error probability
is low, but every rectangle has a large error portion, thus is hard to
prove a lower bound in this way.

Among all communication models people have studied, the one
that is closest to our model is perhaps UPcc ∩ coUPcc [27, 11].
UPcc is the ambiguous version of NPcc, i.e., the function value is
1 if and only if there is a unique certificate. coNPcc is defined
in a similar way. One major difference between UPcc ∩ coUPcc

and the new model is that our model allows error, but in a very
specific way. They players can always tell whether Merlin is lying
(no error in this part!), but when they decide to accept and output
a value, the output can be wrong with small probability. In some
sense, this corresponds to that the players can always simulate the
data structure perfectly, but the data structure itself might be wrong,
which leads to an incorrect output. There are also several other
insignificant differences. For example, we work with a fixed input
distribution, we do not restrict to binary functions, etc.

With respect to this communication model, on the one hand,
we can show that given a “good” batch partial sum data struc-
ture, we can solve the communication game efficiently (Lemma 1).
On the other hand, we prove a communication lower bound for it
(Lemma 2). Combining these two lemmas, we conclude that no
“good” data structure exists.

LEMMA 1. Given a deterministic batch partial sum data struc-
ture for the cell-probe model with word size w that is correct on all
queries in a random operation sequence drawn from D with prob-
ability ≥ 90%, we can solve the communication game G(IA, IB)
with error 0.1 and cost

O

(
E
D

[|PA|+ |PB |+ |PA ∩ PB | · w]

)
in model M, where PA (PB resp.) is the (random) set of cells
probed in time period IA (IB resp.) by the data structure.

PROOF. We prove the lemma by showing the following protocol
is efficient in terms of PA and PB .

Step 1: (Merlin sends the key information)

Merlin first simulates the data structure up to the begin-
ning of IB , which is also the end of IA, and records the set
PA, i.e., all the cells that were probed in time period IA.
Then Merlin continues his simulation on the operations in
IB . In the meanwhile, every time he probes a memory
cell, he checks whether this cell was probed in IB before
and whether it was probed in IA (in set PA). If this is the
first time probing this cell since the beginning of IB , Mer-
lin will send one bit to Alice and Bob. He sends “1” if
the cell was probed in IA, and sends “0” otherwise. Basi-
cally, Merlin sends one bit for every cell in PB indicating
whether it is also in PA. These bits are sent in the chrono-
logical order of their first probes in IB .

Step 2: (Alice and Bob simulate the data structure to accomplish
the task)

Alice simulates the data structure up to the beginning of
IB , and records PA. Since Bob does not have any infor-
mation about operations in IA, he instead simulates up to
the beginning of IA, then tries to skip IA and simulate the
operations in IB directly. Of course, the memory state Bob
holds might be very different from what it should look like
at the beginning of IB . But with the help of Merlin’s mes-
sage, Bob will be able to figure out the difference.

As Bob is simulating the data structure, every time he needs
to probe a cell, he first checks if this is the first time probing
this cell since the beginning of IB . If it is not, Bob knows
its content from the latest probe to it. Otherwise, he looks
at the next bit of Merlin’s message. If it is a “0”, Merlin
is claiming that this cell was not probed in IA. Thus, its
content has not been changed since the beginning of IA.
Bob has the information in his own copy of memory. If it
is a “1”, Bob sends the address of this cell to Alice, Alice
will send back its content. At the same time, Alice checks
if the cell was actually probed in IA. If not, they report
“Merlin is cheating” (they reject), and abort the protocol.
At last, Bob updates this cell in his own copy of memory,
and records that it has been probed in IB .

If there are no more bits left in Merlin’s message when Bob
needs to look at the next bit, or there are still unread bits
when Bob has finished the simulation, the players reject.

Step 3: (Players verify that Merlin is truthful)

They are going to check if there is any memory cell in PA
but Bob does not ask for its content during the simulation.
Alice generates the set PA. Bob generates the set of cells
that are probed in IB in Step 2, but Merlin claims that they
are not in PA (and thus did not ask Alice for the contents).
They check if these two sets of cells are disjoint (all cells
that Merlin claims to be not probed in IA are actually not)
using the zero-error sparse set disjointness protocol in The-
orem 3 of Håstad and Wigderson. If the two sets intersect,
they report “Merlin is cheating” (reject), otherwise they re-
port “Merlin is truthful” (accept) and Bob returns the an-
swers he has computed for all queries in IB .

Step 1 above describes what Merlin is supposed to do, and thus
defines Z(x, y). The following shows that the above protocol is a
valid protocol in model M, and solves the communication game
efficiently.

1. If Merlin tells the truth (z = Z(x, y)), it is not hard to see
that the players will always accept. If z is a prefix of Z(x, y)
or Z(x, y) is a prefix of z, Bob will detect it in Step 2 and
reject. Otherwise let the i-th bit be the first bit that z and
Z(x, y) differ. As the first i − 1 bits are the same in z and
Z(x, y), Bob will correctly simulate the data structure up to
that point, right before a probe that causes Bob to read the
i-th bit of z. Thus the cell probed by the data structure cor-
responding to the i-th bit will be the same in Bob’s simula-
tion and in the actual execution. If Zi(x, y) = 0, zi = 1,
the cell is not probed in IA but Merlin claims it is. The
players can detect the mistake and will reject in Step 2. If
Zi(x, y) = 1, zi = 0, Merlin claims the cell is not probed
in IA but it is. In this case, the cell will belong to both Al-
ice’s and Bob’s sets in Step 3. Therefore, the sparse set dis-
jointness protocol will return “intersect”. The players will

reject. This proves that Alice and Bob accept if and only if
z = Z(x, y).

2. When z = Z(x, y), Bob will successfully simulate the data
structure on all operations in IB . As the data structure cor-
rectly answers all queries simultaneously with ≥ 90% prob-
ability, in particular, it answers all queries in IB correctly
with ≥ 90% probability. Thus, the error probability is no
more than 0.1.

3. When z = Z(x, y), Merlin sends exactly one bit for each
cell in PB , |z| = |PB |. In Step 2, the players sendO(w) bits
for every “1” in z, which is O(|PA ∩ PB | ·w) in total. Note
that by definition of the model, we only measure the commu-
nication cost when Merlin follows the protocol. In this case,
the two sets generated in Step 3 must be disjoint. By The-
orem 3, Step 3 costs O(|PA| + |PB |) bits in expectation to
compute sparse set disjointness. Thus, in total the protocol
uses

O

(
E
D

[|PA|+ |PB |+ |PA ∩ PB | · w]

)
bits of communication as we claimed.

This proves the lemma.

Let s be a binary string of length less than b = logB. Define Is
to be the interval consisting operations {Ut, Qt : s is a prefix of t}.
Let G(s) = G(Is0, Is1) be the communication game defined by
Is0 and Is1, e.g., in game G(∅), Alice receives all operations in the
first half of the sequence as her input, and Bob receives the second
half, in game G(0), Alice receives the first quarter and the second
half, Bob receives the second quarter and the second half.

LEMMA 2. For p ≥ B large enough, the communication game
G(s) requires communication cost at least Ω(2−|s|KB(b − |s|))
for any protocol with error 0.1 in modelM, where |s| is the length
of string s.

We will defer the proof of Lemma 2 to Section 4. Using these
two lemmas, we are ready to prove our data structure lower bound.

PROOF OF THEOREM 2. Fix a (randomized) data structure for
batch partial sum problem, which errors with probability no more
than 0.05, and in expectation, probes T cells on an operation se-
quence drawn from D. By Markov’s inequality and union bound,
there is a way to fix the random bits used by the data structure, such
that the error probability is no more than 0.1, and probes at most
3T cells in expectation. In the following, we show that for such
deterministic data structure, T must be large.

For binary string s of length no more than logB, define Ps to
be the (random) set of cells probed by the data structure in Is. For
every s, Lemma 1 and Lemma 2 together implies that

E
D

[|Ps0|+ |Ps1|+ |Ps0 ∩ Ps1| · w] ≥ Ω
(

2−|s|KB(b− |s|)
)
.

Now sum up the two sides over all binary strings s of length at
most b − 1. For the left-hand-side, fix an operation sequence. In
the sum

∑
s(|Ps0| + |Ps1|), every probe will be counted at most

logB times, because the probes during Ut or Qt will be counted
only when s is a prefix of t. In the sum

∑
s |Ps0 ∩ Ps1|, for each

cell in |Ps0∩Ps1|, we refer it to its first probe in Is1. Every probed
will be referred to at most once: consider a probe during Ut or Qt,
assume the last probe to this cell happened during Ut′ or Qt′ for
some t′ < t, this probe will be referred only when s0 is a prefix of
t′ and s1 is a prefix t, i.e., s is the longest common prefix of t′ and

t. Therefore, the left-hand-side sums up to at most 3T ·(w+logB).
The right-hand-side sums up to

∑
s:|s|<b

Ω(KB2−|s|(b− |s|)) =

b−1∑
|s|=0

Ω(KB(b− |s|))

= Ω(KB log2 B)

This implies T ≥ Ω(KB log2 B/(w + logB)), which proves
the theorem.

4. COMMUNICATION LOWER BOUND
Before proving the communication lower bound for the game

G(s) itself, we first do a “clean-up” to make the problem more
accessible. In particular, we show that the communication game
we want to prove a lower bound for is essentially the multi-index
problem.

In the multi-index problem, Alice is given a vector x ∈ FLKp .
Bob is given an L-tuple of vectors y = (y1, y2, . . . , yL), such that
yi ∈ FLKp for each i ∈ [L]. Moreover, if we divide the LK coordi-
nates into K blocks of L coordinates each in the most natural way
(first block is the first L coordinates, second block is the next L
coordinates, etc), each yi will be a {0, 1}-vector with at most one
1 in each block. Their goal is to compute the L inner products over
Fp: f(x, y) = (〈x, y1〉 , 〈x, y2〉 , . . . , 〈x, yL〉). In other words, Al-
ice gets an array, Bob gets L sets of indices of the array (of some
restricted form). They want to figure out together for each set, what
is the sum of elements in the corresponding entries.

Fix a communication gameG(s) defined by IA = Is0 and IB =
Is1. By the way we set up the hard distributionD, every update op-
eration will always update the set of entries, only the values change.
Therefore, the only thing about the sequences Bob does not know is
the values in the entries that are updated in IA. As Bob knows the
values in all other entries right before each query, the players’ ac-
tual goal is to figure out the prefix sums as if there were only those
unknown entries, which can be formulated as an instance of the
multi-index problem. Moreover, input distribution D will induce
an input distribution for the multi-index problem. We just need to
prove a communication lower bound under that distribution.

More specifically, let L = B/2|s|+1 = |IA| = |IB |. Define
the following function F which maps a sequence of operations
(U0, Q0, . . . , UB−1, QB−1), which is a possible outcome of D,
to an instance of the multi-index problem. Consider all updates in
interval IA = Is0, let Ek be the set of entries of sequence k which
are updated in IA. To get a multi-index instance, we set the l-th co-
ordinate in k-th block of Alice’s input x to be the sum of values in
l first entries in Ek (the l entries with smallest indices), for l ∈ [L]
and k ∈ [K]. For Bob’s input yi, consider the i-th query in IB , let
it be query(ji,1, . . . , ji,K), querying the sum of first ji,k numbers
in sequence k. For k ∈ [K], assume there are l entries in Ek with
indices at most ji,k, which will be summands in the i-th query. If
l = 0, we set all coordinates in the k-th block of yi to 0, otherwise,
we set the l-th coordinate in the block to 1. This defines the func-
tion F . It is not hard to see that the inner product 〈x, yi〉 encodes
the dependence of i-th query in IB on updates in IA. Moreover, it
is easy to verify that under the mapping of F , the distribution over
operation sequences D induces a distribution over the input pairs
(x, y) for multi-index, with some probability measure µ, such that

1. x and y are independent under µ, i.e., µ = µx × µy is a
product distribution;

2. µx is the uniform distribution over FLKp ;

3. µy is close to being uniform: all K blocks in all L vectors in
y are independent, and in each block, each one of the L + 1
possibilities will occur with probability no more than 1/L,
as adjacent elements in Ek are spaced by exactly B/L − 1
numbers. In particular, µy({y}) ≤ L−LK for any singleton.

In the following, we will only use the above three properties of
µ in the proofs. In this setting, Alice’s input carries O(LK log p)
bits of information. Bob’s input carries O(LK logL) bits of infor-
mation. The following lemma shows that the best strategy is just to
let one of the players send the whole input to the other, even with
Merlin’s help in modelM.

LEMMA 3. For large enough p and L, solving the multi-index
problem in modelM with error 0.15 requires communication cost
Ω (min{LK log p, LK logL}) under input distribution µ.

Before proving this lemma, we first show that it implies Lemma 2.

PROOF OF LEMMA 2. Fix a protocol P for G(s) with error 0.1
and cost C. We are going to use it to solve multi-index. Let us first
assume that there is a sequence of public random bits that all three
parties can see. We will first design a protocol in this setting, then
try to get rid of this extra requirement by fixing the random bits.

For an input pair (x, y) ∼ µ for the multi-index problem, con-
sider the following protocol:

Preprocessing. Use the public randomness to sample an opera-
tion sequence from D conditioned on that F maps it to (x, y). It is
easy to verify that all operations outside IB does not dependent on
y and all operations outside IA does not depend on x. Therefore,
with no communication, all three parties get their inputs for G(s).

Simulate P . Alice and Bob run protocol P to compute all an-
swers to queries in IB .

Postprocessing. Bob knows all updates outside IA, and from
the value returned by the communication game, he gets to know the
answers to all queries. Therefore, Bob can compute for i-th query
in IB , the sum of all entries updated in IA that are summands of the
query, which is exactly 〈x, yi〉, by subtracting all other summands
from the answer. With no further communication, Bob can figure
out the solution to the multi-index problem.

After Preprocessing, the inputs the players get for G(s) will be
distributed asD. Therefore, in SimulateP , the communication cost
will be C in expectation, and error probability will be 0.1 over the
randomness of P , input (x, y) and random bits r used in Prepro-
cessing. By Markov’s inequality and union bound, there is a way
to fix r, such that the communication cost is at most 4C in expecta-
tion and error probability is at most 0.15 over the randomness of P
and (x, y). To show that the protocol can be implemented in model
M, we hardwire r and define for each input pair (x, y), Z(x, y)
to be the message Merlin is supposed to send in Simulate P when
Preprocessing uses random bits r. Alice and Bob accept if and only
if they were to accept in P .

It is easy to verify that the above protocol solves the multi-index
problem under input distribution µ with error 0.15 and cost 4C.
However, by Lemma 3, we have a lower bound of

Ω(min{LK log p, LK logL})

on the communication cost. Together with p ≥ B ≥ L, we have
C ≥ Ω(LK logL) = Ω(2−|s|KB(b − |s|)). This proves the
lemma.

To prove a communication lower bound in modelM, the main
idea is to use the uniqueness of the certificate (Z(x, y)) and the per-
fect completeness and soundness. To start with, let us first consider
the case where the protocol is deterministic, and the communica-
tion cost C is defined in worst case.

In this case, fix one Merlin’s possible message z, it defines a
communication problem between Alice and Bob in the determinis-
tic model: check whether Z(x, y) = z. By definition, the players
can solve this task with zero error. By the classic monochromatic
rectangle argument, we can partition the matrix M(f) (defined
in Section 2) into exponentially in C many combinatorial rectan-
gles, such that in each rectangle, either Z(x, y) = z for every pair
or Z(x, y) 6= z for every pair. In particular, it partitions the set
Z−1(z) into combinatorial rectangles. Moreover, for each rectan-
gle with Z(x, y) = z, the protocol associates it with a value, which
is the value returned in Stage 4. Now we go over all possible z’s,
which is again exponentially in C many. Every input pair belongs
to exactly one of the Z−1(z)’s. By cutting all Z−1(z), along with
their partitioning into rectangles, and pasting into one single ma-
trix, it induces a partitioning of the whole matrix M(f) into 2O(C)

rectangles. The values associated with the rectangles should match
the actual function values with high probability. Therefore, there
must be large nearly monochromatic rectangles in M(f).

A natural final step of the proof, as in many communication
complexity lower bound proofs, would be to show that all nearly
monochromatic rectangles are small. However, in the multi-index
problem, there do exist large monochromatic rectangles.

Fix a set S ⊆ [LK] of coordinates, such that it has L/ logL
coordinates in each block. Let X = {x : ∀j ∈ S, xj = 0},
Y = {(y1, . . . , yL) : ∀j /∈ S, i ∈ [L], yi,j = 0}. X × Y is a
monochromatic rectangle with value (0, . . . , 0), and µ(X × Y) =

Θ(p−LK/ logL · (logL)−LK) = Θ(2−LK(log p/ logL+log logL)).
In particular, for p = O(L), we can only prove lower bounds no
better than Ω(LK log logL) using this approach only.

However, these y’s are not what a “typical” Bob’s input should
look like. Since the ones in {y1, . . . , yL} only appear in (1/ logL)-
fraction of the coordinates, while a random input with very high
probability should have ones appearing in a constant fraction of
the coordinates. This motivates the following definition of evenly-
spreading:

DEFINITION 5. Define Bob’s input to be evenly-spreading, if
for any set of coordinates of size at most 0.1LK, the number of
ones in all L vectors in Bob’s input in these coordinates is no more
than 0.9LK.

LEMMA 4. For L · K large enough, with probability ≥ 95%,
Bob’s input is evenly-spreading.

PROOF. Draw a random input (x, y) from µ, and try to upper-
bound the probability that it is not evenly-spreading. Fix a set of
coordinates S = S1 ∪ S2 ∪ · · · ∪ SK of size at most 0.1LK,
where Sk is a subset of coordinates in block k. Let ξki be the
random variable 〈1Sk , yi〉, which is the number of ones in yi that
is in Sk. By the properties of µ, in k-th block of yi, each of the
L + 1 possibilities occurs with probability no more than 1/L, and
is independent of all other blocks and vectors. Thus, we have that
E[ξki] ≤ |Sk|/L, ξki ∈ [0, 1], and ξki’s are independent. Let
ξ =

∑K
k=1

∑L
i=1 ξki, be the number of ones in all L vectors in S.

We have E[ξ] ≤ 0.1LK. Thus, by Hoeffding’s inequality,

Pr[ξ > 0.9LK] ≤ Pr[ξ − E[ξ] > 0.8LK] ≤ e−32LK/25.

However, the number of possible set S’s is no more than 2LK .
By union bound, the probability that there exists an S violating the

constraint is at most e−32LK/25 · 2LK < 0.05, for large enough
L ·K.

Instead of upper-bounding the number of input pairs a nearly
monochromatic rectangle can contain, we are going to upper-bound
the measure of evenly-spreading inputs in it. Define set E to be the
all input pairs (x, y) that y is not evenly-spreading. By Lemma 4,
µ(E) ≤ 0.05. The following lemma shows that there are no large
nearly monochromatic rectangles if we ignore all elements in E.

LEMMA 5. For large enough p, L, every 0.7-monochromatic
rectangle R, which is disjoint from E, must have

µ(R) ≤ max{2−Ω(LK logL), 2−Ω(LK log p)}.
PROOF. Fix a combinatorial rectangle R = X × Y , such that

there is a value v = (v1, . . . , vL) that µ(R∩ f−1(v)) ≥ 0.7µ(R).
We want to prove that µ(R) must be small. First, without loss of
generality, we can assume that for every y ∈ Y ,

µ((X × {y}) ∩ f−1(v)) ≥ 0.6µ(X × {y}),

i.e., every column in R is 0.6-monochromatic. Since in general,
by Markov’s inequality, at least 1/4 (with respect to µy) of the
columns inR are 0.6-monochromatic, we can just apply the follow-
ing argument to the subrectangle induced by X and these columns,
and only lose a factor of 4.

Let |Y | = q, Y = {y1, y2, . . . , yq}, yi = (yi1, . . . , yiL). Let ri
be the dimension of subspace in FLKp spanned by vectors in first i
L-tuples: {yjl : 1 ≤ j ≤ i, l ∈ [L]}, and r0 = 0. Let r = rq be
the dimension of the subspace spanned by all vectors in Y . Define
ν to be the probability distribution over Y such that ν(yi) = (ri −
ri−1)/r. ν(yi) is proportional to “the number of new dimensions
yi introduces”. Thus, ν is supported on no more than r elements in
Y .

Since every column in Y is 0.6-monochromatic under µx,R will
also be 0.6-monochromatic under µx × ν. By Markov’s inequality
again, at least 1/5 of the rows are 0.5-monochromatic in R under
µx × ν. However, when r is large, there cannot be too many such
rows, even in the whole matrix. For some 0.5-monochromatic row
x, let S ⊆ Y be the set of columns with value v in that row. By
definition, we have ν(S) ≥ 0.5. By the way we set up the distri-
bution ν, the linear space spanned by all vectors in S must have
dimension at least r/2. This adds at least r/2 independent linear
constraints on x. There can be at most p−r/2-fraction of x’s satis-
fying all linear constraints in the whole matrix. By taking a union
bound on all possible S’s, we obtain an upper bound on the mea-
sure of 0.5-monochromatic rows inR under µx×ν. More formally,
we have

1

5
µx(X) ≤ µx ({x : ν({y : f(x, y) = v}) ≥ 0.5})

= Pr
x∼µx

[
Pr

y=(y1,...,yL)∼ν
[∀l ∈ [L], 〈x, yl〉 = vl] ≥ 0.5

]
= Pr
x∼µx

[∃S ⊆ supp(ν), ν(S) ≥ 0.5,

∀y ∈ S,∀l ∈ [L], 〈x, yl〉 = vl]

≤
∑

S⊆supp(ν)

ν(S)≥0.5

Pr
x∼µx

[∀y ∈ S,∀l ∈ L, 〈x, yl〉 = vl]

≤
∑

S⊆supp(ν)

ν(S)≥0.5

p−r/2

≤ 2rp−r/2 ≤ 2−Ω(r log p).

Therefore, if r ≥ 0.1LK, we have

µ(R) ≤ µx(X) ≤ 2−Ω(r log p) ≤ 2−Ω(LK log p).

Otherwise, r ≤ 0.1LK. In this case, we are going to show that,
it is impossible to pack too many vectors the the form of Bob’s
inputs into any subspace of small dimension. In particular, we will
upper bound µy(Y), the measure of Bob’s evenly-spreading inputs,
when their span has dimension r. Fix a basis of the span of vectors
in Y , consisting of r vectors in FLKp .7 Without loss of generality,
we can assume that for each basis vector, there is a coordinate in
which this vector has value 1, and all other basis vectors have value
0, because we can always run a standard Gaussian elimination to
transform the basis into this form. Let T be this set of r coordinates.
As each vector in the subspace is a linear combination of the basis,
fixing the values in coordinates in T uniquely determines a vector
in the subspace. By definition of evenly-spreading, and |T | = r ≤
0.1LK, each L-tuple yi ∈ Y can have at most 0.9LK 1’s in T .
For all LK blocks in the L vectors, there are

(
LK

≤0.9LK

)
choices for

the set of blocks with ones. Moreover, each yi can have at most
one 1 in each block. If a vector has a 1 in a block, there will be
at most L different choices to place the 1. Otherwise, we must
set all coordinates in T in that block to be 0. After fixing values
all coordinates in T , there can be at most one such vector in the
subspace with matching values. Thus, we have

µy(Y) ≤

(
LK

≤ 0.9LK

)
· L0.9LK · L−LK

≤ L−0.1LK · 2LK ≤ 2−Ω(LK logL).

Therefore, in this case, we have µ(R) ≤ µy(Y) ≤ 2−Ω(LK logL).
Combining the two cases, we conclude that

µ(R) ≤ max{2−Ω(LK logL), 2−Ω(LK log p)}.

Using the above lemma, we can prove a communication lower
bound for multi-index.

PROOF OF LEMMA 3. Fix a protocol that solves the multi-index
problem with error 0.15 and cost C in modelM. As we are work-
ing with a fixed input distribution, randomness in the protocol shall
not help. In particular, by Markov’s inequality and union bound,
there is a way to fix the internal (public) randomness of the proto-
col, such that the success probability is at least 80% and commu-
nication cost no more than 5C. From now on, let us assume the
protocol is deterministic, and success probability is at least 80%.

For some message z sent by Merlin, let Tz = Z−1(z) be set of
the input pairs (x, y) such that z is message Merlin is supposed to
send when the players get these input pairs. As Alice and Bob are
always able to decide whether z = Z(x, y), the classical combi-
natorial rectangle argument induces a way to partition each Tz into
rectangles based on the transcript between Alice and Bob. More-
over, the set {Tz}z∈{0,1}∗ induces a partition of all possible input
pairs. Therefore, provided that Merlin tells the truth, the entire
transcript γ(x, y), which includes both Merlin’s message and the
transcript between Alice and Bob, induces a partition of the matrix
M(f) into combinatorial rectangles {Ri}. For each Ri with tran-
script γi, the players will return a fixed answer vi for every pair of
inputs in the rectangle.

By the definition of communication cost, we have

E
(x,y)∼µ

[|γ(x, y)|] ≤ 5C.

7These vectors do not have to be from Bob’s inputs.

Thus, by Markov’s inequality

∑
Ri:|γi|≤50C

µ (Ri \ E) ≥
∑

Ri:|γi|≤50C

µ (Ri)− µ(E)

> 0.9− 0.05 = 0.85 (1)

By the definition of probability of computing f correctly,∑
Ri

µ(Ri ∩ f−1(vi)) ≥ 0.8.

By Markov’s inequality,∑
Ri:µ((Ri\E)∩f−1(vi))

<0.7µ(Ri\E)

µ(Ri \ E)

=
∑

Ri:µ(Ri\E\f−1(vi))

>0.3µ(Ri\E)

µ(Ri \ E)

≤ 1

0.3

∑
Ri:µ(Ri\E\f−1(vi))

>0.3µ(Ri\E)

µ(Ri \ E \ f−1(vi))

≤ 1

0.3

∑
Ri

µ(Ri \ f−1(vi))

=
1

0.3

1−
∑
Ri

µ(Ri ∩ f−1(vi))


≤ 2/3

Thus, we have∑
Ri:µ((Ri\E)∩f−1(vi))

≥0.7µ(Ri\E)

µ(Ri \ E) ≥ 1− µ(E)− 2/3

> 0.25 (2)

Let R be the (disjoint) union of all Ri with value vi and tran-
script γi, such that

µ((Ri \ E) ∩ f−1(vi)) ≥ 0.7µ(Ri \ E)

and |γi| ≤ 50C. By (1) and (2), we have µ(R \ E) ≥ 0.1.
However, there can be only 2O(C) different such γi’s, and thus
2O(C) such rectangles. There must be some transcript γi such that
µ(Ri \E) ≥ 2−O(C) and Ri \E is 0.7-monochromatic rectangle
under distribution µ. Therefore, by Lemma 5, we have

C ≥ Ω(min{LK logL,LK log p}),

which proves the lemma.

5. APPLICATIONS TO DYNAMIC GRAPH
PROBLEMS

In this section, we present three applications of our main theorem
to dynamic graph problems. See Appendix B for formal definitions
of the problems.

COROLLARY 2. For the following three dynamic graph prob-
lems:

(a) dynamic #SCC,

(b) dynamic planar s-t min-cost flow,

(c) dynamic weight s-t shortest path,

0 1 2 3 n

Figure 1: dynamic #SCC

0 1 2 3 n

s

t

0′ 1′ 2′

(∞, 0) (∞, 0) (∞, 0)

(1,−1)

(1, 0)

(1,−1)

(1, 0)

(1,−1)

(1, 0)

(∗, 0)

(∗, 0)

Figure 2: dynamic planar s-t min-cost flow

any data structure with amortized expected update time o(logn),
and error probability ≤ 5% under polynomially many operations
must have amortized expected query time n1−o(1).

PROOF. (sketch) To prove the lower bounds, we are going to
give three reductions from dynamic interval union. The corollary
follows from Corollary 1.

(a) To solve dynamic interval union, we maintain the following
graph G: G has a Hamiltonian path 0 → 1 → · · · → n; for
every [a, b] ∈ I,G has an edge b→ a. It is not hard to see that
the graph can be maintained efficiently given a dynamic #SCC
data structure, and the total length of the union of I is exactly
n+ 1 minus the number of strongly connected components in
G. See Figure 1.

(b) The underlying graph is shown as Figure 2. The edges con-
necting vertices i and i + 1 have infinite capacities and zero
cost. The edges connect i and i′ have capacities 1 and cost -1.
The edges connecting i′ and i+ 1 have capacities 1 and cost 0.
All edges connecting to s or t have cost 0. The only values that
may change are the capacities of edges connecting to s or t.
More specifically, we maintain the graph such that the capacity
from s to vertex i always equals to the number of intervals in
I with left endpoint i, the capacity from i to t always equals
to the number of intervals with right endpoint i. It is easy to
verify that given a dynamic planar s-t min-cost flow data struc-
ture, we can efficiently maintain these invariants. To query the
total length of the union of I, we query the min-cost flow in G
with flow value |I|. For each i, the amount of flow from i to
i+ 1 (also counting flow going through i′) is exactly the num-
ber of intervals containing [i, i+ 1]. As i→ i′ → i+ 1 has a
smaller cost than going to i + 1 directly from i, min-cost flow
will prefer to use the former path. Each [i, i + 1] contained in
any intervals in I adds a cost of −1 to the flow. Therefore, the
negate of the cost is exactly the length of the union.

(c) We maintain a graph G such that there is an edge from s to 0
with weight 0, an edge from n to t with weight 0, edges from i

0 1 2 3 n

s

t

0

1 1 1

0

0 0 0

0 0

Figure 3: dynamic weight s-t shortest path

to i+ 1 with weight 1, and edges from i+ 1 to i with weight 0.
Moreover, for each interval [a, b] ∈ I, the graph has an edge
a→ b with weight 0. The shortest path from s to t is exactly n
minus the length of the union, because for [i, i + 1] contained
in any interval in I, we can go from i to i+1 with zero cost: go
to the left endpoint of the interval, then go to the right endpoint
using one edge, and go to i+ 1. See Figure 3.

6. FINAL REMARKS
In [6], Clifford, Grønlund and Larsen mentioned a logm logn

barrier for dynamic data structure lower bounds, where m is the
number of different queries (including parameters), and n is the
number operations in the sequence we analyse. In some sense,
our main result can also be viewed as a “(logm logn)-type” lower
bound, as the query takes only O(1) bits to describe. The way
we prove this type of lower bound is very different from [16, 17,
6]. We obtain this kind of the lower bound via reduction. Assume
we want to prove a lower bound for problem A. We first prove a
lower bound for some other problem B with large m, and get a
high lower bound. Then we find a way to implement updates of B
using updates of A, and queries of B using updates and queries of
A, and thus derive a lower bound for A. Note that it is important
that we implement queries in problem B using both updates and
queries in the original problem. Because if we only use queries
to implement queries, in order to keep all the information in the
query of B, it has to be decomposed into many queries of A. A
simple calculation shows that in this case, we cannot break the bar-
rier for problemA unless we have already broken it for problemB.
However, if we use both updates and queries of A, it is possible to
“hide” information in the updates. A good example is the reduction
in Proposition 1 in Appendix A. However, using this approach, we
still cannot beat logm′ logn, where m′ is the number of different
updates (including parameters). Nevertheless, it gives us a poten-
tial way to break the logm logn barrier for problems withm′ > m
if we can combine it with the previous techniques.

Pǎtraşcu has used the communication lower bound for lopsided
set disjointness, set disjointness problem of a special form, to prove
a collection of (static) data structure lower bounds [19, 20]. In
this paper, we applied communication protocol (upper bound) for
sparse set disjointness, set disjointness of a different special form,
to prove a dynamic data structure lower bound. In some sense, this
can be viewed as an analogue of the recent development in duality
between algorithm and complexity [25, 26, 2] in the communica-
tion complexity and data structure world. It would be interesting
to see examples where both communication lower bound and up-

per bound for the exact same problem can be used to prove data
structure lower bounds.

On Klee’s measure problem, our result is an unconditional lower
bound for one certain type of algorithms. From Theorem 1, we
can generate a hard input distribution for the sweep-line algorithm,
such that if the algorithm only sorts the rectangles, goes through
the entire area row by row and computes the number of grids in the
union only based on the rectangles intersecting the current row or
previous rows, then it cannot beat Bentley’s algorithm. However,
our hard distribution is not very robust, in the sense that if we do
the sweep-line from a different direct, the distribution over inputs
becomes really easy. At least, it still shows us what an o(N logN)
time algorithm for computing 2D Klee’s measure problem in range
[0, N2/3]× [0, N2/3] should not look like, if it existed.

7. ACKNOWLEDGEMENTS
The author would like to thank Yuqing Ai and Jian Li for in-

troducing Klee’s measure problem to me during a discussion, and
would like to thank Timothy Chan for telling me the state-of-the-
art.

The author also wishes to thank Ryan Williams for helpful dis-
cussions on applications to dynamic graph problems and in paper-
writing.

8. REFERENCES
[1] Scott Aaronson and Avi Wigderson. Algebrization: a new

barrier in complexity theory. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pages
731–740, 2008.

[2] Amir Abboud, Ryan Williams, and Huacheng Yu. More
applications of the polynomial method to algorithm design.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, pages
218–230, 2015.

[3] László Babai, Peter Frankl, and Janos Simon. Complexity
classes in communication complexity theory (preliminary
version). In 27th Annual Symposium on Foundations of
Computer Science, pages 337–347, 1986.

[4] Jon L. Bentley. Algorithms for Klee’s rectangle problems.
Unpublished manuscript, 1977.

[5] Timothy M. Chan. Klee’s measure problem made easy. In
54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, pages 410–419, 2013.

[6] Raphaël Clifford, Allan Grønlund, and Kasper Green Larsen.
New unconditional hardness results for dynamic and online
problems. In 56rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2015, 2015.

[7] Raphaël Clifford and Markus Jalsenius. Lower bounds for
online integer multiplication and convolution in the
cell-probe model. In Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011,
pages 593–604, 2011.

[8] Raphaël Clifford, Markus Jalsenius, and Benjamin Sach.
Tight cell-probe bounds for online hamming distance
computation. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, pages 664–674, 2013.

[9] Raphaël Clifford, Markus Jalsenius, and Benjamin Sach.
Cell-probe bounds for online edit distance and other pattern
matching problems. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pages 552–561, 2015.

[10] Michael L. Fredman and Michael E. Saks. The cell probe
complexity of dynamic data structures. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing,
pages 345–354, 1989.

[11] Mika Göös, Toniann Pitassi, and Thomas Watson.
Deterministic communication vs. partition number. In IEEE
56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, pages 1077–1088, 2015.

[12] Johan Håstad and Avi Wigderson. The randomized
communication complexity of set disjointness. Theory of
Computing, 3(1):211–219, 2007.

[13] Haim Kaplan, Or Zamir, and Uri Zwick. The amortized cost
of finding the minimum. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pages 757–768, 2015.

[14] Victor Klee. Can the measure of ∪n1 [ai, bi] be computed in
less than O(n logn) steps? The American Mathematical
Monthly, 84(4):284–285, 1977.

[15] Eyal Kushilevitz and Noam Nisan. Communication
Complexity. Cambridge University Press, 1997.

[16] Kasper Green Larsen. The cell probe complexity of dynamic
range counting. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, pages 85–94,
2012.

[17] Kasper Green Larsen. Higher cell probe lower bounds for
evaluating polynomials. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, pages
293–301, 2012.

[18] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower
bounds on near neighbor search via metric expansion. In
51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, pages 805–814, 2010.

[19] Mihai Pǎtraşcu. (Data) STRUCTURES. In 49th Annual
IEEE Symposium on Foundations of Computer Science,
FOCS 2008, pages 434–443, 2008.

[20] Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower
bounds. SIAM J. Comput., 40(3):827–847, 2011.

[21] Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for
dynamic connectivity. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, pages 546–553,
2004.

[22] Mihai Pǎtraşcu and Erik D. Demaine. Tight bounds for the
partial-sums problem. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, pages 20–29, 2004.

[23] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower
bounds in the cell-probe model. SIAM J. Comput.,
35(4):932–963, 2006.

[24] Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union:
take time to find your roots. In Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, pages
559–568, 2011.

[25] Ryan Williams. Improving exhaustive search implies
superpolynomial lower bounds. SIAM J. Comput.,
42(3):1218–1244, 2013.

[26] Ryan Williams. Faster all-pairs shortest paths via circuit
complexity. In Symposium on Theory of Computing, STOC
2014, pages 664–673, 2014.

[27] Mihalis Yannakakis. Expressing combinatorial optimization
problems by linear programs. J. Comput. Syst. Sci.,
43(3):441–466, 1991.

[28] Andrew Chi-Chih Yao. Probabilistic computations: Toward a
unified measure of complexity. In 18th Annual Symposium
on Foundations of Computer Science, pages 222–227, 1977.

[29] Andrew Chi-Chih Yao. Some complexity questions related to
distributive computing. In Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, pages 209–213,
1979.

[30] Andrew Chi-Chih Yao. Should tables be sorted? J. ACM,
28(3):615–628, 1981.

APPENDIX
A. REDUCTION FROM PARTIAL SUM

The partial sum problem is to maintain a sequence of n numbers
(Ai) over [n], supporting the following operations:

• update(i, v): set Ai to value v;
• query(l): return

∑
i≤lAi.

Pǎtraşcu and Demaine [22] showed that at least one of the op-
erations needs to take Ω(logn) time in the cell-probe model with
word size w = Θ(logn).

PROPOSITION 1. Any data structure for the dynamic interval
union problem with insertion time ti, deletion time td and query
time tq must have max{ti, td, tq} ≥ Ω(logn) in the cell-probe
model with word size w = Θ(logn).

PROOF. Consider the partial sum problem with
√
n numbers

over [
√
n]. Any data structure will take Ω(logn) time to update

or query. Fix a dynamic interval union data structure over [0, n],
we will use it to solve the partial sum problem. First partition [0, n]
into
√
n blocks of length

√
n each. The i-th block will correspond

to number Ai. We maintain the invariant that for each number Ai,
there is an interval in the corresponding block of length equal to the
value of Ai.

More specifically, every time we need to update Ai from value
v′ to v, we delete the previous interval [(i−1)

√
n, (i−1)

√
n+v′],

then insert a new interval [(i − 1)
√
n, (i − 1)

√
n + v]. When we

need to query the sum of first l numbers, we first insert an interval
[l
√
n, n], which covers all blocks from the (l+1)-th to the last, then

query the length of the union, delete the interval inserted earlier. We
know that the temporarily inserted interval has length (

√
n− l)

√
n.

Subtracting it from the answer returned, we get the total length of
intervals in the first l blocks, which is exactly the sum of first l
numbers.

Every update of partial sum can be implemented using an inser-
tion and a deletion of dynamic interval union, every query can be
implemented using an insertion, a deletion and a query. Therefore,
at least one of the operations has to take Ω(logn) time.

B. CATALOGUE OF DYNAMIC PROBLEMS
IN OUR APPLICATION

The dynamic number of strongly connected components problem
is to maintain a directed graph G, supporting:

• insert(u, v): insert an edge (u, v);
• delete(u, v): delete an (existing) edge (u, v);
• query(): return the number of strongly connected compo-

nents in G.

The dynamic planar s-t min-cost flow problem is to maintain an
undirected planar flow network G with edge cost, supporting:

• update(u, v, cap): update the capacity of (an exist-
ing) edge (u, v) to cap;

• query(f): return the min-cost flow from a fixed source s to
a fixed sink t with flow value f .

The dynamic weighted s-t shortest path problem is to maintain a
weighted directed graph G, supporting:

• insert(u, v, w): insert an edge (u, v) with weight w;

• delete(u, v): delete an (existing) edge (u, v);

• query(): return the shortest path from a fixed source s to a
fixed target t.

