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Abstract

A dictionary data structure maintains a set of at most n keys from the universe [U ] under
key insertions and deletions, such that given a query x ∈ [U ], it returns if x is in the set. Some
variants also store values associated to the keys such that given a query x, the value associated
to x is returned when x is in the set.

This fundamental data structure problem has been studied for six decades since the intro-
duction of hash tables in 1953. A hash table occupies O(n logU) bits of space with constant
time per operation in expectation. There has been a vast literature on improving its time and
space usage. The state-of-the-art dictionary by Bender, Farach-Colton, Kuszmaul, Kuszmaul
and Liu [BFCK+22] has space consumption close to the information-theoretic optimum, using
a total of

log

(
U

n

)
+O(n log(k) n)

bits, while supporting all operations in O(k) time, for any parameter k ≤ log∗ n. The term

O(log(k) n) = O(log · · · log︸ ︷︷ ︸
k

n) is referred to as the wasted bits per key.

In this paper, we prove a matching cell-probe lower bound: For U = n1+Θ(1), any dictionary
with O(log(k) n) wasted bits per key must have expected operational time Ω(k), in the cell-probe
model with word-size w = Θ(logU). Furthermore, if a dictionary stores values of Θ(logU) bits,
we show that regardless of the query time, it must have Ω(k) expected update time. It is worth
noting that this is the first cell-probe lower bound on the trade-off between space and update
time for general data structures.
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1 Introduction

A dictionary data structure dynamically maintains a set of at most n keys from the universe [U ]
under key insertions and deletions (the updates), such that given a query x ∈ [U ], it returns if x
is in the set. Some variants of dictionaries also maintain a set of key-value pairs with distinct keys
and with values from [V ], such that given a query x, it further returns the value associated to x
when key x is in the set.

Hash tables are classic designs of dictionaries. Using universal hash functions and chaining, hash
tables have constant expected update and query times while occupying O(n logU) bits of space.
There has been a vast literature on dictionaries improving the time and space usage [Knu73, ANS09,
ANS10, BCFC+21, DdHPP06, DKM+88, DH90, FPSS03, FKS84, Knu63, LYY20, Pag01, PR04,
Pǎt08, RR03, Yu20, BFCK+22]. An ideal dictionary would use nearly information-theoretically
optimal space, ≈ log

(
U
n

)
bits, and could process each operation in constant time.

The state-of-the-art dictionary by Bender, Farach-Colton, Kuszmaul, Kuszmaul and Liu [BFCK+22]
uses

log

(
U

n

)
+O(n log(k) n)

bits of space, while supporting each operation in O(k) time for any parameter k ∈ [log∗ n]. The
term

O(log(k) n) = O(log log · · · log︸ ︷︷ ︸
k

n)

is referred to as the wasted bits per key, and O(n log(k) n) is referred to as the redundancy. This
interesting time-space trade-off may not look natural at the first glance, e.g., when O(1) wasted bits
per key are allowed, the data structure has operational time O(log∗ n). Surprisingly, they proved
that for any hash table that makes use of “augmented open addressing,” which includes all known
dynamic succinct dictionaries [RR03, ANS10, BFCG+18, BE20, LYY20, BCFC+21, BFCK+22],
this trade-off is optimal!

This leads to the question of how general “augmented open addressing” is, and whether one
can design a dynamic dictionary that does not fall in this category and has a better time-space
trade-off. For example, the best-known static dictionary (i.e., a data structure that only needs to
support queries) [Yu20], which achieves O(1) expected query time with O(nε) redundancy, does
not use augmented open addressing.

In this paper, we show that this is indeed the best possible for dynamic dictionaries, by proving
a matching cell-probe lower bound.1

Theorem 1.1. For U = n1+Θ(1) and k ≤ log∗ n, any dynamic dictionary storing at most n keys
from [U ] with O(log(k) n) wasted bits per key must have expected insertion, deletion or query time
at least Ω(k), in the cell-probe model with word-size w = Θ(logU).

It is worth noting that when U/n is slightly sub-polynomial, e.g., U = n1+1/ log(k) n for some
constant k, Bender et al. [BFCK+22] proposed another data structure with o(1) wasted bits per
key supporting constant-time insertions, deletions and queries. Thus, the requirement that U needs
to be at least n1+Ω(1) can barely be relaxed.

Our proof uses a framework similar to the information transfer tree argument [PD04b], which
is now a widely-used technique for proving cell-probe lower bounds [PD04a, PD06, CJ11, CJS15,
CJS16, Yu16, WY16, AWY18, LN18, BHN19, JLN19, LMWY20]. Roughly speaking, it builds a

1In the cell-probe model [Yao78], it takes unit cost to read or write (probe) one memory cell of w bits, and the
computation is free. Thus, a cell-probe lower bound implies the same time lower bound for RAM.

1



tree on top of a sequence of n operations, and associates each cell-probe to an internal node of
the tree. The key step of the proof is to lower bound the number of cell-probes associated to each
node. In all prior work using this framework, this is done by reasoning about how the updates and
queries in different subtrees must interact (i.e., to answer a query, the data structure must learn
sufficient information about previous updates), thus proving a trade-off between update time and
query time. In our proof, we are able to reason, via a novel argument, about how space constraints
can force the operations to spend cell-probes, thus proving a time-space lower bound.

In fact, our new technique already gives an arguably simpler and more intuitive proof of the
lower bound against data structures using augmented open addressing that Bender et al. proved.
We will present an overview of this simplified proof in the next section as a warm-up.

The technique also allows us to extend the lower bound to o(n) redundancy.

Theorem 1.2. For U = n1+Θ(1), any dynamic dictionary storing at most n keys from [U ] with
R < n bits of redundancy must have expected insertion, deletion or query time at least Ω(log(n/R)),
in the cell-probe model with word-size w = Θ(logU).

Furthermore, if the keys are associated with values of Θ(logU) bits, the same technique proves
that even if the queries are allowed to take arbitrarily long time, the updates must still follow the
same lower bound.

Theorem 1.3. Consider a dynamic dictionary storing at most n keys from [U ], each associated
with a value in [V ], with R bits of redundancy, where U ≥ 3n and V = U2+Θ(1)/n2. Then, in the
cell-probe model with word-size w = Θ(logU),

1. if R ≥ n can be written as R = O(n log(k) n) for k ≤ log∗ n, then the expected update time is
Ω(k);

2. if R < n, then the expected update time is Ω(log(n/R)).

This lower bound shows the dictionary by Bender et al. (which can support values) is optimal
in a very strong sense: their data structure achieves O(k) update time in worst-case except with
inverse polynomial probability,2 O(1) query time in worst-case, and it is dynamically resizable;3 we
show that even if we relax all other properties, the O(k) update time is still not improvable just
under the space constraint.

We emphasize that this is the first space-update trade-off lower bound in the cell-probe model
for any data structure problem. Such lower bounds were proved in [LNN15] for streaming problems
against non-adaptive update algorithms, which was later shown not to hold for general adaptive
update algorithms [AY20]. In fact, by applying global rebuilding [Ove83], one cannot hope to prove
such a trade-off when the redundancy is linear in the total space without proving a super-linear
RAM lower bound, a notoriously hard question. Naively, a data structure can always use half
of its memory as a buffer to store the unprocessed updates, and only batch-process it when it is
full; if there is a batch-processing algorithm with linear time in RAM, then this data structure
directly has amortized update time O(1) – proving an ω(1) update time lower bound implies a
RAM lower bound for batch processing. Furthermore, to achieve non-amortized update time O(1),
global rebuilding suggests building two buffers in half of the memory, and using them alternatingly:
when one buffer is full, one could gradually execute the batch-processing algorithm during the next
O(n) updates, and use the other buffer to store them. Note that such a strategy is not applicable

2By simply rebuilding the whole data structure when an update takes more than Ω(k) time, the worst-case-with-
high-probability bound implies O(k) expected time.

3A dictionary is dynamically resizable if its space usage is in terms of the current data size.
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in the succinct regime, i.e., where the redundancy is asymptotically o(1)-fraction of the total space
– the size of the buffers cannot exceed the redundancy, thus we would have to flush the buffers too
frequently.

With an easy adaption, our technique can also prove tight lower bounds for strongly history-
independent dictionaries. A dictionary is said to be strongly history-independent (a.k.a. uniquely
representable) if its memory state is fully determined by the set of elements in it together with
some random bits the algorithm uses. We will prove the following result.

Theorem 1.4. For U = n1+Θ(1) and R ≥ 1, any strongly history-independent dynamic dictionary
storing at most n keys from [U ] with R bits of redundancy must have expected insertion, deletion
or query time at least Ω

(
log n logU

R

)
, in the cell-probe model with word-size w = Θ(logU).

This lower bound is tight for R ≥ n/poly log n, due to the known data structures [Kus23,
LLYZ23]. Note that this time-space trade-off is worse than the optimal trade-off for succinct
dynamic dictionaries without the history-independent constraint. We remark that this is the first
separation between a data structure problem and its strongly history-independent version under
the RAM (or cell-probe) model.

Another related problem is Stateless Allocation [Gol08, NT01, GKMT17, BKP+20, Kus23]. It
requires the algorithm to put at most (1− ε)n elements from universe [U ] into n slots, where each
slot can only accommodate one element, and εn slots are left empty. We require the mapping
between elements and slots to only depend on the current element set and some random bits, i.e.,
the assignment is strongly history-independent. The performance of the algorithm is measured by
its switching cost, the number of elements that changes its assigned slot during an insertion/deletion.
Kuszmaul [Kus23] showed an algorithm with expected switching cost O(log ε−1) for 1/n ≤ ε ≤ 1.
We will prove that this upper bound is actually tight.

Theorem 1.5. For 1/n ≤ ε ≤ 1 and U ≥ 3n, any stateless allocation algorithm that assigns at
most (1 − ε)n elements from universe [U ] to n slots must have expected switching cost at least
Ω(log ε−1).

2 Technical Overview

Now we present an overview of our proof technique. For simplicity, let us focus on the case with
O(n) bits of redundancy, and show a time lower bound of Ω(log∗ n). Let us also assume U = V = n3.

2.1 Slot Model

As a “proof-of-concept,” we first showcase a lower bound in the slot model, a generalization of
augmented open addressing. Then we move on to discussing how to adapt the proof to the cell-
probe model in Section 2.4, before presenting the formal proof in the later sections.

In the slot model, a data structure maintains a set of at most n keys (balls) from [U ] under
key insertions and deletions, and maps the keys to n slots (bins) indexed by [n], with at most one
key in each slot at any point. The data structure must maintain at most log

(
U
n

)
+ O(n) bits of

memory, which encodes the set itself and O(n) bits of (arbitrary) auxiliary information, and can
also determine the location (i.e., corresponding slot) of each key. We say a key k “is in slot i” if it
is mapped to slot i (it is irrelevant to how k is stored in the memory state). Each time we insert
or delete a key, the data structure updates its memory and moves (or swaps) the keys between
slots. In the slot model, moving a key from one slot to another takes O(1) cost, while accessing the
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memory is free. Thus, the goal is to minimize the key-moves during the insertions and deletions.
We will be proving that each operation must move at least Ω(log∗ n) keys on average.

We note that the slot model is similar to, yet more general than, the augmented open addressing
defined in [BFCK+22]. Augmented open addressing has a list of “hash functions” h1, h2, . . . , hn
mapping [U ] to [n]. Key x must be put in slot hi(x) for some i, and the auxiliary information stores
the index i using O(log i) bits.

One can either view a data structure in the slot model as a dictionary with values, where the
balls represent the keys’ associated values (which are physically stored in their corresponding slots),
or view the “quotient” [Knu73, Pag99] as the balls in the key-only setting. It is more limited than
general data structures as the values or quotients must be stored in n memory slots atomically,
while it is also stronger in the sense that the set of keys is known for free and we only count the
number of moves.

Hard distribution. Let us consider the following sequence of operations (similar to the hard
instance analyzed in [BFCK+22]): We initialize by inserting a set of n random keys, then repeatedly
delete a random key from the initial set and insert a new random key from [U ]. We call each pair
of deletion and insertion after the initialization a meta-operation. The analysis will focus on the
cost of the n meta-operations.

A simple upper bound. To motivate the quantity log∗ n, let us first consider the following
algorithm that maintains the keys approximately in sorted order using lazy updates. After the
initialization, the data structure spends O(n) swaps to place the keys in sorted order in the n slots.
Thus, the key set by itself determines the location of every key.

Next, for each meta-operation, after deleting a key and thus emptying a slot, we can first put
the new key in the empty slot, and store its identity and location as auxiliary information. As we
delete and insert more keys, the slots gradually become “less sorted.” Since we only allow O(n)
bits of auxiliary information, this can be done as long as the new keys and their locations take at
most O(n) bits to store, i.e., we can store O(n/ log n) new keys in this way.

After O(n/ log n) meta-operations, we rearrange all new keys so that they become in sorted
order by themselves, while the set of new keys still resides in the set of slots that contained deleted
keys (see the first three steps in Figure 2.1 for an example). This takes O(1) amortized swaps per
insertion. It then suffices to only indicate as auxiliary information which keys are the new keys
and the set of their locations. This takes log

(
n

O(n/ logn)

)
= O(n log logn/ log n) bits. After the

rearrangement, every new key effectively only costs O(log log n) auxiliary bits.
We do this to every segment of O(n/ log n) consecutive meta-operations: store their identities

and locations until it takes O(n) bits; then rearrange so that they become in sorted order by
themselves; and further store for every new key and every emptied slot, which segment we inserted
the key or emptied the slot. Since every new key and slot needs O(log log n) bits to encode,
we can repeat this for O(log n/ log logn) segments, i.e., O(n/ log logn) meta-operations in total.
Thereafter, we further sort these O(n/ log logn) keys, as shown in the last step in Figure 2.1.
Now we only need to pay O

(
log

(
n

n/ log logn

))
= O(n log log log n/ log log n) total auxiliary bits, or

O(log log log n) auxiliary bits per key. Sorting again takes amortized O(1) additional swaps per
meta-operation.

This suggests the following strategy based on lazy updates: For each meta-operation, we can
place the new key in the slot that just became empty and store its identity and location; after every
segment of O(n/ log n) consecutive meta-operations, we sort the new keys inserted in this segment
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)
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In the first n/ logn operations, the new keys are directly placed in the empty slots which are marked by squares
(the first two steps), and will be rearranged later (the third step). This process continues for each subsequent group
of n/ logn operations, until the (log n/ log logn)-th group, which is marked by circles (the fourth step). After
rearranging this group (the fifth step), we further rearrange all the n/ log logn new keys (the sixth step).

Figure 2.1: Key Arrangement

and store the set of locations as a batch4; after every O(log n/ log log n) consecutive segments, we
sort all new keys inserted in them and store the set of locations, and so on. This process continues
until we have inserted O(n) keys, in which case, we can afford to re-sort all keys with O(1) additional
swaps per key. There will be a total of O(log∗ n) levels of sorting. Since sorting in each level takes
O(1) swaps per key, the total number of swaps for O(n) meta-operations is O(n log∗ n).

2.2 Slot Model Lower Bound

The slot model lower bound is inspired by the above algorithm. Note that in the algorithm, for
every O(n/ log n) consecutive meta-operations, we must rearrange the keys, otherwise the auxiliary
information will take more than O(n) bits. The rearrangement takes O(1) cost per key. We will
show that this O(1)-cost per key cannot be avoided.

We say a slot is accessed if we move a key from or to this slot. Formally, we will show that
for every consecutive m = Ω(n/ log n) meta-operations, there must be Ω(m) times in expectation
that a slot is accessed during multiple meta-operations. In other words, we go over all m meta-
operations, and examine during each meta-operation, which slots are accessed both in this and in a
previous meta-operation, and add the number of such slots for every meta-operation together. We
assert that there must be Ω(m) times in expectation that a slot is accessed in a meta-operation
and also in a previous one (thus, if the same slot is accessed during t different meta-operations, it
is counted t− 1 times).

Similarly, for every consecutivem = Θ(n/ log logn) meta-operations, consisting of Θ(log n/ log log n)
segments of size Θ(n/ log n), we assert that there must be Ω(m) times in expectation that a slot is
accessed during multiple segments, and so on. We formally state it in the following lemma, which
is the slot-model variant of Lemma 3.2.

4Strictly, we also store which keys belong to the new batch, whose space usage is no more than storing the set of
locations.
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Operations: op1 op2 · · · opm1
opm1+1 · · · op2m1 · · · · · · opn−1 opn

probe cell i probe cell i

level 1: m1 = c1n/ log n ops m1 ops m1 ops· · · m1 ops

λ1 =
c1n
logn λ1 λ1

level 2: m2 = c1n/ log log n ops · · · m2 ops

λ2 =
logn

log logn λ2

LCA

...

level log∗ n: n ops

...
...

Figure 2.2: Tree Structure

Lemma. Let 1 ≤ ℓ ≤ log∗ n. For any consecutive m = c1 · n/ log(ℓ) n meta-operations for a suffi-
ciently large constant c1, partitioned into λ = Θ(log(ℓ−1) n/ log(ℓ) n) segments of size Θ(n/ log(ℓ−1) n),
there must be Ω(m) times that a slot is accessed during multiple segments.

We used the convention that log(0) n := n. To see why it implies a lower bound of Ω(log∗ n),
we build a tree on top of the n meta-operations with depth log∗ n. Each leaf of the tree (level-0
node) corresponds to one meta-operation, and we place the leaves in the same order as the meta-
operations. Then we divide the leaves into groups of Θ(n/ log n) consecutive meta-operations, and
assign a common parent (a new node) at level 1 to each group. Next, Θ(log n/ log log n) consecutive
level-1 nodes are grouped together, and assigned a common parent at level 2, and so on. In general,
we group Θ(log(ℓ−1) n/ log(ℓ) n) nodes at level ℓ − 1, and assign them a common parent at level ℓ.
See Figure 2.2 for details.

Now consider an access to a slot during a meta-operation (a leaf), and consider when it was
accessed the previous time (another leaf), we associate this access to the lowest common ancestor
(LCA) of these two leaves. To lower bound the total number of accesses, it suffices to sum over all
(internal) nodes the number of accesses associated to it. On the other hand, whenever an access
is associated to a node u, then with respect to u, this is a slot that is accessed in two different
segments (two different children of u). Hence, the above lemma lower bounds the number of accesses
associated to each u by the size of the subtree rooted at u. Thus, the sum of every level is Ω(n), and
the total sum over all internal nodes is Ω(n log∗ n). This way of counting the number of accesses
has been used in many cell-probe lower bounds [PD04a, PD06, CJ11, CJS15, CJS16, Yu16, WY16,
AWY18, LN18, BHN19, JLN19, LMWY20], although the nodes in the tree are usually set to the
same degree, in which case, one obtains a logarithmic lower bound.

2.3 Number of Swaps per Node

Next, let us prove the above lemma. For simplicity, we first focus on ℓ = 1, i.e., m = c1 · n/ log n
and “segments” consisting of one meta-operation (λ = m). To begin with, let us see what would
go wrong if there was zero slot accessed during multiple meta-operations, then we will extend this
proof-by-contradiction to Ω(m) slots.
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Intuitively, we are going to show that the data structure stores too much information about
the order of insertions (given the deletions) as auxiliary information, which corresponds to storing
the new keys and locations in the upper bound. Fix a sequence of operations sampled from the
distribution, and fix an index k. We will analyze the (k + 1)-th to the (k +m)-th meta-operation.

The outer game. To formalize this intuition, let us consider the following communication game
between two players Alice and Bob, which we call the outer game.

• Both players get the memory state Cst after the k-th meta-operation, of log
(
U
n

)
+O(n) bits.

It determines the set of n initial keys K before the m meta-operations, as well as the slot
allocation. The players also both know the keys that are deleted and the order of the deletions
d, and the (unordered) set of all inserted keys A.

• Alice further knows the order of insertions a, a permutation of A.

• Alice sends one message to Bob, and their goal is for Bob to recover the permutation a.

A communication protocol. Next, let us consider a protocol for the outer game. Alice’s (only)
message of this protocol will be an encoding of the memory state after the m meta-operations Cend.
Since Bob knows the initial set K and the set of deleted keys and inserted keys, he also knows the
set of keys Kend after the m meta-operations. On the other hand, Cend also determines Kend – the
entropy of Cend conditioned on Kend is at most O(n), since

H(Cend | Kend) = H(Cend,Kend)−H(Kend) = H(Cend)−H(Kend)

≤
(
log

(
U

n

)
+O(n)

)
− log

(
U

n

)
= O(n).

Thus, by encoding Cend optimally conditioned on Kend, Alice can send O(n) bits in expectation so
that Bob is able to recover Cend from the message.

Now we claim that Bob can fully recover the permutation a if every slot is accessed in at most
one meta-operation. Let us consider the first insertion. Bob knows the first deleted key d1, but
only knows that the first inserted key a1 is among A. Without loss of generality, we may assume
that the data structure always first puts a1 in the slot where d1 was, then immediately applies
an arbitrary permutation over the slots. Recall that any permutation can be decomposed into a
collection of disjoint cycles: In particular, suppose d1 (and a1 temporarily) was in slot s1, then
there exist slots s2, . . . , sc for some c ≥ 1 such that the key in s1 is moved to s2, the key in s2 is
moved to s3, and finally, the key in sc is moved to s1. Now observe that all slots s1, . . . , sc are
accessed during this meta-operation. By our assumption that every slot can be accessed in at most
one meta-operation, these keys must remain in the same slots in the final state Cend. Next, since
Bob knows d1, he knows s1, then he can examine which key x is in slot s1 in Cend. If x is not in K,
then he knows immediately that it must be a1, as this slot is not accessed afterwards. Otherwise,
x must be the key that was initially in sc and was moved to s1. Thus, Bob learns sc by examining
the location of x in initial memory state Cst. Then Bob can further examine which key is in sc in
Cend, and it must be the key that was initially in sc−1. Bob can trace this cycle by alternatingly
examining the keys in the slots in Cst and Cend. Eventually, he is able to identify a key that is not
in K, which must be a1.

After knowing a1, Bob simply simulates the data structure for the first meta-operation by
deleting d1 and inserting a1, then proceeds to the second meta-operation. Note that this process
does not require any communication. Finally, Bob is able to recover the order of all insertions
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after Alice sends the single message consisting of an encoding of Cend. The message has expected
length O(n), but the order of insertions has entropy Θ(m logm), which yields a contradiction when
m = c1n/ log n for sufficiently large constant c1.

Extending to Ω(m) cost and level ℓ > 1. In general, if there are at most 0.01m times that a
slot is accessed more than once, then except for at most 0.01m meta-operations, all slots accessed
in other meta-operations are not accessed later. We then simply apply the above argument to
iteratively figure out the remaining 0.99m insertions. For the other 0.01m, Alice can simply send
Bob the inserted keys within A using logm bits each (and O(m) bits indicating which rounds Bob
needs to run the above algorithm on his own). Alice’s message has total length 0.01m logm+O(n),
which again yields a contradiction.

For levels ℓ > 1, the players’ goal becomes for Bob to figure out that, for each insertion in A,
which segment it belongs to (we give the order within each segment to both players). In this case,
Bob needs to learn m log λ ≈ c1n bits of information. It turns out that the same protocol works,
and in each segment, by applying the same strategy more carefully, Bob can again find the inserted
keys by following the cycles of the permutations. Thus, the lemma holds, and the lower bound in
the slot model follows.

2.4 Cell-Probe Lower Bound

The lower bound in the cell-probe model is proved using the same framework. Instead of the
slots, we will work with memory cells. In general, a data structure does not necessarily have one
part to store the key set and auxiliary information, and another part for the slots. Moreover,
(the “quotient” of) a key do not necessarily occupy a complete memory cell, and may be encoded
arbitrarily. We need a more careful argument in this case.

Fix a data structure in the cell-probe model with word-size w = Θ(logU) that uses log
(
U
n

)
+O(n)

bits of space. We prove the following lemma.

Lemma. Let 2 ≤ ℓ ≤ log∗ n. For any consecutive m = c1 · n/ log(ℓ) n meta-operations for a suffi-
ciently large constant c1, partitioned into λ = Θ(log(ℓ−1) n/ log(ℓ) n) segments of size Θ(n/ log(ℓ−1) n),
there must be Ω(m) times that a memory cell is probed during multiple segments.

By the same argument as in the slot model using trees, this lemma implies an Ω(log∗ n) cell-
probe lower bound. It turns out that in order to prove it, the only part that we need to “upgrade”
from the slot model is the step in the protocol of the outer game, where we showed that Bob can
figure out which segment contains each insertion based (essentially) only on the starting and ending
memory states. For the slot model, this step uses the fact that (the quotient of) the keys are atomic
and can only be stored in slots and moved between the slots. For general data structures, we will
have to do it differently.

Recovering the segments. Now let us fix ℓ ≥ 2 (for technical reasons, the proof does not work
for ℓ = 1). We again consider the outer communication game, where

• both players know the initial memory state Cst, the (unordered) set of m insertions A, the
(ordered) sequence of m deletions d;

• Alice further knows the order of insertions a;

• Bob only knows the order of insertions within each segment (e.g., Bob knows for each segment,
the first insertion is the π(1)-th lexicographically smallest inserted key in this segment, the
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second is the π(2)-th smallest inserted key, etc, but without knowing the actual set of inserted
keys);

• their goal is to let Bob learn the set of inserted keys A[i] in each segment i ∈ [λ].

For simplicity, we again will first derive a contradiction when no cell was probed in more than
one segment. Similar to the slot model, Alice can send Bob the final memory state Cend using
O(n) bits. Bob will then first try to identify A[1], the insertions in the first segment. To this end,
Bob decodes Cend from the message, then for all possible (m/λ)-sets of insertions B ⊂ A, Bob
pretends that A[1] = B, and simulates the data structure on B together with the deletions in the
first segment, which are known to Bob.

Now observe that a necessary condition for A[1] = B is that the set of cells probed in this
simulation have the same new cell-contents as in Cend. This is because we assumed that no cell is
probed in more than one segment, thus their contents must not be updated later. We call such a
B qualified. Note that Bob can check if a set B is qualified, and clearly, the correct set of inserted
keys must be qualified. Moreover, the key property we will prove is that, in expectation, only very
few B are qualified. Thus, it suffices for Alice to send few bits to tell Bob which B is the correct
A[1] among the qualified sets.

To prove this key property, consider the correct set of insertions A = A[1] and another qualified
set B. Let SA [resp. SB] be the set of cells probed when A[1] = A [resp. A[1] = B], and let CA [resp.
CB] be the memory state after processing the first segment. Since A and B are both qualified, the
contents of SA ∩ SB in CA and CB must be the same, because in particular, they are the same as
in Cend. For such A and B, we say they are consistent. The following technical lemma says that
two random subsets A,B ⊂ A of size m/λ with intersection at most m/2λ are consistent with very
low probability.

Lemma. In expectation, two random m/λ-subsets A and B of A conditioned on |A ∩B| ≤ m/2λ
are consistent with probability U−Ω(m/λ).

This is a simplified version of Lemma 4.4 to fit in the regime in this overview. Note that our
distribution guarantees that A[1] is a random subset of A of size m/λ.

In particular, the above lemma implies that, on average, the sets that have a small inter-
section with the correct A[1] are very unlikely to qualify. On the other hand, there are only(

m
≤m/2λ

)( m/λ
≥m/2λ

)
= O(λ)m/2λ sets that have intersection size at least m/2λ with A, while there

are ≈ O(λ)m/λ many m/λ-subsets of A. Thus, by encoding the correct A[1] among the qualified
sets, Alice can save a factor of two in the message length. This constant-factor saving in the
communication cost turns out to already be sufficient for a contradiction.

The remaining step is to prove the above lemma, showing that two random sets conditioned on
their intersection size being small are very unlikely to be consistent. For simplicity, let us consider
two random sets A and B conditioned on A∩B = ∅. If the contents of SA ∩SB are the same after
inserting either A or B, then intuitively, these cells should not be storing much useful information
about A or B – we are wasting space proportional to |SA ∩ SB| · w. On the other hand, the same
set D is deleted in the segment in both cases, one must probe the cells storing the information
about D. This is because intuitively, the redundancy is only O(n) bits, which is much smaller
than the entropy of D (or A, B) when ℓ ≥ 2; the data structure must “empty most of the space
storing D” to make room for A or B. Thus, the set SA ∩ SB should be sufficiently large to contain
D. Combining the two, we are wasting Ω(H(D)) = Ω(m/λ · logU) ≫ Ω(n) bits. This leads to a
contradiction (this is also where we need ℓ ≥ 2).
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We formally prove the lemma by studying another communication game, which we call the
inner game. We show that whenever two sets A and B are consistent, it is possible to encode sets
K,A,B,D (recall that K is the initial set of keys) using roughly H(K,A,B,D) − Ω(m/λ · logU)
bits. This implies an upper bound on the possible number of such tuples (K,A,B,D), i.e., only
U−Ω(m/λ)-fraction of A and B are consistent on average. See Section 5.1 for the protocol.

For the general case where A and B can have a small intersection, and at most 0.01m cells can
be probed in more than one segment, we generalize the definition of consistency to require that the
number of different cells in SA ∩ SB is bounded by O(m/λ). It turns out that the above argument
still goes through, and Bob can recover A[1] after Alice sends few extra bits. Then, Bob simulates
the operations in the first segment, and the players apply the same strategy for Bob to iteratively
recover A[2], . . . , A[λ]. Bob learns the partition of A into A[1], . . . , A[λ], which has ≈ m log λ bits of
information, while Alice’s message turns out to have only ≈ (1−Ω(1))m log λ+O(n) bits, yielding
a contradiction. See Section 4.2 and Section 4.3 for the detailed analysis.

3 Hard Distribution and Proof of Main Theorem

In the following sections, we present the formal proof of our lower bound for the dynamic succinct
dictionary problem. Let C be a dynamic dictionary data structure that maintains a set T of at
most n distinct keys in range [U ], i.e., C supports the following operations:

• Initialize T to ∅.

• Insert a key x, assuming |T | < n and x /∈ T .

• Delete a key x, assuming x ∈ T .

• Query whether x is in T .

We will focus on the following regime:

• We assume U = n1+Θ(1). Without loss of generality, we set the word size w = logU so that
a key can be stored in one word.

• The memory of C is fixed to be log
(
U
n

)
+R bits, where the term log

(
U
n

)
is the optimal space

required to store n keys, and R is the redundancy. Moreover, by the convention of prior work,
we say the data structure incurs r = R

n wasted bits per key.

The running time of the dictionary is measured by the expected amortized number of cell-
probes per operation, while the redundancy is measured by r, the number of wasted bits per
key. As mentioned in Section 2, we will consider a sequence of n insertions followed by n meta-
operations. Each meta-operation will consist of a query (for technical reasons), a deletion, followed
by an insertion. A formal description of the hard distribution is presented in Distribution 1.
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Distribution 1: Hard Distribution

1 Initialize an empty dictionary with capacity n and key-universe [U ]
2 K ← uniform random n-element subset of [U ]
3 Insert keys in K into the dictionary one by one, using n insertions
4 for i = 1 to n do
5 di ← a uniform random key in K that has not been removed
6 Query(di)
7 Delete(di) from the dictionary
8 ai ← a uniform random key in [U ] which is neither in K nor in the current dictionary
9 Insert(ai) to the dictionary

The following theorem, a rephrase of Theorem 1.1 with respect to Distribution 1, is the main
result of this section, proving a space-time lower bound for dynamic dictionaries.

Theorem 3.1. For sufficiently large n and any positive integer k ≤ log∗ n, if a dictionary incurs
r ≤ log(k) n wasted bits per key, then it must perform Ω(nk) cell-probes to process a random
sequence of operations sampled from Distribution 1 in expectation, i.e., the expected amortized time
to process one operation is Ω(k).

We first fix a data structure using r ≤ log(k) n wasted bits per key. By Yao’s Minimax Principle,
we may assume without loss of generality that it is deterministic.

Recall that we denote Step 5-9 in the hard distribution by a meta-operation. To prove the
lower bound, we will build a tree over the sequence of n meta-operations. Each meta-operation
is a leaf of the tree, which is also called a level-0 node. The tree is then constructed bottom-up.
After constructing level ℓ−1, we group every λℓ consecutive level-(ℓ−1) nodes, and assign a level-ℓ
node to be the parent of every group. Thus, a level-ℓ node u represents an interval of consecutive
meta-operations, which is the union of the intervals of u’s children.

Let mℓ denote the number of consecutive meta-operations a level-ℓ node represents. Then, we
have mℓ = mℓ−1 · λℓ. We will set mℓ := cn log(k) n/ log(ℓ) n for levels ℓ ≥ 1, where c = 106 is a large
constant, and set m0 = 1 for the leaf nodes. For simplicity, we assume mℓ−1 | mℓ. Therefore, for
ℓ > 1, we have λℓ = log(ℓ−1) n/ log(ℓ) n.

The process of grouping level-(ℓ − 1) nodes to form level-ℓ nodes terminates at level h when
cn log(k) n/ log(h) n ≥ n, i.e., all meta-operations are grouped into the same level-h node. Formally,
h = min{ℓ ∈ N : log(ℓ) n ≤ c log(k) n}. Here we let mh = n, and the only level-h node is the root of
the tree. Clearly, the height of the tree h is Ω(k). See Fig. 2.2 in Section 2.

Now let us return to the data structure. In the cell-probe model, its memory contains N cells,

where N =
(
log

(
U
n

)
+R

)/
w = O(n). The addresses of these cells are from 1 to N . We will lower

bound the total number of cell-probes in two ways. To this end, we introduce two quantities for
each node u in the tree, costu and probeu, to measure the number of probes.

For costu, if cell i is probed in meta-operations t1 and t2 (t1 < t2) but not between them, we
assign the probe of i at t2 to node u, the lowest common ancestor (LCA) of t1 and t2 in the tree,
and let costu be the total number of probes assigned to u. Clearly, since each cell-probe is assigned
at most once, the total number of cell-probes during the whole operation sequence is at least the
sum of costu over all the nodes.

For probeu, we simply define it as the number of probes incurred while processing the operations
in u’s corresponding interval. For a single level ℓ, the sum of probeu over all level-ℓ nodes u exactly
equals the total time cost in the whole process (unlike costu, we cannot use the sum of probeu over
all nodes as a lower bound, because each cell-probe will be counted h+ 1 times).
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The lemma below gives a lower bound on the expectations of costu and probeu.

Lemma 3.2 (Outer Lemma). Let t be a parameter. Suppose U = n1+α for a constant α, and let
γ = α

6(1+α) . For a level-ℓ node u, if

• 264 ≤ λℓ ≤ α
12 log n,

• mℓ log λℓ ≥ 100R,

• 1
2γmℓ logU ≥ R+ 5mℓ + 2(β + 1)mℓt,

• mℓ ≥ n1−γ/2,

where β is a global fixed constant to be determined later, then at least one of the two proposition
holds:

• Prop 1. E[costu] ≥ γ
100mℓ;

• Prop 2. E[probeu] ≥ 1
16mℓt.

Note that although we have set the tree parameters λℓ′ , mℓ′ above for all levels ℓ′, Lemma 3.2
only focuses on a single level ℓ and has no constraint for the tree parameters for other levels ℓ′ ̸= ℓ.
Hence, even if we use another set of tree parameters, Lemma 3.2 still applies as long as the required
conditions are met (which will be the case in Section 6).

We will prove Lemma 3.2 in the next section. Now we use it to prove Theorem 3.1.

Proof of Theorem 3.1. The main idea is to apply Lemma 3.2 on all nodes in levels 2 ≤ ℓ < h, with
parameter t = γ

8(β+1) logU . After applying the lemma, consider two cases:

• If there is a level ℓ (2 ≤ ℓ < h) such that at least half of the nodes in this level satisfy Prop
2, the expected time can be bounded by∑

u in level ℓ

E[probeu] ≥
1

2
· n

mℓ
· 1
16

mℓt =
1

32
nt =

γ

256(β + 1)
· n logU.

As the coefficient γ
256(β+1) is a constant and logU ≥ log n ≥ log∗ n ≥ k, the time per operation

is at least Ω(k).

• Otherwise, it means for every level ℓ (2 ≤ ℓ < h), at least half of the nodes in it satisfy Prop
1. Taking summation of the lower bound of E[costu] for each node u in these levels, we know
that the total time cost is at least

∑h−1
ℓ=2

γ
100mℓ · 12 ·

n
mℓ

= γ
200n(h − 2) in expectation, which

means the expected time cost per operation is at least Ω(h) = Ω(k), as desired.

It remains to verify the premises of Lemma 3.2. Notice that we require 2 ≤ ℓ < h, i.e., when we
apply Lemma 3.2 on some node u, u and its children are not root or leaf nodes. Thus we always
have mℓ = cn log(k) n/ log(ℓ) n and λℓ = log(ℓ−1) n/ log(ℓ) n.

• λℓ ≥ 264. According to the definition of h, for every 2 ≤ ℓ < h, we have log(ℓ) n > c log(k) n ≥
c = 106, so λℓ = log(ℓ−1) n/ log(ℓ) n = 2log

(ℓ) n/ log(ℓ) n ≥ 2c/c≫ 264.

• λℓ ≤ α
12 log n. As n is sufficiently large, we only need to show λℓ = o(log n), that is,

log(ℓ−1) n/ log(ℓ) n = o(log n). All levels except for level 1 satisfy this condition.
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• mℓ log λℓ ≥ 100R. We can calculate

mℓ log λℓ = mℓ(log
(ℓ) n− log(ℓ+1) n) ≥ 1

2
mℓ log

(ℓ) n =
1

2
cn log(k) n≫ 100n log(k) n,

100R = 100nr ≤ 100n log(k) n,

where the first inequality holds because log(ℓ) n ≥ 2 log(ℓ+1) n as log(ℓ) n ≥ c. So we have
mℓ log λℓ ≥ 100R for all 2 ≤ ℓ < h.

• 1
2γmℓ logU ≥ R + 5mℓ + 2(β + 1)mℓt. Substituting t = γ

8(β+1) logU into this inequality, we

only need to prove 1
4γmℓ logU ≥ R+ 5mℓ. When n is sufficiently large, we have

γmℓ logU ≥ γ
cn log(k) n

log log n
logU ≥ γ

log n

log logn
· cn log(k) n ≥ 24cn log(k) n ≥ 4(R+ 5mℓ).

• mℓ ≥ n1−γ/2. As mℓ ≥ cn · log
(k) n

log logn , this inequality naturally holds with sufficiently large n.

This proves the theorem.

4 Outer Lemma

Suppose u is a level-ℓ node in the tree structure. It also represents an interval of mℓ consecutive
meta-operations. In this section, we focus on the operations in u and prove Lemma 3.2, which
asserts that either E[costu] ≥ γ

100mℓ or E[probeu] ≥ 1
16mℓt.

4.1 Proof Overview

We index the meta-operations in u by {1, . . . ,mℓ}. Let ai, di represent the keys to be inserted
and deleted in the i-th meta-operation in u, respectively. Also define sequences a := (a1, . . . , amℓ

),
d := (d1, . . . , dmℓ

). These meta-operations are further divided into λℓ subintervals of length mℓ−1,
each corresponding to a child node of u. We call each subinterval a segment. For each i ∈ [λℓ], the
keys inserted and deleted in the i-th segment are denoted by a[i] :=

(
a(i−1)mℓ−1+1, . . . , aimℓ−1

)
and

d[i] :=
(
d(i−1)mℓ−1+1, . . . , dimℓ−1

)
. We further define the following quantities of a:

• A := {a1, . . . , amℓ
} is the unordered version of a, and A[i] :=

{
a(i−1)mℓ−1+1, . . . , aimℓ−1

}
is the

unordered version of a[i].

• Inside the i-th segment, we use a permutation π[i] to represent the order of key insertions in
A[i]. Formally, π[i] is a permutation over [mℓ−1] such that the j-th key inserted in the i-th

segment is the π
[i]
j -th largest element in A[i]. Denote by π =

(
π[1], . . . , π[λℓ]

)
the sequence of

all these permutations.

Let C be a (memory) state of the deterministic data structure at a given time, i.e., the contents
in all N memory cells. It is clear that H(C) ≤ log

(
U
n

)
+ R. We also define C(S) to be the state

of the cells S, where S ⊆ [N ]. Formally, C(S) := {(i, cont(i)) : i ∈ S}, where cont(i) is the w-bit
content of the i-th cell in the state C. Notice that C(S) also includes the address information S
when S is a random variable. Hence, the entropy of C(S) might be larger than w · |S|.

Denote by Cst the state of the data structure just before executing the first operation in u;
denote by Cend the state right after executing the last operation in u. We will not consider states
before Cst or after Cend in this section.

We will prove Lemma 3.2 by contradiction via a communication game. In this game,
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• Alice is given A[1], . . . , A[λℓ], which determines A, and is also given Cst,d,π;

• Bob is given A, Cst,d,π;

• the goal of the game is for Alice to tell Bob
(
A[1], . . . , A[λℓ]

)
by sending one message.

Note that
(
A[1], . . . , A[λℓ]

)
is simply a random partition of A, which has mℓ elements, into λℓ

groups of size mℓ−1 each. Since all other inputs are independent of the partition, the entropy of(
A[1], . . . , A[λℓ]

)
given Bob’s input is

H(A[1], . . . , A[λℓ] | A, Cst,d,π) = H(A[1], . . . , A[λℓ] | A)

= log

(
mℓ

mℓ−1, . . . ,mℓ−1

)
= logmℓ!− λℓ logmℓ−1!. (1)

4.2 Outer Game Protocol

Let us now assume for contradiction that the conclusion of Lemma 3.2 does not hold, i.e., E[costu] <
γmℓ
100 and E[probeu] < 1

16mℓt, we will show a protocol where Alice sends less than (logmℓ! −
λℓ logmℓ−1!) bits of information, but Bob can still recover A[1], . . . , A[λℓ], which leads to a con-
tradiction.

Recall the definition of costu: While a cell j is probed at different segments in u, we increase
costu by one. Conversely, since costu is small, we know that most cells are only probed in at most one
segment. We call the cells that are probed in at least two different segments bad cells, and use Sbad to
denote the set of bad cells. The expected number of bad cells is at most E[|Sbad|] ≤ E[costu] < γmℓ

100 .
The framework of our protocol is shown in Protocol 1. Below, we will explain it in detail.

Protocol 1: Outer Game Protocol Framework

1 Alice sends Cend to Bob
2 for i = 1 to λℓ do
3 Bob computes Cbef, the state of the data structure before the i-th segment

4 Arest := A \ (A[1] ∪ · · · ∪A[i−1])

5 F [i]
all := {B ⊆ Arest : |B| = mℓ−1}

6 Alice decides Xi ∈ {0, 1} and sends it to Bob ▷ Explained below
7 if Xi = 1 then

8 Bob runs tests on all B ∈ F [i]
all ▷ Explained below

9 F [i]
qual := {B ∈ F

[i]
all : B passes the test}

10 Alice sends the index of A[i] in F [i]
qual ▷ It is guaranteed that A[i] will pass the test

11 else

12 Alice sends the index of A[i] in F [i]
all

Sending Cend. The first step is to send Cend, the final state of the data structure after processing
all operations in u, to Bob. We show that the entropy of this message given Bob’s knowledge is
in fact much smaller than the number of bits in the memory, because Cend has a large mutual
information with Cst. To upper bound this entropy, we consider the key set stored in Cend, which
we denote by Kend. Now observe that Kend can be inferred from both Cend and from (Cst,A,d)
(by running all possible queries on Cend, or on Cst and replacing keys d with A). Thus, the mutual
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information I(Cend ; Cst,A,d,π) ≥ H(Kend) = log
(
U
n

)
. Furthermore, we have

H(Cend | Cst,A,d,π) = H(Cend)− I(Cend ; Cst,A,d,π) ≤ log

(
U

n

)
+R− log

(
U

n

)
= R. (2)

Hence, Alice can send Cend conditioned on (Cst,A,d,π), using at most R bits in expectation.
The remainder of the protocol consists of λℓ rounds. In each round, Bob aims to learn a single

A[i]. Notice that since Bob knows the order of insertions π[i] and the sequence of deleted keys d[i],
Bob would also be able to infer the entire operation sequence in segment i.

Preparation steps. At the beginning of the i-th round, Bob already knows A[1], . . . , A[i−1];
combined with the common knowledge π, d, Bob can recover all operations in the first i − 1
segments. So he can simulate the process of the data structure from Cst throughout the first i− 1
segments, obtaining the state before the i-th segment, Cbef. At this point, the set of all possible
keys that can be inserted in segment i in Bob’s view is Arest := A \ (A[1] ∪ · · · ∪ A[i−1]). Line 5

defines F [i]
all as the collection of all mℓ−1-element subsets of Arest. Every set in F [i]

all is currently a

candidate of A[i]. It is clear that the correct A[i] is in F [i]
all.

The most trivial way for Alice to reveal A[i] to Bob is to send the index of A[i] in F [i]
all. This

takes log
∣∣F [i]

all

∣∣ = log
(|Arest|
mℓ−1

)
bits. However, this approach would not lead to a contradiction, as∑λℓ

i=1 log
∣∣F [i]

all

∣∣ = log
(

mℓ
mℓ−1,...,mℓ−1

)
exactly equals logmℓ!−λℓ logmℓ−1!, the entropy that Bob needs

to learn.
Compared to this simple method, our protocol lets Bob eliminate most of the candidates by

running tests based on Cbef and Cend. Ideally, he can narrow down the candidates to a small subset

F [i]
qual ⊆ F

[i]
all while the correct A[i] ∈ F [i]

qual is not eliminated. In this case, Alice only needs to send

log
∣∣F [i]

qual

∣∣≪ log
∣∣F [i]

all

∣∣ bits. On the other hand, we observe that occasionally, A[i] is eliminated by

Bob’s tests. In this bad case, Alice will still send A[i] using the index in F [i]
all. An additional bit Xi

is sent to tell Bob whether his tests will be successful.

Alice’s Decision. We define S
[i]
A to be the set of cells probed in the i-th segment. Recall that we

use Sbad to represent the cells probed in multiple segments (Alice knows all operations, and thus,

knows Sbad). Xi in Line 6 is determined according to the relationship between S
[i]
A and Sbad: If∣∣S[i]

A ∩ Sbad

∣∣ > γmℓ−1/2 (recall γ := α
6(1+α)), we call it the bad case, and Alice sends Xi = 0 and

the index of A[i] in F [i]
all in Line 12. Otherwise, Alice sends Xi = 1.

Bob’s Tests. For each candidate B ∈ F [i]
all, Bob runs the following test. He pretends that B is the

correct set A[i], and permutes B according to the permutation π[i], obtaining an ordered sequence
of mℓ−1 keys b[i]. Then, he simulates the operations in the i-th segment according to b[i] and d[i].
The simulation starts with the state Cbef, and we denote by CB the end state after the simulation.
Let SB be the set of probed cells during the simulation.

B passes the test if most of these probed cells have the same content as their final value in
Cend, i.e., if CB(SB) and Cend(SB) differ by at most γmℓ−1/2 cells. In this case, we say that B is
qualified.

Next we show that A[i] is always qualified when Xi = 1. Let C
[i]
A be the true state after the

i-th segment. Note that C
[i]
A (S

[i]
A ) and Cend(S

[i]
A ) can only differ in S

[i]
A ∩ Sbad: If some cell j ∈ S

[i]
A
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has different values in C
[i]
A and Cend, it must be probed in a later segment; but it is also probed

in segment i, which tells us that j ∈ Sbad by the definition of Sbad. Combined with the fact∣∣S[i]
A ∩ Sbad

∣∣ ≤ γmℓ−1/2 (since Xi = 1), we see that A[i] must be qualified.

Thus, in either case (Xi = 0 or Xi = 1), Bob is able to recover the set A[i]. By iterating over
all i = 1, . . . , λℓ, Bob successfully recovers the partition (A[1], . . . , A[λℓ]) as required.

Analysis. Denote by Mi the message sent by Alice in the i-th round. Mi contains an indicator

Xi and an index of log
∣∣F [i]

all

∣∣ bits (when Xi = 0) or log
∣∣F [i]

qual

∣∣ bits (when Xi = 1). Formally,

|Mi| = Xi log
∣∣F [i]

qual

∣∣+ (1−Xi) log
∣∣F [i]

all

∣∣+ 1.

Thus, by (2), the message sent by Alice has at most

H(Cend | A, Cst,d,π) +

λℓ∑
i=1

E[|Mi|] ≤ R+

λℓ∑
i=1

E[|Mi|]

bits of information in total. On the other hand, since Bob can always recover the partition
(A[1], . . . , A[λℓ]) given his input (A, Cst,d,π) and Alice’s message, we must have

R+

λℓ∑
i=1

E[|Mi|] ≥ H(A[1], . . . , A[λℓ] | A, Cst,d,π),

⇔
λℓ∑
i=1

E[|Mi|] ≥ logmℓ!− λℓ logmℓ−1!−R. (3)

Next, we will derive an upper bound on E[|Mi|] that will contradict with this inequality when

E[costu] < γmℓ
100 and E[probeu] < 1

16mℓt.

4.3 Estimate the Message Length

We introduce an intermediate set F [i]
nbr := {B ∈ F

[i]
all : |A

[i]∩B| ≥ mℓ−1/2} to help us estimate F [i]
qual.

This is the set of all possible B that are not too different from the correct A[i]. Define indicator

variables Yi := 1

[
F [i]
qual ⊆ F

[i]
nbr

]
and Zi := 1

[
E
[∣∣S[i]

A

∣∣] ≤ mℓ−1t
]
. The variable Yi indicates that the

only sets that can pass the test are the ones similar to the correct A[i]. Note that Yi is a random
variable, while Zi is not (since the only random variable in the definition of Zi is placed within the
expection), which can be fully determined by the location of the current segment (i.e., determined
by the node u’s location in the tree and the segment index i). Later, we will demonstrate that
segments with Zi = 1 are likely to have Yi = 1.

Then, when Yi = Zi = 1, we can apply
∣∣F [i]

qual

∣∣ ≤ ∣∣F [i]
nbr

∣∣ on the inequality; otherwise, we just

use the trivial bound
∣∣F [i]

qual

∣∣ ≤ ∣∣F [i]
all

∣∣. Recall Xi = 1

[∣∣S[i]
A ∩ Sbad

∣∣ ≤ γmℓ−1/2
]
indicates if this is

the bad case, we then have

|Mi| ≤ (1−XiYiZi) log
∣∣F [i]

all

∣∣+XiYiZi log
∣∣F [i]

nbr

∣∣+ 1

= log
∣∣F [i]

all

∣∣−XiYiZi

(
log

∣∣F [i]
all

∣∣− log
∣∣F [i]

nbr

∣∣)+ 1.
(4)

The following claims give lower bounds on Xi, Yi, Zi and log
∣∣F [i]

all

∣∣− log
∣∣F [i]

nbr

∣∣ respectively.
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Claim 4.1. We have

E

λℓ/2∑
i=1

Xi

 ≥ 1

4
λℓ.

Proof. First, we reconsider how S
[i]
A ∩ Sbad in the i-th segment is related to costu. If some cell is

probed in s > 1 different segments of u, it incurs s− 1 ≥ s/2 costs on u. Hence, if we think every

probe of a bad cell incurs 1/2 cost, we will get a lower bound on costu. Noting that S
[i]
A ∩ Sbad is

exactly the set of bad cells probed in segment i, where each probe contributes at least 1/2 to costu,
we have

1

2
E

[
λℓ∑
i=1

∣∣S[i]
A ∩ Sbad

∣∣] ≤ E[costu] ≤
γ

100
mℓ. (5)

Then we put Xi into (5). Since Xi = 0 implies
∣∣S[i]

A ∩ Sbad

∣∣ > γmℓ−1/2,

1

2
E

[
λℓ∑
i=1

γmℓ−1

2
(1−Xi)

]
≤ 1

2
E

[
λℓ∑
i=1

|S[i]
A ∩ Sbad|

]
≤ γ

100
mℓ =

γmℓ−1 · λℓ

100

⇒ E

[
λℓ∑
i=1

(1−Xi)

]
≤ λℓ

25
,

E

λℓ/2∑
i=1

Xi

 ≥ λℓ

2
− E

[
λℓ∑
i=1

(1−Xi)

]
≥ λℓ

2
− λℓ

25
≥ λℓ

4
.

The next claim gives a bound on Yi.

Claim 4.2. For any 1 ≤ i ≤ λℓ/2, if Zi = 1, we have

Pr[Yi = 0 ∧Xi = 1] ≤ 1

8
.

Proof. Suppose Xi = 1. For any B ∈ F [i]
qual, we know A[i] and B are both qualified, which means

C
[i]
A (S

[i]
A ) and Cend(S

[i]
A ) differ in at most γmℓ−1/2 cells; so do CB(SB) and Cend(SB). Thus C

[i]
A (S

[i]
A ∩

SB) and CB(S
[i]
A ∩ SB) have at most γmℓ−1 different cells, in which case we say A[i] and B are

consistent. Formally:

Definition 4.3. For two insertion sets A,B ∈ F [i]
all, we say A and B are consistent, if CA(SA∩SB)

and CB(SA ∩ SB) have at most γmℓ−1 different cells.

Under this definition, if Xi = 1 and B ∈ F [i]
qual, then A[i] and B must be consistent. Hence,

Pr[Yi = 0 ∧Xi = 1] ≤ Pr
[(
∃B ∈ F [i]

all \ F
[i]
nbr, B ∈ F

[i]
qual

)
∧ (Xi = 1)

]
≤ Pr

[
∃B ∈ F [i]

all \ F
[i]
nbr, B and A[i] are consistent

]
.

Thus, to prove Claim 4.2, it suffices to show

Pr
[
∃B ∈ F [i]

all \ F
[i]
nbr, B and A[i] are consistent

]
≤ 1

8
.

Next, we show that a random B /∈ F [i]
nbr is unlikely to be consistent with A[i].
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Lemma 4.4 (Inner Lemma). Assume Cbef (the state before the i-th segment) and Arest are random
variables whose distribution is induced from Distribution 1. Let A,B be two uniformly random
mℓ−1-sized subsets of Arest conditioned on |A∩B| < mℓ−1/2. If for some parameter t, inequalities
1
2γmℓ logU ≥ R+5mℓ+2(β+1)mℓt (β is a global fixed constant), mℓ ≥ n1−γ/2, and E[|SA|] ≤ mℓ−1t
hold, then we have

Pr
Cbef,Arest,A,B

[
A and B are consistent

∣∣∣ |A ∩B| < mℓ−1/2
]
≤ U−γmℓ−1 .

We will prove this lemma in Section 5. Now, we continue the proof of Lemma 3.2 using this
lemma.

To apply this lemma, observe that the first two inequalities (12γmℓ logU ≥ R+5mℓ+2(β+1)mℓt

and mℓ ≥ n1−γ/2) hold because they are also premises of Lemma 3.2; the third constraint (E[|SA|] ≤
mℓ−1t) holds because Zi = 1. Moreover, note that A[i] is a random subset of Arest; if we randomly

select a B ∈ F [i]
all \ F

[i]
nbr, the distribution of (A[i], B) matches the required distribution of (A,B) in

the lemma.
Combining with the discussion above, as long as Zi = 1, we have

Pr
Cbef,Arest,A[i]

[Yi = 0 ∧Xi = 1] ≤ Pr
[
∃B ∈ F [i]

all \ F
[i]
nbr, A

[i] and B are consistent
]

≤ E
[∣∣∣{B ∈ F [i]

all \ F
[i]
nbr : A

[i] and B are consistent
}∣∣∣]

=
∣∣F [i]

all \ F
[i]
nbr

∣∣ · Pr
Cbef,Arest,A[i]

B∈F [i]
all\F

[i]
nbr

[
A[i] and B are consistent

]

≤
∣∣F [i]

all

∣∣ · U−γmℓ−1 (∗)
≤ 2mℓ · U−γmℓ−1 = 2λℓmℓ−1 · n−αmℓ−1/6, (6)

where Step (∗) is derived by applying Lemma 4.4 with (A,B) = (A[i], B). (Recall γ = α
6(1+α) .)

Recall that in the statement of Lemma 3.2, we require λℓ ≤ log nα/12. Plugging this into (6),
we obtain Pr[Yi = 0∧Xi = 1] ≤ n−αmℓ−1/12. Since α is a constant in our assumption U = poly(n),
with sufficiently large n, we have Pr[Yi = 0∧Xi = 1] ≤ 1/8. (This probability can be smaller than
any fixed constant, but 1/8 is enough for us.)

Using the condition E[probeu] ≤ 1
16mℓt, we can derive a bound of

∑
Zi as below.

Claim 4.5. We have
λℓ/2∑
i=1

(1− Zi) ≤
1

16
λℓ.

Proof. Note that
∑λℓ/2

i=1

∣∣S[i]
A

∣∣ ≤∑λℓ
i=1

∣∣S[i]
A

∣∣ ≤ probeu. Combined with Zi := 1

[
E
[∣∣S[i]

A

∣∣] ≤ mℓ−1 · t
]
,

we get

λℓ/2∑
i=1

(1− Zi) ·mℓ−1 · t ≤
λℓ/2∑
i=1

E
[∣∣S[i]

A

∣∣] ≤ E[probeu] ≤
1

16
mℓ · t ⇒

λℓ/2∑
i=1

(1− Zi) ≤
1

16
λℓ.

Next, a simple counting argument implies a lower bound on log
∣∣F [i]

all

∣∣− log
∣∣F [i]

nbr

∣∣.
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Claim 4.6. For 1 ≤ i ≤ λℓ/2, we have

log
∣∣F [i]

all

∣∣− log
∣∣F [i]

nbr

∣∣ ≥ 1

4
mℓ−1 log λℓ.

Proof. By definition,
∣∣F [i]

all

∣∣ = (|Arest|
mℓ−1

)
, and since i ≤ λℓ/2, Arest satisfies |Arest| ≥ mℓ/2, so

log
∣∣F [i]

all

∣∣ ≥ log

(
mℓ/2

mℓ−1

)
≥ log

(
mℓ/2

mℓ−1

)mℓ−1

= mℓ−1 log λℓ −mℓ−1. (7)

On the other hand, we have

∣∣F [i]
nbr

∣∣ = mℓ−1∑
j=mℓ−1/2

(
mℓ−1

j

)(
|Arest| −mℓ−1

mℓ−1 − j

)

≤ mℓ−1

(
mℓ−1

mℓ−1/2

)(
|Arest|
mℓ−1/2

)
,

log
∣∣F [i]

nbr

∣∣ ≤ logmℓ−1 +mℓ−1 + log

(
mℓ

mℓ−1/2

)
≤ 2mℓ−1 +

mℓ−1

2
log 2eλℓ

≤ 4mℓ−1 +
mℓ−1

2
log λℓ.

On the first line above, we count the number of elements B ∈ F [i]
nbr by enumerating j = |A[i] ∩B|;

the two binomial coefficient factors represent the number of ways to select A[i] ∩ B and B \ A[i],
respectively. The inequality on the second line holds because both binomial coefficients reach their
maximum values when j = mℓ−1/2. Combining the last line with (7), we have

log
∣∣F [i]

all

∣∣− log
∣∣F [i]

nbr

∣∣ ≥ mℓ−1

2
log λℓ − 5mℓ−1

≥ 1

4
mℓ−1 log λℓ

as we have assumed log λℓ ≥ 64. This proves the claim.

Now we are ready to finish the proof of Lemma 3.2:

Proof of Lemma 3.2. Suppose the lemma does not hold. Recall (4):

|Mi| ≤ log
∣∣F [i]

all

∣∣−XiYiZi

(
log

∣∣F [i]
all

∣∣− log
∣∣F [i]

nbr

∣∣)+ 1.

For the segments with i ≤ λℓ/2, we use the previous claims to bound each term in this inequality.
From Claims 4.1, 4.2 and 4.5, we can bound the expectation of XiYiZi by writing it as

E[XiYiZi] ≥ E[XiYiZi − (1−Xi)(1− Zi)]

= E[Xi − (1− Zi)−XiZi(1− Yi)]

= E[Xi]− (1− Zi)− Zi Pr[Yi = 0 ∧Xi = 1].

Claim 4.6 is a direct upper bound on the term log
∣∣F [i]

all

∣∣− log
∣∣F [i]

nbr

∣∣.
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For other segments with i > λℓ/2, we simply apply the trivial bound |Mi| ≤ log
∣∣F [i]

all

∣∣+1. Now
taking summation over all the segments, i.e., i = 1, . . . , λℓ, we get

λℓ∑
i=1

E[|Mi|] ≤ λℓ +

λℓ∑
i=1

log
∣∣F [i]

all

∣∣− λℓ/2∑
i=1

(
E[Xi]− (1− Zi)− Zi Pr[Yi = 0 ∧Xi = 1]

)
· 1
4
mℓ−1 log λℓ

= λℓ +

λℓ∑
i=1

log
∣∣F [i]

all

∣∣−
E

λℓ/2∑
i=1

Xi

− λℓ/2∑
i=1

(1− Zi)−
∑

1≤i≤λℓ/2
Zi=1

Pr[Yi = 0 ∧Xi = 1]

 · 14mℓ−1 log λℓ

≤ λℓ +

λℓ∑
i=1

log
∣∣F [i]

all

∣∣− (
λℓ

4
− λℓ

16
− 1

8
· λℓ

2

)
· 1
4
mℓ−1 log λℓ

= λℓ + logmℓ!− λℓ logmℓ−1!−
mℓ

32
log λℓ. (8)

On the other side, recall (3):

λℓ∑
i=1

E[|Mi|] ≥ logmℓ!− λℓ logmℓ−1!−R.

Combining it with (8), we get

R ≥ mℓ

32
log λℓ − λℓ >

mℓ

64
log λℓ, (9)

where the second inequality is from λℓ ≤ mℓ and log λℓ ≥ 64. Finally, observe that (9) contradicts
with the premise of the lemma, R ≤ mℓ

100 log λℓ. This completes the proof of Lemma 3.2.

5 Inner Lemma

In this section, we prove Lemma 4.4, the last piece of our lower bound.

Lemma 4.4 (Restated). Assume Cbef (the state before the i-th segment) and Arest are random
variables whose distribution is induced from Distribution 1. Let A,B be two uniformly random
mℓ−1-sized subsets of Arest conditioned on |A∩B| < mℓ−1/2. If for some parameter t, inequalities
1
2γmℓ logU ≥ R+5mℓ+2(β+1)mℓt (β is a global fixed constant), mℓ ≥ n1−γ/2, and E[|SA|] ≤ mℓ−1t
hold, then we have

Pr
Cbef,Arest,A,B

[
A and B are consistent

∣∣∣ |A ∩B| < mℓ−1/2
]
≤ U−γmℓ−1 .

The view here is a bit different from previous sections as we focus on a single segment of length
mℓ−1 instead of all λℓ segments within a node u. We start by restating the procedure within the
single segment using more specific notations.

1. Parameters. We still use n to represent the number of keys stored in the data structure,
and U = n1+α to represent the size of the key universe. Define m < n/2 as the number of
meta-operations in the segment. When applying this lemma in Section 4, we set m = mℓ−1.

In the statement of Lemma 4.4 above, the probability is conditioned on |A ∩ B| < m/2.
Below, we first prove the lemma conditioned on |A ∩ B| = g for every fixed g < m/2. Then
Lemma 4.4 can be directly implied via the law of total probability.

20



The parameters n,U,m, g are fixed, while all other involved variables are random according
to the hard distribution. Their distributions will be explicitly stated below.

2. Initial keys. Let K be the key set stored in Cbef, the state of the data structure just before the
current segment. It is chosen uniformly at random among all n-sized subsets of the universe
[U ]. Cbef is also a random state, about which we only know that its key set K follows the
above uniform distribution.

3. Deletion sequence. In Section 4, we used d[i] to denote the keys to be deleted in the i-th
segment. Now we omit the superscript i since we are focusing on a single segment, using d
to denote the deletion sequence in the segment. We further divide the information of d into
two parts: the set of keys D := {d1, . . . , dm} to be deleted, and the order in which the keys
in D are deleted. The latter one is formulated by a permutation σ over [m].

Conditioned on K, it is easy to see that D follows the uniform distribution over all m-element
subsets of K and σ is a random permutation.

4. Insertion sets. The two random insertion sets A and B are uniformly chosen over m-element
subsets of [U ] \K, conditioned on |A ∩ B| = g. Note that in the original description, A,B
are sampled within Arest, but Arest is a random set by itself. Thus, we can avoid using the
intermediate variable Arest and directly describe the distribution of (A,B) as above. Arest

will not appear throughout the proof of Lemma 4.4. Also note that if we hide B and only
observe the distribution of A (conditioned on K), it is a uniformly random m-sized subset of
[U ] \ K, which exactly matches the distribution of the insertion set in the current segment
(induced from the hard instance).

We use a permutation π to represent the order in which the keys are inserted. It was denoted
by π[i] in the outer game. We denote by a,b the ordered sequences of inserted keys, which
are obtained by permuting A,B with the same permutation π. (a was denoted by a[i] in the
outer game.)

5. Ending states. For any 1 ≤ i ≤ m, recall that meta-operation i consists of three operations:
Query(di), Delete(di), Insert(ai), assuming the insertion sequence a is processed. The
state of the data structure after executing all m meta-operations on Cbef is denoted by CA.
Similarly, if we replace a with b and execute these operations on Cbef, we obtain another end-
ing state CB. Let SA, SB be the sets of probed cells during these two procedures, respectively.
Note that from the condition of Lemma 4.4, E[|SA|] = E[|SB|] ≤ mt.

6. Consistency. Recall Definition 4.3: We say A and B are consistent if CA(SA ∩ SB) and
CB(SA ∩ SB) have at most γm different cells, where γ := α

6(1+α) is a fixed constant.

Based on these definitions, we restate Lemma 4.4 as follows:

Lemma 5.1 (Inner Lemma Restated). For integers U, n,m, g satisfying g < m/2, m < n/2,
U = poly(n), assume the random variables Cbef,d, π, A,B are randomly sampled according to the
procedure above. Let t > 0 be a parameter such that the constraints 1

2γm logU ≥ R+5m+2(β+1)mt

(β is a global fixed constant), m ≥ n1−γ/2, and E[|SA|] ≤ mt are satisfied, we must have

Pr
[
A and B are consistent

∣∣∣ |A ∩B| = g
]
≤ U−γm.

Next, we introduce a new communication game to prove this lemma.
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5.1 Inner Game

Sender Alice and receiver Bob are playing a communication game based on the random process
above. The public information known by them are the fixed parameters g,m, n, U . In addition,
Alice knows the initial state Cbef and sequences a,b,d; Bob only knows permutations π and σ.
Now Alice wants to send Bob A,B,D and the initial key set K when A and B are consistent. Since
Bob knows the two permutations, after learning A,B,D, he knows the complete sequences a,b,d.
To achieve this goal, they follow the protocol introduced below, which makes use of the following
data structure from [CKRT04].

Theorem 5.2 (Bloomier Filter [CKRT04]). Let A,B be two given disjoint subsets of [U ]. There
is a set S separating A,B, i.e., A ⊆ S and B ∩S = ∅, that we can encode within O(|A|+ |B|) bits
in expectation. We denote the leading factor within the big-O notation by β, which is a global fixed
constant that appeared in Lemmas 3.2 and 4.4. (Formally, the expected encoding length is at most
β(|A|+ |B|) for all |A|+ |B| > 0.)

The protocol is as follows:

1. Check consistency. First, Alice determines an indicator variableW := 1[A and B are consistent]
and sends it to Bob. If A and B are not consistent, the game is terminated immediately.
Otherwise, they continue with the subsequent steps.

2. Send B. Alice directly sends B using log
(
U
m

)
bits. Since Bob knows π, he learns b after

receiving the message.

3. Send cell contents. Alice sends an artificial memory state Cmix, which is a combination of
Cbef and CA. For the cells in SB, Cmix(SB) = Cbef(SB); for the cells outside SB, Cmix(SB) =
CA(SB). Sending this state takes Nw = log

(
U
n

)
+R bits.

To help Bob use this mixed state correctly, Alice also needs to tell Bob which cells in Cmix

come from Cbef and which cells come from CA. The most trivial way of sending this “partition
information” is to send one bit for each cell to indicate where it comes from, which takes a
total of O(n) bits. Unfortunately, this trivial way does not suffice for all the cases we concern,5

and we use a better approach as follows.

Notice that Cbef(SA ∪ SB) = CA(SA ∪ SB). For cells in SA ∪ SB, it is correct to treat them
as coming from either Cbef or CA. Hence Alice only needs to send some partition

(
S∗
B;S

∗
B

)
that agrees with the true partition

(
SB;SB

)
in SA ∪ SB (i.e., SB ⊆ S∗

B and SA \ SB ⊆ S∗
B).

Fortunately, the Bloomier Filter stated in Theorem 5.2 solves this task. It can encode such
a partition

(
S∗
B;S

∗
B

)
using β|SA ∪ SB| bits in expectation for a global constant β > 0. Alice

directly sends the Bloomier Filter to Bob, which takes β|SA∪SB| ≤ 2βmt bits in expectation,
since we have assumed E[|SA|] = E[|SB|] ≤ mt. Then Bob learns the partition

(
S∗
B;S

∗
B

)
; in

particular, Bob now knows Cbef(S
∗
B).

4. Do simulation and recover D. Bob runs the following test for all possible choices of D on
Cbef(S

∗
B). He enumerates all m-sized subsets D∗ ⊂ [U ], and permutes it according to σ to

get the deletion sequence d∗. He then performs m meta-operations from Cbef of the form
“Query(d∗i ) – Delete(d∗i ) – Insert(bi)”, pretending that D∗ is the true deletion set. During

5Actually, it is enough to use this O(n)-bit approach to prove Theorem 3.1 where we only use Lemma 5.1 for
m ≥ n

log logn
. The following improved approach is needed in the later discussion about an extension of Theorem 3.1

(i.e., Theorem 6.1), where we need to use Lemma 5.1 for much smaller m where an O(n) cost is unaffordable.
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the test, once a cell outside S∗
B is probed, or any Query returns “not exist”, the test terminates

and D∗ fails the test. If no such exception occurs during the whole simulation, we say D∗

passes the test.

It is clear that the correct D will pass the test. In fact, to pass the test, D∗ must satisfy
D∗ ⊆ K ∪B, as the data structure will not return “exist” for any key it does not store. Let
F = {D∗ : D∗ passes the test}, then |F| ≤

(|K∪B|
m

)
=

(
n+m
m

)
. So Alice can send Bob an index

in F within log
(
n+m
m

)
bits, to tell him the index of D in F . After receiving the message, Bob

recovers D and thus knows d.

5. Recover SB and SA ∩ SB. After knowing d and b, Bob can simulate the correct operation
sequence again, recording which cells are probed during the process, namely SB. Then, Alice
sends the subset SA ∩ SB ⊆ SB to Bob given SB. It takes at most E[|SB|] ≤ mt bits in
expectation.

6. Recover A and K. Alice sends Bob the cells where CA(SA ∩ SB) and CB(SA ∩ SB) are
different, including both the address information (i.e., the set of indices of these cells) and
their cell contents. The former costs E[|SB|] ≤ mt bits in expectation, as it is a subset of SB.
For the latter, since A and B are consistent, the number of such cells will not exceed γm by
definition. Thus, we need totally mt + γmw = mt + γm logU bits to send the message (we
have assumed w = logU).

After that, Bob can use this message to obtain CA:

• In the cells SA ∩SB, CA and CB have limited difference, which are already sent to Bob,
so Bob can edit CB(SA ∩ SB) to obtain CA(SA ∩ SB).

• The cells SA are not probed before reaching CA, so in these cells we have CA(SA) =
Cbef(SA) = Cmix(SA).

• Moreover, CA(SA \ SB) = Cmix(SA \ SB).

Specifically, the last two parts imply that CA(SA ∩ SB) = Cmix(SA ∩ SB). Bob learns CA by
merging it with the first part CA(SA ∩ SB). Note that Bob does not know SA (yet); he only
knows SB and SA ∩ SB. But SA is not needed for this merging process.

At this point, Bob learns the whole state CA, and hence knows its key set (K \D) ∪A. The
final step is to send a log

(
n
m

)
-bit message specifying A given (K \D)∪A. Then Bob can infer

A and K respectively.

Thus, Bob recovers the four sets A,B,D,K in this whole process when A and B are consistent
(W = 1). Denote the message Alice sends (including W ) by Msend, and denote the information
Bob learns about A,B,D,K by Mlearn. Here Msend and Mlearn can be seen as random variables
about the random process. Since Mlearn can be inferred from Msend under any condition, we have

H(Msend |W = 1) ≥ H(Mlearn |W = 1). (10)

In the next subsection, we will analyze the entropy of Msend and Mlearn according to each step of
communication.
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5.2 Entropy Calculation

For Msend, we add the message sent in each step together:

H(Msend |W = 1) ≤ log

(
U

m

)
+

(
log

(
U

n

)
+R

)
+ 2βmt+ log

(
n+m

m

)
+mt+ (mt+ γm logU) + log

(
n

m

)
,

(11)

where the terms on the RHS correspond to the cost of sending B, Cmix, the Bloomier Filter, the
index of D, SA ∩ SB conditioned on SB, the difference between CA(SA ∩ SB) and CB(SA ∩ SB),
and A conditioned on (K \D) ∪A, respectively.

All information Bob learns is Mlearn = (A,B,D,K), so we have

H(Mlearn |W = 1) ≥ log

(
1
/

max
A∗,B∗,D∗,K∗

Pr
A,B,D,K

[
A=A∗, B=B∗, D=D∗,K=K∗ |W = 1

])
.

(12)

We can see that for any A∗, B∗, D∗,K∗, the probability term can be rewritten as

Pr[A = A∗, B = B∗, D = D∗,K = K∗ |W = 1]

≤ Pr[A = A∗, B = B∗, D = D∗,K = K∗]

Pr[W = 1]

=

(
Pr[W = 1] ·

(
U

n

)
·
(
n

m

)
·
(
U − n

m

)
·
(
m

g

)
·
(
U − n−m

m− g

))−1

, (13)

where the binomial coefficients in the last line represent the number of ways to choose K, (D | K),
(A | K), (A ∩B | A), and (B \A | K,A), respectively.

Substituting (13) into (12), we get

H(Mlearn |W = 1)

≥ log Pr[W = 1] + log

(
U

n

)
+ log

(
n

m

)
+ log

(
U − n

m

)
+ log

(
m

g

)
+ log

(
U − n−m

m− g

)
.

Again, substituting this bound and (11) into (10) gives

log
1

Pr[W = 1]

≥ log

(
U

n

)
+ log

(
n

m

)
+ log

(
U − n

m

)
+ log

(
m

g

)
+ log

(
U − n−m

m− g

)
− log

(
U

m

)
− log

(
U

n

)
−R− 2m(β + 1)t− log

(
n+m

m

)
− γm logU − log

(
n

m

)
= log

(
m

g

)
+ log

(
U − n−m

m− g

)
−
(
log

(
U

m

)
− log

(
U − n

m

))
− log

(
n+m

m

)
−R− 2m(β + 1)t− γm logU. (14)

We simplify the RHS with the following facts:

• log
(
U
m

)
− log

(
U−n
m

)
≤ m log U−m

U−n−m ≤ m as long as n is sufficiently large.
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• Similarly, log
(
U−n−m
m−g

)
≥ log

(
U

m−g

)
−m.

• log
(
n+m
m

)
≤ m log e(n+m)

m ≤ m log 2en
m ≤ m

(
3 + log n

m

)
; since we required m ≥ n1−γ/2, this

term is at most γ
2m log n+ 3m ≤ γ

2m logU + 3m.

• Recall that we have g < m
2 , m < U

2 , and γ = α
6(1+α) , so

log

(
U

m− g

)
≥ log

(
U

m/2

)
≥ m

2
log

U

m
≥ m

2
log

U

U1/(1+α)
=

m

2

(
1− 1

1 + α

)
logU = 3γm logU,

where the third inequality holds as m ≤ n = U1/(1+α). Therefore, log
(
U−n−m
m−g

)
≥ log

(
U

m−g

)
−

m ≥ 3γm logU −m.

• log
(
m
g

)
≥ 0, we just omit it.

Therefore, Eq. (14) can be rewritten as

log
1

Pr[W = 1]
≥ (3γm logU −m)−m−

(γ
2
m logU + 3m

)
−R− 2m(β + 1)t− γm logU

≥ 3

2
γm logU − (5m+R+ 2m(β + 1)t).

Recall that we have R + 5m + 2m(β + 1)t ≤ 1
2γm logU as a premise of Lemma 5.1, so we have

log(1/Pr[W = 1]) ≥ γm logU . Thus,

Pr
[
A,B are consistent

∣∣∣ |A ∩B| = g
]
= Pr[W = 1] ≤ 2−γm logU = U−γm,

which concludes the proof of Lemma 5.1. Lemma 4.4 is a direct corollary of Lemma 5.1, as we only
need to apply the law of total probability over g < m/2.

6 Extended Lower Bound

In the previous sections, we have proved a space-time lower bound for dynamic dictionaries: If
the data structure has redundancy at most n log(k) n (i.e., incurs at most log(k) n wasted bits per
key), its expected amortized time complexity is at least Ω(k). In this section, we extend this result
to dictionaries with sublinear redundancy R < n. The result is stated as the following theorem,
rephrasing Theorem 1.2 with respect to Distribution 1.

Theorem 6.1. For any dynamic dictionary with redundancy R ≤ n, running it on Distribution 1
takes at least Ω(log(n/R)) expected time per operation.

Proof. The proof is similar to Section 3, based on a tree structure, but we will use different param-
eters.

Same as before, there are n (level-0) leaf nodes on the tree, each corresponds to a single meta-
operation. Then, we let each level-1 node represent an interval of m1 := max(R,n1−γ/2) consecutive
meta-operations, i.e., it is a parent of m1 leaf nodes.6 Beyond level 1, we fix λ = 264 as a large
constant and build a λ-ary tree, letting every node (except the root) have exactly λ children.
Finally, there is a single root node at level h = logλ(n/m1) = Ω(log(n/R)).7

6For simplicity, we assume that all parameters are integers, as is the case throughout this paragraph.
7If m1 = R, it is clear that h = logλ(n/R) = Θ(log(n/R)); if m1 = n1−γ/2, we also have h = logλ nγ/2 =

Θ(logn) = Ω(log(n/R)).
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Recall that mℓ represents the number of operations within each level-ℓ node. For 1 ≤ ℓ < h, we
have mℓ = m1λ

ℓ−1 ≥ max(R,n1−γ/2).
We apply Lemma 3.2 on every node in level ℓ ∈ [2, h]. First, we verify the remaining premises

in Lemma 3.2:

• 264 ≤ λ ≤ α log n/12. This condition is satisfied as long as n is sufficiently large.

• mℓ log λ ≥ 100R. For every ℓ ≥ 2, the width mℓ satisfies mℓ log λ > λm1 > 100R.

• 1
2γmℓ logU ≥ R+ 5mℓ + 2(β + 1)mℓt. We still set t = γ

8(β+1) logU , so we only need to show
1
4γmℓ logU ≥ R+ 5mℓ. When n is sufficiently large, there is

γmℓ logU ≥ 24mℓ ≥ 4(R+ 5mℓ).

• mℓ ≥ n1−γ/2 holds due to the value of m1.

Therefore, for the levels ℓ ∈ [2, h], we can apply Lemma 3.2 on every node. Finally, similar to the
final step of Theorem 3.1, we can consider the following two cases to finish the proof:

• If there exists a level ℓ in which at least half of the nodes satisfy E[probeu] ≥ 1
16mℓt, then we

bound the expected time by 1
2 ·

n
mℓ
· 1
16mℓt =

γ
256(β+1) ·n logU . As the coefficient is a constant

and logU ≥ log(n/R), the expected time per operation is at least Ω(log(n/R)).

• Otherwise, for every level ℓ, at least half of the nodes in level ℓ satisfy E[costu] ≥ γ
100mℓ.

Taking summation of all E[costu], the total time cost is at least
∑h

ℓ=2
γ
100mℓ· 12 ·

n
mℓ

= γ
200n(h−1)

in expectation, so the expected time cost per operation is at least Ω(h) = Ω(log(n/R)).

7 Key-Value Reduction

So far we have only considered the lower bound for key-only dictionaries that store n different keys
in the universe [U ]. In this section, we will extend this result to dictionaries with values associated
with keys:

Definition 7.1. A key-value dictionary, denoted by Dkv, is a dictionary that stores n key-value
pairs (k, v) ∈ [U ] × [V ], where all keys are distinct. Dkv supports insertions and deletions of key-
value pairs. Moreover, when querying some key k, it returns whether k is present, together with the
corresponding value v of k if k is in Dkv.

In this definition, we call [U ] the key universe and [V ] the value universe. Without loss of
generality, we assume that the word-size w satisfies w = logU + log V , so we can store both the
key and the value in a single word.

The memory usage of Dkv can be represented by log
(
U
n

)
+n log V +R, where the first two terms

are for succinct storage of n keys and n values, and R is the redundancy of Dkv. Below we will
derive a reduction from Dkv to some key-only dictionary denoted by Dk-only, and prove that we
can use Dkv to simulate Dk-only with little additional time and space consumption. This theorem
implies a time-space lower bound similar to the key-only version.

Theorem 7.2. Assume U = n1+α where α is a constant. For sufficiently large n, if we have a key-
value dictionary Dkv with redundancy R = Ω(n1−α/2) and running time T , then setting U ′ = U×V ,
we can construct a key-only dictionary Dk-only on universe [U ′], which can solve Distribution 1 with
redundancy R+ o(R) and running time T +O(1) in expectation.
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Proof. The intuition is to split a key x ∈ [U ′] in Dk-only into two parts (k, v) with length logU and
log V bits, respectively. We regard the two parts as a key-value pair, and transform the operation
on Dk-only to an operation on Dkv. Roughly speaking, an insertion/deletion of x in Dk-only is turned
into an insertion/deletion of (k, v) in Dkv, and a query of x in Dk-only will return “true” if and only
if k is in Dkv while the corresponding value equals v.

If no key collisions occur, i.e., all pairs (k, v) from the transformation have different k, we can
directly simulate Dk-only with Dkv to complete all operations. In fact, among all 2n keys inserted
in Distribution 1, the expected number of collisions is only O(n2/U) = O(n1−α); we maintain
a separate compact hash table to store those collided keys, which takes additional O(n1−αw) =
o(n1−α/2) = o(R) space and O(1) update/query time.

When R = Θ(n1−α/2), the above theorem combined with Theorem 6.1 already gives the best
possible time lower bound T ≥ Ω(log(n/R)) = Ω(log n), which also applies for R = o(n1−α/2).
Therefore, we deduce that the time-space trade-off of key-value dictionaries is not weaker than that
of key-only dictionaries. Thus both Theorem 3.1 and Theorem 6.1 can be applied to show

• T ≥ Ω(k) when R = O(n log(k) n);

• T ≥ Ω(log(n/R)) for all R ≤ O(n).

8 Update-Only Lower Bound

In this section, we extend the lower bound from the previous sections by relaxing the restriction
on query time and focusing only on the trade-off between space and update time. Specifically, we
prove that if the keys are associated with long values, the updates must follow the same time-space
lower bound even if the queries are allowed to take arbitrarily long time.

First, note that although Distribution 1 combines a query, a deletion, and an insertion into
every meta-operation, the existence of the query is only used once in the inner game. In Step 4 of
the inner game protocol, Bob needs to learn the deleted set D by performing queries on Cbef(S

∗
B).

The inclusion of queries in the meta-operations ensures that the cell set S∗
B is sufficient to answer

queries for the true set D, allowing D to pass the test.
This observation suggests that, if we can modify the protocol of the inner game to avoid using

queries in Step 4, we can eliminate queries from the hard distribution and prove a trade-off between
space and update time (without query-time requirements). We demonstrate below that for the key-
value dictionary with a relatively long value length, we can make such a modification and prove an
update-only lower bound.8

Theorem 1.3 (Restated). Consider a dynamic dictionary storing at most n keys from [U ], each
associated with a value in [V ], with R bits of redundancy, where U ≥ 3n and V = U2+Θ(1)/n2.
Then, in the cell-probe model with word-size w = Θ(logU),

1. if R ≥ n can be written as R = O(n log(k) n) for k ≤ log∗ n, then the expected update time is
Ω(k);

2. if R < n, then the expected update time is Ω(log(n/R)).

8However, the problem of proving an update-only lower bound for a key-only dictionary remains open and will be
discussed in Section 10.
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The proof of Theorem 1.3 is based on directly modifying the proof of Theorem 1.1, instead of
reductions as in Section 7. It is worth noting that the combination of Theorem 7.2 and Theorem 1.3
covers all cases for key-value dictionaries: Theorem 7.2 works for the cases with long keys, i.e.,
U = n1+Θ(1), while Theorem 1.3 covers the cases with short keys, i.e., U = n1+o(1) and V = nΘ(1).

Proof. The proof of this theorem follows the same framework as the proof of Theorem 1.1. Similar
to Distribution 1, the hard distribution used here is a sequence of nmeta-operations, each consisting
of a deletion and an insertion only (no query). When we insert a key, its associated value is sampled
uniformly at random from [V ]. We build a tree on top of these n meta-operations and assign each
cell-probe to an internal node of the tree as before. We bound the total cost assigned to an internal
node using the outer lemma.

The proof of the outer lemma remains the same as in Lemma 3.2, which makes use of a commu-
nication game (the outer game). Before the game starts, we give both Alice and Bob the associated
values to all keys. During the game, Alice sends a message to tell Bob each key is inserted in which
segment, where the length of the message is analyzed to complete the proof-by-contradiction. The
proof of the outer lemma relies solely on the randomness of the order of inserted keys, so it works
for short keys (U = n1+o(1)) as well.

It remains to modify the inner lemma to avoid using query operations. The modified inner
lemma is shown below. (Some of the constants are different from those in Lemma 4.4, but they are
not essential to the application in the outer lemma.) Throughout the remainder of this section, we
adopt the notations from Section 5 unless otherwise specified.

Lemma 8.1. For integers U, V, n,m, g and real number γ > 0 satisfying g < m/2, m < n/2,
U ≥ 3n, V ≥ U2+5γ/n2, assume the random variables Cbef,K,d, π, A,B are randomly sampled
according to the procedure in Section 5, and assume the associated values of all keys are sampled
independently and uniformly at random from [V ]. Let t > 0 be a parameter such that the constraints
1
2γm logU ≥ 2mt+ 2R+ 4m and E[|SA|] ≤ mt are satisfied, we must have

Pr
[
A and B are consistent

∣∣∣ |A ∩B| = g
]
≤ U−γm.

The proof of Lemma 8.1 leverages the randomness of the values in addition to the keys. Let vA

denote the values associated with keys in the inserted key set A. Similarly, we can define vB, vD,
vK , vK\D, and vA∪B for B, D, K, K \D, and A ∪ B, respectively. The inner game is modified as
follows by making the key sequences pre-given.

• In addition to the pre-given fixed parameters g, m, n, U , and V , the sequences of keys a,
b, and d are also given to both Alice and Bob before the game. (Bob does not know K in
advance.)

• Alice further knows Cbef, vA, vB, and vD before the game.

• The goal of the game is to let Bob learn vA∪B, vK , and K \D when A and B are consistent.

The protocol is as follows.

1. Check consistency. Alice sends W := 1[A and B are consistent] to Bob, and the game termi-
nates if W = 0.

2. Send vB. Alice directly sends vB using m log V bits.
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3. Send cell contents. Alice sends the artificial memory state Cmix usingNw = n log V +log
(
U
n

)
+

R bits. Note that Alice does not need to send the partition information by Bloomier Filter
as before, since SB can be learned by Bob in the next step.

4. Recover SB and CB(SB). As Bob already knows b, vB and d, he can simulate the meta-
operation sequence of b on Cmix. (Note that deleting a key from the data structure only
requires knowledge of the key but not its value, thus Bob does not need vD to complete the
simulation.) We still let SB represent the set of cells probed during this simulation, which
Bob can learn via the simulation. Since Cmix(SB) = Cbef(SB), the simulation process is the
same as doing these operations on Cbef, so Bob can also learn CB(SB), the memory state
after the simulation.

5. Recover vA,vK\D and K \ D. Alice sends SA ∩ SB (conditioned on SB) together with the
difference between CA(SA ∩ SB) and CB(SA ∩ SB) using 2mt+ γm logU bits in expectation.
Then, Bob can learn CA by combining CA(SA ∩ SB) and Cmix(SA ∩ SB). He can further
extract vA,vK\D, and K \D from CA.

9

6. Recover vD. This step is different from Section 5 in the sense that we do not rely on query
operations here.

• First, Alice sends CB: Since all the keys stored in CB (i.e., K \ D and b) and their
corresponding values (vK\D and vB) are known to Bob, Alice only needs to send CB

conditioned on these keys and values. This can be done using at most R bits.

• Next, Bob computes Cbef: It is obtained by combining Cbef(SB) = Cmix(SB) and
Cbef(SB) = CB(SB). The first equality holds due to the definition of Cmix, while the
second holds because cells in SB are not probed in the process of transforming Cbef to
CB.

• Finally, Bob extracts vD from Cbef.

Similar to Lemma 4.4, we can derive the following inequality from the modified inner game:

H(Msend |W = 1) ≥ H(Mlearn |W = 1). (15)

To compute the left-hand side, we add up the messages sent in each step:

H(Msend |W = 1) ≤ m log V +

(
n log V + log

(
U

n

)
+R

)
+ (2mt+ γm logU) +R.

For the right-hand side, we can apply the same technique as in Lemma 4.4 to handle the condition

9Extracting information from the data structure can be done by querying all possible elements in the key universe.
This can take arbitrarily long time.
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W = 1. Here, Mlearn = (vA∪B,vK ,K \D | a,b,d), so we can obtain

H(Mlearn |W = 1)

≥ log

(
1

/
max

v∗
A∪B ,v∗

K ,K∗
Pr

vA∪B ,vK ,K

[
(vA∪B,vK ,K \D) = (v∗

A∪B,v
∗
K ,K

∗ \D)
∣∣∣ a,b,d,W = 1

])
≥ log

(
Pr[W = 1]

/
Pr

vA∪B ,vK ,K

[
(vA∪B,vK ,K \D) = (v∗

A∪B,v
∗
K ,K

∗ \D)
∣∣∣ a,b,d])

= log Pr[W = 1] + (2m− g + n) log V + log

(
U − 3m+ g

n−m

)
≥ log Pr[W = 1] + (2m− g + n) log V + log

(
U − 3m

n−m

)
.

Plugging these bounds back into (15), we get

log
1

Pr[W = 1]
≥ (m− g) log V + log

(
U − 3m

n−m

)
− log

(
U

n

)
− (γm logU + 2mt+ 2R)

≥ 1

2
m log V −

(
m log

U

n
+ 4m

)
− (γm logU + 2mt+ 2R)

≥ 5

2
γm logU − (γm logU + 2mt+ 2R+ 4m)

≥ γm logU.

Here the second inequality is due to g < m/2 and

• log
(

U
n−m

)
− log

(
U−3m
n−m

)
≤ (n −m) log U−(n−m)

U−3m−(n−m) ≤ (n −m) log 2n+m
2n−2m ≤

3m
2 ln 2 < 3m (here

we used log(1 + x) ≤ x/ ln 2);

• log
(
U
n

)
− log

(
U

n−m

)
≤ m log U−n+m

n−m+1 ≤ m log U
n/2 = m log U

n +m.

The third inequality is due to the condition V ≥ U2+5γ/n2, and the fourth inequality is due to the
condition 1

2γm logU ≥ 2mt+ 2R+ 4m. This proves Lemma 8.1.

9 Lower Bounds for Related Problems

9.1 Strongly History-Independent Dictionaries

In this subsection, we show a brief overview of the lower bounds for strongly history-independent
dictionaries. Recall that a strongly history-independent dictionary’s memory state only depends
on the current set of keys stored in it, and possibly some random bits; moreover, by Yao’s Minimax
Principle, we may assume without loss of generality that the algorithm is deterministic, which
means we can fully recover its memory state by knowing only the current key set.

This fact benefits our Protocol 1 for the outer game: Bob already knows the starting state Cst,
the keys to insert A, and the keys to delete d, which together can infer the key set Kend at the
end, and further, the memory state Cend at the end. Hence, Alice no longer needs to send Cend

to Bob, which costed R bits of information and was the only step involving the redundancy R in
Section 4. After eliminating this cost, the proof in Section 4 works regardless of the redundancy
R, except that it still relies on the Inner Lemma 4.4.
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We do not change the statement (or the proof) of the inner lemma; however, it has a larger
tolerance of redundancy R than the initial outer lemma: R ≤ 1

100γmℓ logU = Θ(mℓ logU) suffices
for its premise, where mℓ is the number of meta-operations the current node represents.

Recall that the entire proof is based on a tree on top of n meta-operations. Now, we set the tree
parameters similarly to Section 6: the branching factor is a fixed large constant λ = 264, while every
level-1 node (parent of leaves) represents m1 := max

(
100R
γ logU , n

1−γ/2
)
consecutive meta-operations.

Under these parameters, the height of the tree is Θ
(
log n logU

R

)
, and for every internal node of the

tree,
1

100
γmℓ logU ≥

1

100
γm1 logU ≥ R,

which means the inner lemma’s premise is satisfied, thus the outer lemma holds on levels ℓ ≥ 2.
By a similar argument as the proof of Theorem 3.1, we conclude the following result.

Theorem 1.4 (Restated). For U = n1+Θ(1) and R ≥ 1, any strongly history-independent dynamic
dictionary storing at most n keys from [U ] with R bits of redundancy must have expected insertion,
deletion or query time at least Ω

(
log n logU

R

)
, in the cell-probe model with word-size w = Θ(logU).

9.2 Stateless Allocation

We recall the stateless allocation problem mentioned in Section 1: The algorithm is given a set
S ⊆ [U ] of at most (1− ε)n elements, and it should allocate these elements to n slots {1, 2, . . . , n},
where each slot can accommodate at most one element. The allocation should be an injection
from S to [n] that only depends on the current set S as well as random bits r that are fixed over
time, written σS,r : S → [n]. When an insertion/deletion changes S to S′, we define the expected
switching cost to be

E
r

[∣∣{x ∈ S ∩ S′ | σS,r(x) ̸= σS′,r(x)}
∣∣],

which equals the number of elements that change their assigned slots during the update. This
problem is very similar to the slot model for dictionaries introduced in Section 2, where we have to
assign n keys to n slots, with the following minor differences:

• Stateless allocation allows ε-fraction of the slots to be empty, while the slot model utilizes all
n slots.

• Slot model additionally allows the mapping from keys to slots to be determined by not only the
current key set but also O(n) bits of redundancy, making it not strongly history-independent.

Below, we first show an Ω(log n) lower bound on the expected switching cost of any stateless
allocation algorithm with ε = 0, which one can think of as the slot model with 0 redundancy.

Proof Sketch for ε = 0. The proof structure is again similar to that of Theorem 3.1: We build a
tree structure over n meta-operations each consisting of one deletion followed by one insertion,
where the branching factor λ = 264 is a fixed constant for every node, which implies that the height
of the tree equals Θ(log n). When some key (element) is moved in two meta-operations t1 < t2
but not in between, we add one cost to the LCA of these two meta-operations on the tree. Then,
using almost the same argument as Section 2, we are able to prove that the expected cost on every
node u that represents mℓ meta-operations is at least Ω(mℓ). Note that the branching factors used
here are smaller than those we used in Section 2 to prove the Ω(log∗ n) lower bound for the slot
model, and the proof still works because the redundancy R = 0. Finally, we sum up the cost on all
internal nodes and conclude an Ω(log n) lower bound.
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When ε > 0, there are εn slots left empty. We add εn placeholder elements ⊥1, . . . ,⊥εn and put
⊥i into the i-th empty slot, which leads to an algorithm allocating S ∪{⊥1, . . . ,⊥εn} to all n slots,
without leaving any slot empty, i.e., the new problem with placeholders is a stateless allocation
problem with ε = 0.

We adapt the proof for ε = 0 to the new instance with placeholders. Again, we build a λ-ary
tree over n meta-operations, and when some element is moved in two meta-operations t1 < t2 but
not in between, we add one cost to the LCA of these two leaves: This cost is said to be a real cost
if the moved element is a real element in S, or a virtual cost if the moved element is a placeholder.
The proof of ε = 0 tells us that, for an internal node u representing mℓ meta-operations, the real
and virtual cost add up to Ω(mℓ). However, only real cost will cause switching cost of the initial
stateless allocation problem.

Fortunately, the virtual cost on any node u, which is maximized when every placeholder is
moved in all λ segments (children), cannot exceed λεn. When mℓ ≥ cεn for some large constant c,
the sum of virtual and real cost is at least Ω(mℓ) ≥ 2λεn, which implies that the real cost on this
node is at least Ω(mℓ)−λεn ≥ 1

2 ·Ω(mℓ) = Ω(mℓ). This inequality can apply to the top Θ(log ε−1)
levels of the tree where mℓ ≥ cεn, thus we conclude an Ω(log ε−1) lower bound on the switching
cost, as stated in the following theorem.

Theorem 1.5 (Restated). For 1/n ≤ ε ≤ 1 and U ≥ 3n, any stateless allocation algorithm that
assigns at most (1− ε)n elements from universe [U ] to n slots must have expected switching cost at
least Ω(log ε−1).

(Similar to Section 8, U ≥ 3n suffices for the proof, because the outer communication game
only relies on the randomness of the order of inserted keys rather than the keys themselves.)

10 Discussions

We have proved tight bounds for dynamic succinct dictionaries in the previous sections. Now let
us discuss the limitations of our methods.

The case when U = n1+o(1). Recall that all our conclusions are based on the assumption
U = n1+α for α = Θ(1). If we allow slightly subconstant α here, the proof of Theorem 3.1 can only
prove a bound of Ω(αk) time when the wasted bits per key is log(k) n. This multiplicative factor
α comes from Lemma 3.2 which gives the proposition costu ≥ γm/100. When α was a constant,
we could regard γ as a constant and sum up all costu to prove a time lower bound Ω(k); however,
when α = o(1), γ = Θ(α) is no longer a constant, so we can only obtain the bound Ω(αk). This
still implies an ω(1) time lower bound when α = ω(1/ log∗ n) under O(1) wasted bits per key. In
contrast, [BFCK+22] showed that when α = 1/ log(t) n for any constant t, one can achieve o(1)
wasted bits per key with constant running time. So the Ω(αk) lower bound cannot be improved
much. Similarly, when R < n, Theorem 6.1 is weakened to Ω

(
min

{
α log(n/R), α2 log n

})
.10

Key-only dictionaries with no query time constraints. In previous sections, we have ob-
tained the time-space trade-off for key-only dictionaries with query time requirements, as well as
key-value dictionaries without query time requirements. However, the problem of proving a lower
bound for key-only dictionaries without query time constraints still remains open. Below is a simple
example that shows why our method does not work for this goal.

10The second α factor comes from the tree depth h ≈ min{log(n/R), lognγ/2} = Θ(min{log(n/R), α logn}).
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Recall that in Lemma 5.1, we claim that for two m-sized sets A,B, the probability that CA(SA∩
SB) and CB(SA ∩ SB) has at most γm different cells is at most U−γm. The proof of this lemma
makes use of the queries. If there are no queries in the meta-operations, we can construct a data
structure that contradicts Lemma 5.1:

Suppose we use three cells C1, C2, C3 to maintain keys x1, x2, x3 ∈ [0, 5U), allowing O(1)-bit
redundancy. If x1 ∈ [0, 3U), x2 ∈ [3U, 4U), x3 ∈ [4U, 5U) (which happens with constant probability,
and we call it the good case), we organize the keys according to the three cases listed in Table 1.
Otherwise, we give up, succinctly store all keys, and check all cells for every operation. We store in
an O(1)-bit extra memory whether the good case applies, and if so, which case in Table 1 applies.
It is easy to see that the whole data structure incurs O(1) bits of redundancy.

Table 1: Data structure organization under the good case.

C1 C2 C3

Case 1: x1 ∈ [0, U) x2 ⊕ x1 x3 x2 ⊕ x3
Case 2: x1 ∈ [U, 2U) x2 x3 ⊕ x1 x2 ⊕ x3
Case 3: x1 ∈ [2U, 3U) x2 x3 x2 ⊕ x3 ⊕ x1

We let m = 1 in Lemma 5.1, i.e., there is only one meta-operation. We randomly delete a key
and consider two possible keys to be inserted, denoted by xA and xB (they correspond to A,B in
Lemma 5.1). With constant probability, we will be deleting x1 and inserting back two new x1’s
(xA, xB ∈ [0, 3U)), which means the good case still applies after both possible insertions. In this
case, we denote the initial x1 by x1D, and denote the two inserted keys by x1A := xA and x1B := xB.

While x1D, x1A, x1B are selected uniformly at random, there is a constant probability that x1D,
x1A, x1B lead to Case 2, 1, and 3, respectively. Suppose we are deleting x1D and inserting x1A, we
can complete the meta-operation by probing only C1 and C2:

• C2 initially stores x3 ⊕ x1D. We read x1D from the deletion operation itself and read x3 by
probing C2.

• We probe C1 to read x2.

• After knowing all three keys x1A, x2, x3 that should be stored after the insertion, we directly
write x2 ⊕ x1A and x3 into C1 and C2, respectively. (Recall that Case 1 is the target case.)

Similarly, when we are deleting x1D and inserting x1B, we can probe only C2 and C3. The only
commonly probed cell is SA ∩ SB = {C2}, whose content will be the same after both processes,
which means that CA(SA ∩ SB) and CB(SA ∩ SB) have a constant probability to be equal. With
a sufficiently large U , this example contradicts Lemma 5.1.11 Thus, to prove a key-only lower
bound without query time constraints, we need to develop a new method that does not rely on
Lemma 5.1.
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