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ABSTRACT

Measuring the distances between vertices on graphs is one of the

most fundamental components in network analysis. Since finding

shortest paths requires traversing the graph, it is challenging to

obtain distance information on large graphs very quickly. In this

work, we present a preprocessing algorithm that is able to create

landmark based distance sketches efficiently, with strong theoret-

ical guarantees. When evaluated on a diverse set of social and

information networks, our algorithm significantly improves over

existing approaches by reducing the number of landmarks stored,

preprocessing time, or stretch of the estimated distances.

On Erdos-Renyi graphs and random power law graphs with

degree distribution exponent 2 < β < 3, our algorithm outputs

an exact distance data structure with space between Θ(n5/4) and

Θ(n3/2) depending on the value of β , where n is the number of

vertices. We complement the algorithm with tight lower bounds

for Erdos-Renyi graphs and the case when β is close to two.
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1 INTRODUCTION

Computing shortest path distances on large graphs is a fundamental

problem in computer science and has been the subject of much

study [27, 36, 37]. In many applications, it is important to compute

the shortest path distance between two given nodes, i.e. to answer

shortest path queries, in real time. Graph distances measure the

closeness or similarity of vertices and are often used as one of the

most basic metric in network analysis [29, 35, 39, 40]. In this paper,

we will focus on efficient and practical implementations of shortest

path queries in classes of graphs that are relevant to web search,

social networks, and collaboration networks etc. For such graphs,

one commonly used technique is that of landmark-based labelings:
every node is assigned a set of landmarks, and the distance between

two nodes in computed only via their common landmarks. If the set

of landmarks can be easily computed, and is small, then we obtain

both efficient pre-processing and small query time.
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Landmark based labelings (and their more general counterpart,

Distance Labelings), have been studied extensively [9, 36]. In partic-

ular, a sequence of results culminating in the work of Thorup and

Zwick [37] showed that labeling schemes can provide a multiplica-

tive 3-approximation to the shortest path distance between any

two nodes, while having an overhead of O (
√
n) storage per node

on average in the graph (we use the standard notation that a graph

has n nodes andm edges). In the worst case, there is no distance

labeling scheme that always uses sub-quadratic amount of space

and provides exact shortest paths. Even for graphs with maximum

degree 3, it is known that any distance labeling scheme requires

Ω(n3/2) total space [26]. In sharp contrast to these theoretical re-

sults, there is ample empirical evidence that very efficient distance

labeling schemes exist in real world graphs that can achieve much

better approximations. For example, Akiba et al. [3] and Delling

et al. [20] show that current algorithms can find landmark based
labelings that use only a few hundred landmarks per vertex to

obtain exact distance, in a wide collection of social, Web, and com-

puter networks with millions of vertices. In this paper, we make

substantial progress towards closing the gap between theoretical

and observed performance. We show that natural landmark based

labeling schemes can give exact shortest path distances with a small

number of landmarks for a popular model of (unweighted and undi-

rected) web and social graphs, namely the heavy-tailed random

graph model. We also formally show how further reduction in the

number of landmarks can be obtained if we are willing to tolerate an

additive error of one or two hops, in contrast to the multiplicative

3-approximation for general graphs. Finally, we present practical

versions of our algorithms that result in substantial performance

improvements on many real-world graphs.

In addition to being simple to implement, landmark based short-

est path algorithms also offer a qualitative benefit, in that they can

directly be used as the basis of a social search algorithm. In social

search [8], we assume there is a collection of keywords associated

with every node, and we need to answer queries of the following

form: given node v and keyword w , find the node that is closest

to v among all nodes that have the keyword w associated with

them. This requires an index size that is O (L) times the size of the

total social search corpus and a query time of O (L), where L is

the number of landmarks per node in the underlying landmark

based algorithm; the approximation guarantee for the social search

problem is the same as that of the landmark based algorithm. Thus,

our results lead to both provable and practical improvements to the

social search problem.

Existing models for social and information networks build on

random graphs with some specified degree distribution [15, 22, 38],

and there is considerable evidence that real-world graphs have

power-law degree distributions [16, 23]. We will use the Chung-Lu

https://doi.org/10.1145/3308558.3313708
https://doi.org/10.1145/3308558.3313708


model [14], which assumes that the degree sequence of our graph is

given, and then draws a “uniform” sample from graphs that have the

same or very similar degree sequences. In particular, we will study

the following question: Given a random graph from the Chung-Lu
model with a power law degree distribution of exponent β , how much
storage does a landmark-based scheme require overall, in order to
answer distance queries with no distortion?

In the rest of the paper, we use the term “random power law

graph” to refer to a graph that is sampled from the Chung-Lu

model, where the weight (equivalently, the expected degree) of

each vertex is independently drawn from a power law distribution

with exponent β . We are interested in the regime when β > 2 —

this covers most of the empirical power law degree distributions

that people have observed on social and information networks [16].

Admittedly, real-world graphs have additional structure in addition

to having power-law degree distributions [34], and hence, we have

also validated the effectiveness of our algorithm on real graphs.

1.1 Our Results

Our first result corresponds to the “easy regime”, where the degree

distribution has finite variance (β > 3). We show that a simple pro-

cedure for generating landmarks guarantees exact shortest paths,

while only requiring each node to store Õ (
√
n) landmarks. The

same conclusion also applies to Erdős-Renyi graphsG (n, cn ) when
c > 1, or when c = 2 logn.

We then study the case where 2 < β < 3. This is the most

emblematic regime for power-law graphs, since the degree dis-

tribution has infinite variance but finite expectation. We present

an algorithm that generates at most Õ (n (β−2)/(β−1) ) landmarks per

node when β ≥ 2.5; and Õ (n (3−β )/(4−β ) ) landmarks per node when

2 < β < 2.5. We obtain additional improvements if we allow an

additive error of 1 or 2. See Figure 1 for an illustration of our results.
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Figure 1: The x-axis is the exponent of the power law degree

distribution and each value on the y-axis corresponds to a

storage of ˜O(ny ). The lower bound is for exact distances.

While the dependence on β is complex, it is worth noting that

in the entire range that we study (β > 2), the number of landmarks

per node is at most Õ (
√
n) for exact shortest paths. This is in stark

contrast to known impossibility results for general graphs, where

no distance labeling with a multiplicative stretch less than 3 can use

sub-linear space per node [26]. The query time of our algorithms is

proportional to the number of landmarks per node, so we also get

speed improvements.

Our algorithm is based on the pruned labeling algorithm of Ak-

iba et al. [3], but differs in important ways. The pruned labeling

algorithm initially posits that every node is a landmark for every

other node, and then uses the BFS tree from each node to iteratively

prune away unnecessary landmarks. In our approach, we apply a

similar BFS with pruning procedure on a small subset ofH (i.e. high

degree vertices), but switch to lightweight local ball growing proce-

dures up to radius l for all other vertices. As we show, the original
pruned labeling algorithm requires storing Ω̃(n2) landmarks on

sparse Erdös-Rényi graphs. By growing local balls of size

√
n, our

algorithm recovers exact distances with at most Õ (n3/2) landmarks

instead, for Erdös-Rényi graphs and random power law graphs

with β > 3. Hence, our algorithm combines exploiting the existence

of high-degree “central landmarks” with finding landmarks that

are “locally important”. Furthermore for 2 < β < 3, by setting up

the number of global landmarks H and the radius l suitably, we
provably recover the upper bounds described in Figure 1. While

the algorithmic idea is quite simple, the analysis is intricate.

We complement our algorithmic results with tight lower bounds

for the regime when β > 3: the total length of any distance labeling

schemes that answer distance queries exactly in this regime is

almost surely Ω̃(n1.5). We also show that when 2 < β < 2.5, any

distance labeling scheme will generate labels of total size Ω̃(n3.5−β )
almost surely. In particular, our algorithm achieves the optimal

bound when β is close 2.

The parameter choice suggested by our theoretical analysis can

be quite expensive to implement (as can earlier landmark based

algorithms). We apply a simple but principled parameter tuning

procedure to our algorithm that substantially improves the prepro-

cessing time and generates a smaller set of landmarks at essentially

no loss of accuracy. We conduct experiments on several real world

graphs, both directed and undirected. First, compared to the pruned

labeling algorithm, we find that our algorithm reduces the number

of landmarks stored by 1.5-2.5x; the preprocessing time is reduced

significantly as well. Next, we compare our algorithm to a variant

of the distance oracle of Thorup and Zwick [37], which is believed

to be theoretically optimal for worst-case graphs, as well as the

distance sketch of Das Sarma et al [19] which has been found to

be both efficient and useful in prior work [8]. For each graph, our

algorithm substantially outperforms these two benchmarks. Details

are in Section 5. It is important to note that the three algorithms we

compare to also work much better on these real-world graphs than

their theoretical guarantee, and we spend considerable effort tun-

ing their parameters as well. Hence, the performance improvement

given by our algorithm is particularly noteworthy.

It is worth mentioning that our technical tools only rely on

bounding the growth rate of the breadth-first search. Hence we

expect that our results can be extended to the related configuration

model [22] as well. One limitation of our work is that the analysis

does not apply directly to preferential attachment graphs, which

correspond to another family of well known power law graphs. But

we believe that similar results can be obtained there by adapting

our analysis to that setting as well. This is left for future work.

Organizations: The rest of the paper is organized as follows. Sec-

tion 2 introduces the basics of random graphs, reviews the pruned

labeling algorithm and related work. Section 3 introduces our ap-

proach. We then present the analysis and experiments in Section 4

and Section 5. The lower bounds are presented in Section 6.



2 PRELIMINARIES AND RELATEDWORK

2.1 Notations

LetG = (V ,E) be a directed graph withn = |V | vertices andm = |E |
edges. For a vertex x ∈ V , denote by dout (x ) the outdegree of x
and din (x ) the indegree of x . Let Nout (x ) denote the set of its out
neighbors. Let distG (x ,y) denote the distance of x and y in G, or
dist(x ,y) for simplicity. WhenG is undirected, then the outdegrees

and indegrees are equal. Hence we simply denote by dx the degree

of every vertex x ∈ V . For an integer l and x ∈ V , denote by

Γl (x ) = {y : dist(x ,y) = l } the set of vertices at distance l from x .
Denote by Nl (x ) the set of vertices at distance at most l from x .

We use notation a ≲ b to indicate that there exists an absolute

constant C > 0 such that a ≤ Cb. The notations Õ (·) and Ω̃(·) hide
poly-logarithmic factors.

2.2 Landmark based Labelings

In a landmark based labeling [21], each vertex x is assigned a set

of forward landmarks LF (x ) and backward landmarks LB (x ). Each
landmark set is a hash table, whose keys are vertices and values

are distances. For example, if y ∈ LF (x ), then the value associated

with y would be dist(x ,y), which is the “forward” distance from

x to y. Given the landmark sets LF (·) and LB (·), we estimate the

distances as follows:

min

z∈LF (x )∩LB (y )
dist(x , z) + dist(z,y),∀x ,y ∈ V . (1)

If no common vertex is found between LF (x ) and LB (y), then y is

not reachable from x . In the worst case, computing set intersection

takes Ω(min( |LF (x ) | , ��LB (y)��)) time.

Denote the output of equation (1) by
ˆd . Clearly, we have ˆd ≥

dist(x ,y) when y is reachable from x . The additive stretch of
ˆd is

given by
ˆd − dist(x ,y), and the multiplicative stretch is given by

ˆd/dist(x ,y). When there are no errors for any pairs of vertices, such

landmark sets are called 2-hop covers [17].
There is a more general family of data structures known as

labeling schemes [26], which associates a vector L : V → {0, 1}∗

for every vertex. When answering a query for a pair of vertices

x ,y ∈ V , only the two labels L (x ) and L (y) are required without

accessing the graph. The total length of L is given by

∑
x ∈V |L (x ) |.

It is clear from equation (1) that landmark sketches fall in the query

model of labeling schemes.

2.3 The Pruned Labeling Algorithm

We review the pruned labeling algorithm [3] for readers who are

not familiar. The algorithm starts with an ordering of the vertices,

{x1,x2, . . . ,xn }. First for x1, a breadth first search (BFS) is per-

formed over the entire graph. During the BFS, x1 is added to the

landmark set of every vertex.
1
Next for x2, in addition to running

BFS, a pruning step is performed before adding x2 as a landmark.

For example, suppose that a path of length l is found from x2 to y.
If x1 lies on the shortest path fom x2 to y, then by checking their

landmark sets, we can find the common landmark x1 to certify that

dist(x2,y) = dist(x2,x1) + dist(x1,y) ≤ l . In this case, x2 is not

1
For directed graphs, there will be a forward BFS which looks at x1’s outgoing edges

and its descendants, as well as a backward BFS which looks at x1’s incoming edges

and its predecessors.

added to y’s landmark set, and the neighbors of y are pruned away.

The above procedure is repeated on x3, x4, etc.
For completeness, we describe the pseudocode in Algorithm 1.

Note that the backward BFS procedure can be derived similarly. It

has been shown that the pruned labeling algorithm is guaranteed

to return exact distances [3].

Algorithm 1 PrunedLabeling (Akiba et al. [3])

Input: A directed graph G = (V , E ); An ordering of V , {x1, x2, . . . , xn }.
1: Let O = ∅, and LF (x ) = LB (x ) = ∅, for all x ∈ V
2: for i = 1, . . . , n do

3: forwardBfs(xi )
4: backwardBfs(xi )
5: O = O ∪ {xi }
6: end for

7:

8: procedure forwardBfs(xi )
9: Let Q be a priority queue and S be a hash set

10: Set the priority of xi to be zero

11: while Q , ∅ do

12: Let l be the minimum priority of Q
13: Let u be the corresponding vertex

14: S = S ∪ {u }
15: Let

˜d = miny∈LF (xi )∩LB (u ) dist(xi , y ) + dist(y, u )
16: if l < ˜d then (otherwise u ’s neighbors are pruned)
17: LB (u ) = LB (u ) ∪ {xi → l }
18: for y ∈ Nout (u ) such that y < O do

19: Let q be the priority of y
20: if y < S and l + 1 < q then

21: Decrease y’s priority to l + 1
22: end if

23: end for

24: end if

25: end while

26: end procedure

2.4 Random Graphs

We review the basics of Erdös-Rényi random graphs. Let G =
G (n,p) be an undirected graph where every edge appears with

probability p. It is well known that when p ≥ 2(logn)/n,G has only

one connected component with high probability. Moreover, the

neighborhood growth rate (i.e. |Γi+1 (x ) | / |Γi (x ) |) is highly concen-

trated around its expectation, which is np. Formally, the following

facts are well-known.

Fact 1 (Bollobás [10]). Let G = (V ,E) be an undirected graph
where every edge is sampled with probability p = 2(logn)/n. Let
D = ⌈

logn
log(np ) ⌉. Then the following are true with high probability:

a) The diameter of G is at most D + 1;

b) For any x ,y ∈ V and l ≤ D, Pr(dist(x ,y) ≤ l ) ≤
(np )l+1

n (np−1) ;

c) For any x ∈ V and l < D, we have 1

2
≤
|Γl (x ) |
(np )l

≤ 2.

The Chung-Lu model: Let px > 0 denote a weight value for

every vertex x ∈ V . Given the weight vector p, the Chung-Lu

model generalizes Erdös-Rényi graphs such that each edge is chosen

independently with probability

Pr[x ∼ y] = min

{
px · py

vol(V )
, 1

}
,∀x ,y ∈ V



where vol(V ) =
∑
x ∈V px denote the volume of V .

Random power law graphs: Let f : [xmin,∞) → R denote the

probability density function of a power law distribution with ex-

ponent β > 1, i.e. f (x ) = Zx−β , where Z = (β − 1) · x
β−1
min

[16].

The expectation of f (·) exists when β > 2. The second moment is

finite when β > 3. When β < 3, the expectation is finite, but the

empirical second moment grows polynomially in the number of

samples with high probability. If β < 2, then even the expectation

becomes unbounded as n grows.

In a random power law graph, the weight of each vertex is drawn

independently from the power law distribution. Given the weight

vector p, a random graph is sampled according to the Chung-Lu

model. If the average degree ν > 1, then it is known that almost

surely the graph has a unique giant component [15].

2.5 Related Work

Landmark based labelings: There is a rich history of study on

how to preprocess a graph to answer shortest path queries [2, 4, 5,

11, 17, 37]. It is beyond our scope to give a comprehensive review of

the literature and we refer the reader to survey [36] for references.

In general, it is NP-hard to compute the optimal landmark based

labeling (or 2-hop cover). Based on an LP relaxation, a logn factor

approximation can be obtained via a greedy algorithm [18]. See

also the references [6, 7, 12, 21, 28] for a line of followup work. The

current state of the art is achieved based on the pruned labeling

algorithm [3, 20]. Apart from the basic version that we have already

presented, bit-parallel optimizations have been used to speed up

proprocessing [3]. Variants which can be executed when the graph

does not fit in memory have also been studied [30]. It is conceivable

that such techniques can be added on top of the algorithms that

we study as well. For the purpose of this work, we will focus on

the basic version of the pruned labeling algorithm. Compared to

classical approaches such as distance oracles, the novelty of the

pruned labeling algorithm is using the idea of pruning to reduce

redundancy in the BFS tree.

Network models: Earlier work on random graphs focus on mod-

eling the small world phenomenon [15], and show that the average

distance grows logarithmically in the number of vertices. Recent

work have enriched random graph models with more realistic fea-

tures, e.g. community structures [31], shrinking diameters in tem-

poral graphs [32].

Other existing mathematical models on special families of graphs

related to distance queries include road networks [1], planar graphs

and graphs with doubling dimension. However none of them can

capture the expansion properties that have been observed on sub-

networks of real-world social networks [34].

Previous work of Chen et al. [13] presented a 3-approximate

labeling scheme requiring storage Õ (n(β−2)/(2β−3) ) per vertex, on
random power law graphs with 2 < β < 3. Our (+2)-stretch result

improves upon this scheme in the amount of storage needed per ver-

tex for 2 < β < 2.5, with a much better stretch guarantee. Another

related line of work considers compact routing schemes on random

graphs. Enachescu et al. [24] presented a 2-approximate compact

routing scheme using spaceO (n1.75) on Erdös-Rényi random graphs,

and Gavoille et al. [25] obtained a 5-approximate compact routing

scheme on random power law graphs.

3 OUR APPROACH

In order to motivate the idea behind our approach, we begin with an

analysis of the pruned labeling algorithm on Erdös-Rényi random

graphs.While the structures of real world graphs are far from Erdös-

Rényi graphs, the intuition obtained from the analysis will be useful.

Below we describe a simple proposition which states that for sparse

Erdös-Rényi graphs, the pruned labeling algorithm outputs Ω̃(n2)
landmarks.

Proposition 2. LetG = (V ,E) be an undirected Erdös-Rényi graph
where every edge appears with probability p = 2(logn)/n. For any
ordering of the vertices V = {x1,x2, . . . ,xn }, with high probability
over the randomness of G, the total number of landmarks produced
by Algorithm 1 is at least Ω̃(n2).

Proof sketch. We first introduce a few notations. Let r = np
denote the growth rate of G. Let ε = 1/ logn. Consider a vertex xi
where 1 ≤ i ≤ εn. Denote by X−i = {x1, . . . ,xi−1}. Consider any
u ∈ V , if none of the shortest paths from xi to u intersect with X−i ,
then (xi ,u) is called a bad pair. Note that xi must be added to u’s
landmark set by Algorithm 1, because during the BFS from xi , all
estimates through X−i will be strictly larger than dist(xi ,u). Hence,
to lower bound the total landmark sizes, it suffices to count the

number of bad pairs. In the following, we show that in expectation

for every xi where 1 ≤ i ≤ εn, there are at least n/(logn)3 vertices
u such that (xi ,u) are bad. It follows that Algorithm 1 requires at

least εn2/(logn)3 ≥ Ω̃(n2) in expectation.

Let D = ⌊logr n − 2⌋. Consider ΓD (xi ), the set of vertices at

distance equal to D from xi . We count the number of bad vertices
in ΓD (xi ) at follows. For each 1 ≤ k ≤ D, consider the intersection
Γk (xi ) ∩ X−i and their subtree down to ΓD (xi ).

Starting from any y ∈ Γk (xi ) ∩ X−i , the subtree of y would

result in good vertices in ΓD (xi ), whose distance from xi can be

correctly estimated (c.f. line 15-16 in Algorithm 1). In expectation,

the size of the intersection is rkε , because the probability that any

two vertex has distance k on G is equal to rk/n, and there are at

most εn vertices in X−i . Next, each y results in rD−k vertices in

its (D − k )-th level neighborhood. Combined together, the total

number of good vertices which are covered by Γk (xi ) ∩ X−i is at

most rkε × rD−k = εrD . By summing over all k ≤ D, we obtain
that the total number of good vertices in ΓD (xi ) is at most DεrD .

On the other hand, the size of ΓD (xi ) is r
D
. Hence the total

number of bad vertices is at least (1 − Dε )rD ≥ n/ log3 n. To show

that the the proposition holds with high probability, it suffices

to apply concentration results on neighborhood growth in the

arguments above. We omit the details.

□

The interesting point from the above analysis is that Θ(n) land-
marks are added throughout the first εn vertices. The reason is that

there are no high degree vertices in Erdös-Rényi graphs, hence

the landmarks we have added in the beginning do not cover the

shortest paths for many vertex pairs later.Secondly, a large number

of distant vertices are added in the landmark sets, which do not lie

on the shortest paths of many pairs of vertices.

Motivated by the observation, we introduce our approach as

follows. We start with an ordering of the vertices. For the top H
vertices in the ordering, we perform the same BFS procedure with



Algorithm 2 ApproximatePruning

Input: A directed graph G = (V , E ); An ordering of V {x1, x2, . . . , xn };
The number of global landmarks H ; The set of radiuses {li }ni=H+1.

1: Let O = ∅, and LF (x ) = LB (x ) = ∅, for any x ∈ V .

2: for i = 1, . . . , H do

3: forwardBfs(xi )
4: backwardBfs(xi )
5: O = O ∪ {xi }
6: end for

7: for i = H + 1, . . . , n do

8: localForwardBfs(xi , li )
9: localBackwardBfs(xi , li )
10: end for

11: procedure localForwardBfs(xi , li )
12: for y such that dist(xi , y ) ≤ li − 1 do
13: LF (xi ) = LF (xi ) ∪ (y → dist(xi , y ))
14: end for

15: for y such that dist(xi , y ) = li and ∃z s.t. dist(x, z ) = li −
1, (z, y ) ∈ E, dout (z ) ≤ dout (y ) do

16: LF (xi ) = LF (xi ) ∪ (y → dist(xi , y ))
17: end for

18: end procedure

pruning. For the rest of the vertices, we simply grow a local ball up

to a desired radius. Concretely, only the vertices from the local ball

will be used as a landmark. Algorithm 2 describes our approach in

full.
2
As a remark, when the input graphG is undirected, it suffices

to run one of the forward or backward BFS procedures, and for each

vertex, its forward and backward landmark sets can be combined

to a single landmark set.

Recall that the backward and forward BFS procedures do a

breadth first search with a pruning step before enqueing a ver-

tex (c.f. Algorithm 1). For each xi with i > H , the parameter li
controls the depth of the local ball we grow from xi . Furthermore,

at the bottom layer, we only add vertices whose outdegree is higher

than any of its predecessor to xi ’s landmark set. The intuition is

that vertices with higher outdegrees are more likely to be used as

landmarks.

We begin by analyzing Algorithm 2 for Erdös-Rényi graphs, as a

comparison to Proposition 2. The following proposition shows that

without using global landmarks, local balls of suitable radius suffice

to cover all the desired distances. The proof is by observing that for

each vertex, if we add the closest

√
n vertices to the landmark set of

every vertex, then the landmark sets of every pair of vertices will

intersect with high probability, i.e. we have obtained a 2-hop cover.

Proposition 3. Let G = (V ,E) be an undirected random graph
where each edge is sampled with probability p = 2(logn)/n. By
setting H = 0 and li = l = ⌈

logn
2 lognp ⌉ + 1 for all 1 ≤ i ≤ n, we

have that Algorithm 2 outputs a 2-hop cover with at most Õ (n3/2)
landmarks with high probability.

Proof. Denote by L(x ) the landmark set obtained by Algorithm

2, for every x ∈ V . We will show that with high probability:

a) For all xi ,x j ∈ V , L(xi ) ∩ L(x j ) , ∅. This implies that L(·)
is a 2-hop cover.

2
Here we have omitted the details of the local backward BFS procedure, which can be

derived similar to the local forward BFS procedure.

b) The size of L(xi ) is less than Õ (
√
n), for all xi ∈ V .

Claim a) follows because the diameter of G is at most 2l − 1 with
high probability by Fact 1. Note that L(xi ) contains Nl−1 (xi ), the
set of vertices with distance at most l − 1. If dist(xi ,x j ) ≤ (l − 1) +
(l − 1), Nl−1 (xi ) and Nl−1 (x j ) already intersect. Otherwise, since

the diameter is at most 2l − 1, these two neighborhoods must be

connected by an edge e . Suppose between e’s two endpoints, the

one with a lower degree is on xi ’s side, then the local BFS from xi
must add the other endpoint to L(xi ), and vice versa. Therefore,

L(xi ) must intersect with L(x j ).
Claim b) is because L(xi ) is a subset of Nl (xi ). By Fact 1, the size

of Nl (xi ) is at most 4(np)l ≲ Õ (
√
n). Hence, the proof is complete.

□

4 RANDOM POWER LAW GRAPHS

In this section we analyze our algorithm on random power law

graphs. We begin with the simple case of β > 3, which generalizes

the result on Erdös-Rényi graphs. Because the technical intuition

is the same with Proposition 3, we describe the result below and

omit the proof.

Proposition 4. Let G = (V ,E) be a random power law graph
with average degree ν > 1 and power law exponent β > 3. For each
xi ∈ V , let li be the smallest integer such that the number of edges
between Nli (xi ) andV \Nli (xi ) is at least δ

√
n, where δ = 5

√
ν logn.

By setting H = 0 and {li }ni=1, Algorithm 2 outputs a 2-hop cover
with high probability. Moreover, each vertex uses at mostO (

√
n log2 n)

landmarks.

Remark: The high level intuition behind our algorithmic result is

that as long as the breadth-first search process of the graph grows

neither too fast nor too slow, but rather at a proper rate, then an

efficient distance labeling scheme can be obtained. Proposition

4 can be easily extended to configuration models with bounded

degree variance. It would be interesting to see if our results extend

to preferential attachment graphs and Kronecker graphs.

The case of 2 < β < 3: Next we describe the more interesting case

with power law exponent 2 < β < 3. Here the graph contains a large

number of high degree vertices. By utilizing the high degree vertices,

we show how to obtain exact distance landmark schemes, (+1)-

stretch schemes and (+2)-stretch schemes. The number of landmarks

used varies depending on the value of β . We now state our main

result as follows.

Theorem 5. Let G = (V ,E) be a random power law graph with
average degree ν > 1 and exponent 2 < β < 3. Let

K =



√
n, for 2.5 ≤ β ≤ 3

n
1

(4−β ) (β−1) , for 2 < β < 2.5.

Let H be the number of vertices whose degree is at least K in G. Let
π = {xi }

n
i=1 be any ordering of vertices V by their degrees in a non-

increasing order. For each vertex xi ∈ V , let li be the smallest integer
such that the number of edges between Nli−1 (xi ) andV \Nli−1 (xi ) is
at least δn(β−2)/(β−1) , where δ = 4ν · log2 n.

With ordering π , parametersH and {li }ni=H+1, Algorithm 2 outputs
a 2-hop cover with high probability. Moreover, the maximum number



of landmarks used by any vertex is at most

O

(
max

(
n
β−2
β−1 ,n

3−β
4−β

)
log

3 n

)
.

The above theorem says that in Algorithm 2, first we use vertices

whose degrees are at least K as global landmarks. Then for the

other vertices xi , we grow a local ball of radius li , whose size is

(right) above n(β−2)/(β−1) . The two steps together lead to a 2-hop

cover. We now build up the intuition for the proof.

Building up a+1-stretch scheme: First, it is not hard to show that

G contains a heavy vertex whose degree is n1/(β−1) , by analyzing

the power law distribution. Note that K ≤ n1/(β−1) , hence we

have added all such high degree vertices as global landmarks. This

part, together with the local balls, already gives us a (+1)-stretch
landmark scheme.

To see why, consider two vertices xi ,x j . If their local balls (of size

n(β−2)/(β−1) ) already intersect, then we can already compute their

distances correctly from their landmark sets. Otherwise, since the

bottom layers of xi and x j already have weight/degree n
(β−2)/(β−1)

,

they are at most two hops apart, by connecting to the heavy vertex

with degree n1/(β−1) . Recall that the heavy vertex is added to the

landmark sets of every vertex. Hence, the estimated distance is

at most off by one. As a remark, to get the (+1)-stretch landmark

scheme, the number of landmarks needed per vertex is on the order

of n(β−2)/(β−1) . This is because we only need to use vertices whose

degrees are at least n1/(β−1) as global landmarks (there are only

logn of them), as opposed to H in Theorem 5.

Fixing the +1-stretch: To obtain exact distances, for each vertex

on the boundary of radius li − 1, we add all of its neighbors with

a higher degree to the landmark set (c.f. line 15-17 in Algorithm

2). Whenever there is an edge connecting the two boundaries, the

side with a lower degree will add the other endpoint as a landmark,

which resolves the (+1)-stretch issue. For the size of landmark sets,

it turns out that fixing the (+1)-stretch for the case 2 < β < 2.5 sig-

nificantly increases the number of landmarks needed. Specifically,

the costs are n(5−β )/(4−β ) landmarks per node.

Intuition for the +2-stretch scheme: As an additional remark,

one can also obtain a (+2)-stretch landmark sketch by setting li
in Algorithm 2 in a way such that every vertex stores the closest

Θ̃(n(β/2)−1) vertices in its landmark set. This modification leads to a

(+2)-stretch scheme, because for two vertices x ,y, once the bottom

layers of x ,y have size at least Θ̃(n(β/2)−1), they are at most three

hops away from each other. The reason is that with high probability,

the bottom layer will connect to a vertex with weight Ω(
√
n) in the

next layer (which will all be connected), as it is not hard to verify

that the volume of all vertices with weight

√
n is Ω(n(4−β )/2). By a

similar proof to Theorem 5, the maximum number of landmarks

used per vertex is at most Õ (n(β−2)/2).

We refer the reader to the full version for details of the full proof.

The technical components involve carefully controlling the growth

of the neighborhood sets by using concentration inequalities.

5 EXPERIMENTS

In this section, we substantiate our results with experiments on a

diverse collection of network datasets. A summary of the findings

are as follows. We first compare Algorithm 2 with the pruned

labeling algorithm [3]. Recall that our approach differs from the

pruned labeling algorithm by only performing a thorough BFS

for a small set of vertices, while running a lightweight local ball

growing procedure for most vertices. We found that this simple

modification leads to 1.5-2.5x reduction in number of landmarks

stored. The preprocessing time is reduced by 2-15x as well. While

our algorithm does not always output the exact distance like the

pruned labeling algorithm, we observe that the stretch is at most

1%, relative to the average distance.

Next we compare our approach to two approximate distance

sketches with strong theoretical guarantees, Das Sarma et al. sketch

[8, 19] and a variant of Thorup-Zwick’s 3-approximate distance or-

acle [37], which uses high degree vertices as global landmarks [13].

We observe that our approach incurs lower stretch and requires

less space compared to Das Sarma et al. sketch. The accuracy of

Thorup-Zwick sketch is comparable to ours, but we require much

fewer landmarks.

5.1 Experimental Setup

To ensure the robustness of our results, we measure performances

on a diverse collection of directed and undirected graphs, with the

datasets coming from different domains, as described by Table 1.

Stanford, Google and BerkStan are all Web graphs in which edges

are directed. DBLP (collaboration network) and Youtube (friendship

network) are both undirected graphs where there is one connected

component for the whole graph. Twitter is a directed social network

graph with about 84% vertices inside the largest strongly connected

component. All the datasets are downloaded from the Stanford

Large Network Dataset Collection [33].

graph # nodes # edges category type

DBLP 317K 1.0M Collaboration Undirected

Twitter 81K 1.8M Social Directed

Stanford 282K 2.3M Web Directed

Youtube 1.1M 3.0M Social Undirected

Google 876K 5.1M Web Directed

BerkStan 685K 7.6M Web Directed

Table 1: Datasets used in experiments.

Implementation details: We implemented all four algorithms in

Scala, based on a publicly available graph library.
3
The experiments

are conducted on a 2.30GHz 64-core Intel(R) Xeon(R) CPU E5-2698

v3 processor, 40MB cache, 756 GB of RAM. Each experiment is run

on a single core and loads the graph into memory before beginning

any timings. The RAM used by the experiment is largely dominated

by the storage needed for the landmark sets.

Parameters: In the comparison between the pruned labeling algo-

rithm and our approach, we order the vertices in decreasing order

by the indegree plus outdegree of each vertex.
4
Recall that there are

3
https://github.com/teapot-co/tempest

4
There are more sophisticated techniques such as ordering vertices using their be-

tweenness centrality scores [20]. It is conceivable that our algorithm can be combined

with such techniques.

https://github.com/teapot-co/tempest


Stanford BerkStan Google Twitter Youtube DBLP
0

100

200

300

400

500

Space comparisons

ApproximatePruning

PrunedLabeling

Stanford BerkStan Google Twitter Youtube DBLP
0

20

40

60

80

100

Preprocessing time comparisons

ApproximatePruning

PrunedLabeling

Stanford BerkStan Google Twitter Youtube DBLP
0

50

100

150

200

250

300

350

A
ve
ra
ge

n
u
m
b
er

of
la
n
d
m
ar
k
s
q
u
er
ie
d

Query time comparisons

ApproximatePruning

PrunedLabeling

Figure 2: Comparing the efficiency of our approach to the pruned labeling algorithm.

Stanford BerkStan Google Twitter Youtube DBLP

Relative Average Stretch 0.37% 0.20% 0.51% 0.29% 0.33% 1.1%

Maximum Relative Stretch 21/10 10/7 8/5 4/3 4/3 7/5

Average Additive Stretch 0.046 0.030 0.060 0.014 0.018 0.075

Maximum Additive Stretch 11 3 3 1 2 2

Average Distance 12.3 14.6 11.7 4.9 5.3 6.8

Table 2: Measuring the accuracy of our approach.

two input parameters used in our approach, the number of global

landmarks H and the radiuses of local balls {li }
n
i=H+1. To tune H ,

we start with 100, then keep doubling H to be 200, 400, etc. The

radiuses {li }i≥H are set to be 2 for all graphs.
5

Benchmarks: For the Thorup-Zwick sketch, in the first step, H =
√
n vertices are sampled uniformly at random as global landmarks.

In the second step, every other vertex grows a local ball as its land-

mark set until it hits any of the

√
n vertices. All vertices within

the ball are used as landmarks. This method uses O (n3/2) land-
marks and achieves 3-stretch in worst case. In the follow up work

of Chen et al. [13], the authors show a variant which uses high de-

gree vertices as global landmarks and observe better performance.

We implement Chen et al.’s variant in our experiment, and use

the H vertices with the highest indegree plus outdegree as global

landmarks. In the experiment, we start with H equal to

√
n. Then

we report results for

√
n multiplied by {2, 1/2, 1/4, 1/8}.

For the Das Sarma et al. sketch, first, logn sets Si of different sizes
are sampled uniformly from the set of vertices V , for 0 ≤ i < logn,
where the size of Si is 2

i
. Then a breadth first search is performed

from Si , so that every vertex x < Si finds its closest vertex inside Si
in graph distance. This closest vertex is then used as a landmark

for x . The number of landmarks used in Dar Sarma’s sketch is

n logn, and the worst case multiplicative stretch is logn. If more

accurate estimation is desired, one can repeat the same procedure

multiple times and union the landmark sets together. We begin

with 5 repetitions, then keep doubling it to be 10, 20 etc.

Our approach differs from the above two methods by using the

idea of pruning while running BFS. This dramatically enhances

performance in practice, as we shall see in our experiments.

Metrics: We measure the stretch of the estimated distances, and

compute aggregated statistics over a large number of queries. For

5
It follows from our theoretical analysis that the radiuses should be less than half of

the average distance. As a rule of thumb, setting the radius as 2 works based on our

experiments.

a query (x ,y), if y is reachable from x , but the algorithm reports

no common landmark between the landmark sets of x and y, then
we count such a mistake as a “False disconnect error.” On the other

hand, if y is not reachable from x , then it is not hard to see that our

algorithm always reports correctly thaty is not reachable from x . In
the experiments, we compute dist(x ,y) using Dijkstra’s algorithm.

To measure space usage, we report the number of landmarks per

node used in each algorithm as a proxy. Since the landmark sets

are stored in Int to Float hash maps, the actual space usage would

be eight bytes times the landmark sizes in runtime, with a constant

factor overhead.

For the query time, recall that for each pair of vertices (x ,y),
we estimate their distance by looking at the intersection of LF (x )
and LB (y) and compute the minimum interconnecting distance (c.f.

equation 1). To find the minimum, we iterate through the smaller

landmark set. Hence the running time is min( |LF (x ) | , ��LB (y)��) mul-

tiplied by the time for a hash map lookup, which is a small fixed

value in runtime. A special case is when y ∈ LF (x ) or x ∈ LB (y),
where only one hash map lookup is needed. We will report the

number of hash map lookups as a proxy for the query time.
6

5.2 Comparisons to Exact Methods

We report the results comparing our approach to the pruned label-

ing algorithm. The pruned labeling algorithm is exact. To measure

the accuracy of our approach, we randomly sample 2000 pairs of

source and destination vertices. The number of global landmarks is

set to be 400 for the Stanford dataset, 1600 for the DBLP dataset,

and 800 for the rest of the datasets.

Figure 2 shows the preprocessing time, the number of landmarks

and average query time used by both algorithms. We see that our

approach reduces the number of landmarks used by 1.5-2.5x, except

6
It is conceivable that more sophisticated techniques may be devised to speedup set

intersection. We leave the question for future work.
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Figure 3: Comparing the efficiency of our approach to two well known distance sketches with strong theoretical guarantees.

Stanford BerkStan Google Twitter Youtube DBLP

DS et al. sketch 20.9% 17.2% 21.1% 11.1% 13.1% 5.4%

TZ sketch 0.30% 0.21% 0.36% 1.65% 0.03% 2.15%

Our approach 0.16% 0.20% 0.22% 0.29% 0.04% 1.1%

Table 3: Measuring the stretch for all three methods.

Youtube

√
n/2

√
n/4

√
n/8 Ours

Stretch 0.04% 0.11% 0.07% 0.04%

# Landmarks 731 648 811 137

Preprocessing 37m 31m 35m 50m

Table 4: Varying H in TZ sketch.

on the Twitter dataset.
7
Our approach performs favorably in terms

of preprocessing time and query time as well.

The accuracy of our computed estimate is shown in Table 2. We

have also measured the median additive stretch, which turns out

to be zero in all the experiments. To get a more concrete sense of

the accuracy measures, consider the Google dataset as an example.

Since the average additive stretch is 0.06 and there are 2000 pairs

of vertices, the total additive stretch is at most 120 summing over

all 2000 pairs! Specifically, there can be at most 120 queries with

non-zero additive stretch and for all the other queries, our approach

returns the exact answer. Meanwhile, among all the datasets, we

observed only one “False disconnect error” in total. It appeared in

the Stanford Web graph experiment, where the true distance is 80.

5.3 Comparisons to Approximate Methods

Next we compare our approach to Das Sarma et al.’s sketch (or DS

et al. sketch in short) and the variant of Thorup and Zwick’s sketch

(or TZ sketch in short). Similar to the previous experiment, we

sample 2000 source and destination vertices uniformly at random

to measure the accuracy.

We start by setting the number of global landmarks to

√
n in

Thorup-Zwick sketch. To allow for a fair comparison, we tune

our approach so that the relative average stretch is comparable or

lower. Specifically, the Stanford, BerkStan and Twitter datasets use

H = 800, the Google and DBLP datasets use H = 1600 and the

Youtube dataset uses H = 3200.

Figure 3 shows the number of landmarks needed in each al-

gorithm as well as the amount of preprocessing time consumed.

Overall, our approach uses much fewer landmarks than the other

two algorithms. In terms of preprocessing time, our approach is

comparable or faster on all datasets, except on the DBLP network.

We suspect that this may be because the degree distribution of the

DBLP network is flatter than the others. Hence performing the

7
By setting the radiuses {li } to be 1, we incur 0.72% relative additive stretch by using

173 landmarks per node, which improves over the pruned labeling algorithm by 1.5x.

pruning procedures on a small subset of high degree vertices are

less effective in such a scenario.

We next report the relative average stretch for all three methods.

As can be seen in Table 3, our approach is comparable to or slightly

better than Thorup and Zwick’s sketch, but much more accurate

than Das Sarma et al’s sketch. Note that the latter performed signif-

icantly worse than the other two approaches. We suspect that this

may be because the sketch does not utilize the high degree vertices

efficiently. Lastly, our approach performs favorably in the query

time comparison as well. Note that the query time of Das Sarma et

al.’s sketch are not reported because of the worse accuracy.

Effect of parameter choice: Note that in the above experiment,

for Thorup and Zwick’s sketch, we have set the number of global

landmarks H to be

√
n. In the next experiment, we vary the value

of H to

√
n multiplied by {2, 1/2, 1/4, 1/8}.

First, we report a detailed comparison on the Google dataset in

Figure 4. Note that when H = 2

√
n, the Thorup and Zwick’s sketch

requires over 2000 landmarks per node which is significantly larger

than the other values. Hence, we dropped the data point from the

plot. For our approach, we double H from 100 up to 1600. Overall,

we can see that our approach requires fewer landmarks across

different stretch levels.

Next, we report brief results on the Youtube dataset in Table 4

since the results are similar. The conclusions obtained from other

datasets are qualitatively similar, and hence omitted.

5.4 More Experimental Observations

By varying the number of global landmarks used Algorithm 1, it is

possible to obtain a smooth tradeoff between stretch and number of

landmarks used. As an example, we present the tradeoff curve for

the Stanford Web dataset in Figure 5. Here we vary the number of

global landmarks used from 100 to 1000. As one would expect, the

relative average stretch decreases while the number of landmarks

stored increases.
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Figure 4: Varying H in TZ sketch and our approach, on the Google dataset.

200 400 600 800 1000

Number of global landmarks

0.002

0.004

0.006

0.008

0.010

0.012

0.014

R
el
at
iv
e
A
ve
ra
ge

S
tr
et
ch

Landmarks (per node)

Stretch

35

40

45

50

55

60

65

70

N
u
m
b
er

of
la
n
d
m
ar
k
s
(p
er

n
o
d
e)

Tradeoff between stretch and space

Figure 5: Tradeoff on the Stanford dataset.

6 FUNDAMENTAL LIMITS OF LANDMARK

SKETCHES

This section complements our algorithm with lower bounds. We

begin by showing a matching lower bound for Erdös-Rényi graphs,

saying that any 2-hop cover needs to store at least Ω̃(n3/2) land-
marks. The results imply that the parameter dependence on n of

our algorithm is tight for Erdös-Rényi graphs and random power

law graphs with power law exponent β > 3. It is worth mentioning

that the results not only apply to landmark sketches, but also work

for the family of labeling schemes. Recall that labeling schemes

associate a labeling vector for each vertex. To answer a query for a

pair of vertices (x ,y), only the labeling vectors of x ,y are accessed.

We first state the lower bound for Erdös-Rényi graphs.

Theorem 6. Let G = (V ,E) be an Erdös-Rényi graph where every
edge is sampled with probability p = 2 logn/n. With high probability
over the randomness of G, any labelings which can recover all pairs
distances exactly have total length at least Ω(n3/2/ log4 n).

In particular, any 2-hop cover needs to store at leastΩ(n3/2/ log4 n)
many landmarks with high probability.

For a quick overview, we divide V into

√
n sets of size

√
n each.

Wewill show that the total labeling length for each set of

√
n vertices

has to be at least Ω̃(n). By union bound over all the

√
n sets, we

obtain the desired conclusion. We now go into the proof details.

Proof. Denote by r = np. Let d = ⌊
logn

2 log(np ) ⌋ − c , where c is a

fixed constant (e.g. c = 2 suffices). Divide V into groups of size

√
n.

Clearly, there are

√
n disjoint groups – let S be one of them. Denote

by c1 a fixed constant which will be defined later. We argue that

Pr[The total label length of S ≤ c1 · r
1−2cn] ≲ r1−2c . (2)

Hence by Markov’s inequality, with high probability except for

(logn)r1−2c
√
n groups, all the other groups will have label length

at least c1 ·r
1−2cn ≳ Ω̃(n), because r ≤ 2 logn. Hence we obtain the

desired conclusion. For the rest of the proof, we focus on proving

equation (2) for the group S .
Let {x1,x2, . . . ,x |S | } be an arbitrary ordering of S . We grow the

neighborhood of each vertex in S one by one, up to level d . Denote
by G1 = (V1,E1), where V1 = V and E1 = E. For any i ≥ 1, if

xi ∈ Vi , then we define defineT (xi ) to be the set of of vertices inVi
whose distance is at most d from xi . Define L(xi ) ⊆ T (xi ) to be the
set of vertices in Gi whose distance is equal to d from xi . On the

other hand if xi < Vi , then T (xi ) and L(xi ) are both empty. More

formally,

T (xi ) :=



{y : distGi (xi ,y) ≤ d }, if xi ∈ Vi

∅, otherwise.

L(xi ) := {y ∈ T (xi ) : distGi (xi ,y) = d }

We then define Fi = ∪
i
j=1T (x j ). Denote byGi+1 to be the induced

subgraph of Gi on the remaining vertices Vi+1 = V \Fi . We show

that with high probability, a constant fraction of vertices xi ∈ S

satisfy that |L(xi ) | ≥ Ω((np)d ).

Lemma 7 (Martingale ineqality). In the setting of Theorem
6, with high probability, at least |S | /2 vertices xi ∈ S satisfy that
|L(xi ) | ≥ rd/6.

Proof. For any 1 ≤ i ≤ |S |, consider

Xi :=



1 if xi < Vi , or |Fi−1 | > |S | · r
d
logn, or |L(xi ) | ≥ rd/6

0 otherwise.

We claim that Pr[Xi = 1 | X1, . . . ,Xi−1] with high probability. It

suffices to consider the case xi ∈ Vi and |Fi−1 | ≤ |S | r
d
logn. It is

not hard to verify that |Fi−1 | ≤ n/ logn by our setting of d . Hence
the size of Vi is at least n(1 − 1/ logn). Note that the subgraph Gi
is still an Erdös-Rényi random graph, and the number of vertices is

at least n(1 − 1/ logn). By Fact 1c), the size of L(xi ) is at least

1

2

rd (1 − log−1 n)d ≥ rd/6,

since d ≤ logn.

Thus by Azuma-Hoeffding inequality,

∑ |S |
i=1 Xi ≥ 0.99 |S | with

high probability. We will show below that the contributions to∑ |S |
i=1 Xi from xi < Vi and |Fi−1 | > |S | r

d
logn is less than 0.02 |S |.

Hence by taking union bound, we obtain the desired conclusion.

First, we show that the number of xi such that xi < Vi are at
most 0.01|S | with high probability. Note that xi < Vi implies that

there exists some vertex x j with j < i such that dist(xi ,x j ) ≤ d . On
the other hand, by Fact 1,

Pr[dist(x ,y) ≤ d] ≤
3rd

n
,∀x ,y ∈ S .

Hence, it is not hard to verify that the expected number of vertex

pairs in S whose distance is at most d , isO ( |S |2 r2d/n) ≲ |S | / logn,
by the setting of d . By Markov’s inequality, with probability 1 −

1/ logn only 0.01 |S | vertex pairs have distance at mostd in S . Hence
there exists at most 0.01 |S | i’s such that xi < Vi .

Secondly for all 1 ≤ i ≤ |S |, the set of vertices Ti is a subset of
Nd (xi ), the set of vertices within distance d to xi onG . By Fact 1c),



the size of Nd (xi ) is at most 2rd . Hence we have |Fi | ≤ 2 |S | rd for

all 1 ≤ i ≤ |S | with high probability. This proves the Lemma. □

Now we are ready to finish the proof. Given the labels of S , we
can recover all pairwise distances in S . Let distS : S ×S → N denote

the distance function restricted to S . Consider the following:

a) ∃ |S |2 /9 pairs (xi ,x j ) such that distS (xi ,x j ) ≤ 2d + 1. We

know by Fact 1 that Pr[dist(xi ,x j ) ≤ 2d + 1] ≤ 2r2d+1/n, for
any xi ,x j ∈ S . Hence the expected number of pairs with dis-

tance at most 2d + 1 in S , is at most 2 |S |2 · r2d+1/n ≲ r1−2cn.
By Markov’s inequality, the probability that a random graph

induces any such distance function is r1−2cn/( |S |2 /8) ≲
r1−2c .

b) The number of pairs such that distS (xi ,x j ) ≤ 2d + 1 is at

most |S |2 /8 in S . Let A denote

{
(x ,y) ∈ S × S | dist(x ,y) > 2d + 1, and |L(x ) | , ��L(y)�� ≥ rd/6

}
.

By Lemma 7 and our assumption for case b), the size of A is

at least

(
|S |/2
2

)
− |S |2 /8 ≥ |S |2 /9. For any (x ,y) ∈ A, L(x )

and L(y) are clearly disjoint. Note that the event whether

there exists an edge between L(x ) and L(y) is independent,
conditional on revealing the subgraph for all x ∈ S up to

distance d . Hence

Pr

[
distS (x ,y) > 2d + 1, ∀(x ,y) ∈ A

]
≤

∏
(x,y )∈A

Pr

[
there is no edge between L(x ) and L(y)

]
≤

∏
(x,y )∈A

(1 − p) |L(x ) |×|L(y ) |

≤ exp

(
−p × |A| × r2d/72

)
(because |L(x ) | , ��L(y)�� ≥ rd/6)

≤ exp(−c1r
1−2cn). (because |A| ≥ n/9)

where c1 = 72 × 9 in the last line. Denote by κ = c1 · r
1−2cn.

Note that the number of labelings of length (or number of

bits) less than κ is at most 2
κ
. For each labeling, the prob-

ability that it correctly gives all pairs distances is at most

exp(−κ) by our argument above. Therefore by union bound,

the probability that the total labeling length of |S | is at most

κ is at most 2
κ · exp(κ) ≤ r1−2c for large enough n.

To recap, by combining case a) and b), we have shown that equation

(2) is true. Hence the proof is complete. □

Extensions to β > 3: It is worth mentioning that the lower bound

on Erdös-Rényi graphs can be extended to random power law

graphs with β > 3. The proof structure is similar because the

degree distribution has finite variance, hence the number of high

degree vertices is small. The difference corresponds to technical

modifications which deal with the neighborhood growth of random

graphs with constant average degree. We state the result below and

leave the proof to the full version.

Theorem 8. Let G = (V ,E) a random power law graph with
average degree ν > 1 and exponent β > 3. With high probability
over the randomness of G, any labelings which can recover all pairs
distances exactly have total length at least Ω̃(n3/2).

In particular, any 2-hop cover needs to store at least Ω̃(n3/2) many
landmarks with high probability.

Lower bounds for β close to 2: Next we show that the parameter

dependence of our algorithm is tight when β is close to 2. Specif-

ically, any 2-hop cover needs to store at least Ω(n3/2−ε ) many

landmarks when β = 2+ ε . Hence it is not possible to improve over

our algorithm when β is close to 2. Furthermore, the lower bound

holds for the general family of labeling schemes as well.

Theorem 9. Let G = (V ,E) a random power law graph with
average degree ν > 1 and exponent β = 2 + ε for ε < 1/2. With high
probability over the randomness ofG , any labelings which can recover
all pairs distances exactly have total length at least Ω(n3/2−ε ).

In particular, any 2-hop cover needs to store at least Ω(n3/2−ε )
many landmarks with high probability.

The proof is conceptually similar to Theorem 6, so we sketch

the outline and leave the proof to the full version.

Let S
high

be the set of vertices whose degrees are on the order of

√
n. Let S

low
be a set of

√
n vertices, where each vertex has weight

between ν and 2ν . Such a set is guaranteed to exist because there

are Θ(n) of them.

We first reveal all edges of G other than the ones between S
high

.

We show that at this stage, most vertices in S
low

are more than 3

hops away from each other. If for some pair (x ,y) in S
low

whose

distance is larger than three, and both x andy connect to exactly one

(but different) vertex in S
high

, then knowing whether dist(x ,y) = 3

will reveal whether their neighbors in S
high

are connected by an

edge.

Based on the observation, we show that the total labeling length

of S
low

is at least Ω̃(n3−β ). This is because the random bit between

a vertex pair in S
high

has entropy Ω(n2−β ). Since there are Θ(n)
pairs of vertices in S

high
, the entropy of the labelings of S

low
must

be Ω(n3−β ) (hence, its size must also be at least Ω(n3−β )). Similar

to Theorem 6, this argument is applied to

√
n disjoint sets of “S

low
”,

summing up to an overall lower bound of Ω(n7/2−β ) = Ω(n3/2−ε ).

7 CONCLUSIONS AND FUTUREWORK

In this work, we presented a pruning based landmark labeling

algorithm. The algorithm is evaluated on a diverse collection of

networks. It demonstrates improved performances compared to

the baseline approaches. We also analyzed the algorithm on ran-

dom power law graphs and Erdös-Rényi graphs. We showed upper

and lower bounds on the number of landmarks used for Erdös-

Rényi graphs and random power law graphs.

There are several possible directions for future work. One direc-

tion is to close the gap in our upper and lower bounds for random

power law graphs. We believe that any improved understanding

can potentially lead to better algorithms for real world power law

graphs as well. Another direction is to evaluate our approach on

transportation networks, which correspond to another important

domain in practice.
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