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Abstract

In this paper, we study the distributed sketching complexity of connectivity. In distributed
graph sketching, an n-node graph G is distributed to n players such that each player sees the
neighborhood of one vertex. The players then simultaneously send one message to the referee,
who must compute some function of G with high probability. For connectivity, the referee must
output whether G is connected. The goal is to minimize the message lengths. Such sketching
schemes are equivalent to one-round protocols in the broadcast congested clique model.

We prove that the expected average message length must be at least Ω(log3 n) bits, if the error
probability is at most 1/4. It matches the upper bound obtained by the AGM sketch [AGM12],
which even allows the referee to output a spanning forest of G with probability 1 − 1/poly n.
Our lower bound strengthens the previous Ω(log3 n) lower bound for spanning forest computa-
tion [NY19]. Hence, it implies that connectivity, a decision problem, is as hard as its “search”
version in this model.
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1 Introduction

In distributed graph sketching, an n-node graph G, where the nodes are labeled with integers from
1 to n, is distributed to n players such that the i-th player can see the labels of the neighbors of
node i. Then each player, based on this information, sends a short message (called the sketch) to a
special player, called the referee. Finally, the referee, who does not have direct access to the graph,
must compute some function of G. We usually assume that all players (including the referee) have
access to shared random bits. The goal is to minimize the message lengths. In this paper, we study
connectivity in this model, i.e., the referee must decide whether G is connected.

For problems where the referee must compute a function that depends on the global structure
of G, it may seem that the players have no way to figure out what information is more important
from only the local structures. For instance, for connectivity, each player only sees the set of edges
incident to a node, and they cannot distinguish which edges are more crucial in connecting G (e.g.,
bridges). Hence, it may seem that they must tell the referee a large amount of information so that
the “important” information is included in the messages with high probability. Surprisingly, this
intuition is wrong. Ahn, Guha and McGregor [AGM12] showed that it is possible to “sketch” each
neighborhood using only O(log3 n) bits, such that the referee is still able to decide if G is connected
with high probability.

Roughly speaking, in their algorithm, each player computes “hashes” of its neighborhood such
that the hash values allow the referee to recover one neighbor of this vertex. Moreover, these hashes
are “mergeable”, in the sense that by combining the hashes of a set of vertices, the referee is able
to recover one edge from this set to the rest of G. Therefore, by repeatedly finding outgoing edges
from each connected component, and merging the connected components and their hash values, the
referee will be able to decide if G is connected. We present a more detailed summary in Section 1.2.

In a previous work of Nelson and Yu [NY19], it was shown that if the referee has to output
the entire spanning forest with constant probability, then the sketch size has to be Ω(log3 n) bits.
Computing a spanning forest could, in principle, be a much harder task, as the output has Θ(n log n)
bits, implying a trivial lower bound of Ω(log n) bits. On the other hand, connectivity only requires
the referee to learn one bit about G. In this paper, we strengthen the previous lower bound, and
show that the players still have to send Ω(log3 n) bits on average in order for the referee to learn
this one-bit.

Theorem 1. For any (randomized) distributed sketching scheme that allows the referee to decide
if G is connected with probability at least 3/4, the average sketch size of all players must be at least
Ω(log3 n) bits in expectation.

1.1 Related work

Distributed computing. Distributed graph sketching is related to the broadcast congested clique
model (BCAST(b)) in distributed computing, where connectivity has attracted significant attention
lately [BKM+15, MT16, JN17, JN18a, PP19]. In BCAST(b), an input G is distributed to n players,
such that the i-th player sees the neighborhood of vertex i. An algorithm in this model proceeds in
rounds. In each round, each player simultaneously broadcasts one message of length b to all other
players, and performs (free) local computation. After broadcasting (and receiving from every other
player) r messages, the players must figure out the output. The goal is to minimize the number of
rounds r. Therefore, distributed graph sketching asks what the smallest b is such that the problem
admits a one-round protocol in BCAST(b).
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Montealegre and Todinca [MT16] showed that one can solve connectivity deterministically in
O(r) rounds in BCAST(n1/r log n). Jurdziński and Nowicki [JN17] improved that round complexity
to O(log n/ log logn) for BCAST(log n). Their algorithm is also deterministic. For randomized
algorithms, the AGM sketch [AGM12] solves the problem with only one round in BCAST(log3 n).
Pai and Pemmaraju [PP19] proved an Ω(1

b log n) round lower bound in BCAST(b) for deterministic
connectivity algorithms. They also showed the same lower bound for random algorithms that
compute the connected components of G. To the best of our knowledge, Theorem 1 is the first non-
trivial lower bound for connectivity in BCAST(b) for b = ω(log n), even for deterministic algorithms
(it implies that if b = o(log3 n), then we need at least two rounds).

A related model in distributed computing is the unicast congested clique model (UCAST(b)),
where each player is allowed to send possibly different messages to other players in each round.
It turns out that the UCAST(b) model is much more powerful than BCAST(b), and connectivity
algorithms with significantly lower round complexity exist [LPPP05, HPP+15, GP16, JN18b]. The
best known algorithms use O(log log n) rounds deterministically [LPPP05], and use O(1) rounds if
we allow randomization [JN18b].

Dynamic streams. The best known distributed sketching scheme [AGM12] uses linear sketches.
If we view the input graph G as a

(
n
2

)
-dimensional binary vector X, the concatenation of all

messages turns out to be a matrix-vector product AX, for A ∈ Zn log2 n×(n2) a matrix determined by
the shared random bits. The product vector AX determines if G is connected with high probability.

It also gives an O(n log3 n)-bit streaming algorithm for connectivity. That is, we wish to maintain
a dynamic graph G under edge insertions and deletions using as little memory as possible, such that
after all updates, the algorithm is able to decide whether the final graph is connected with high
probability. An algorithm can easily maintain the product AX under edge insertions and deletions
given A. Moreover, the connectivity of G can be determined from the final AX. Therefore, by
maintaining AX (and storing a succinct representation of A), this problem can be solved using
O(n log3 n) bits of memory, where the extra log n factor is due to the bit complexity of each
coordinate of AX.

The best known space lower bound for connectivity in this setting is Ω(n log n) bits due to Sun
and Woodruff [SW15]. Their lower bound also holds if we only insert edges to G. It was shown
in [NY19] that if the algorithm has to output a spanning forest with constant probability, then it
must use at least Ω(n log3 n) bits of space. Unfortunately, it is not clear whether our new technique
can be extended to streaming.

1.2 AGM sketch

To better motivate our hard instance and the lower bound argument, we present a summary of the
O(log3 n) algorithm in this subsection. The algorithm begins by giving every possible undirected
edge a unique label, e.g., by concatenating the labels of the two endpoints with the smaller label
first. The basic hash (linear sketch) for each player is simply the XOR of the labels of all incident
edges. Each basic hash takes O(log n) bits, and it allows one to recover the incident edge if the
degree of that vertex happen to be one.

Next, we subsample the edges and compute the basic hashes of each sample. Specifically, the
subsampling creates samples of O(log n) levels. At level i, we sample each edge with probability
2−i, and each player computes the basic hash of all surviving edges. Overall, the hashes from
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all O(log n) levels have O(log2 n) bits. Now regardless of the degree of the vertex, with constant
probability there exists some level where exactly one incident edge survives the sampling. Hence,
the hash at that level recovers this edge. It turns out that there is a separate structure that has the
same size and detects if each level has exactly one surviving edge with error probability 1/poly n.
Therefore, this O(log2 n)-bit hash allows one to recover one incident edge with constant probability.

The most important feature of this hash is its mergeability. That is, if we take two vertices x
and y, and compute the level-wise XOR of their hashes for each of the O(log n) levels, then for each
level, we obtain simply the XOR of all surviving edges that are incident to either of them, with the
exception that the edge between x and y, if exists, is XORed twice and thus canceled.1 In general,
if we take the level-wise XOR of hashes of a set of vertices, we obtain for each level, the XOR of
all surviving outgoing edges from this set. In particular, with constant probability, there exists one
level with exactly one outgoing edge, which allows one to recover it.

Finally, each player computes O(log n) independent such O(log2 n)-bit hashes, and sends them
to the referee. Therefore, the message lengths areO(log3 n) bits. The referee uses the firstO(log2 n)-
bit hashes to compute one outgoing edge from each vertex. Then the referee merges the hashes of
vertices that are already connected, and uses the second hashes to compute one outgoing edge from
each connected component, and so on. It succeeds on each component with constant probability
each time. Therefore, by repeating the above procedure O(log n) times, the referee recovers the
connected components of G with high probability.

In summary, the first log n factor in space is needed to encode the label of a vertex. The second
log n is used to “guess” approximately the number of outgoing edges. The last log n factor serves
two purposes: The algorithm has O(log n) rounds, and each round uses fresh randomness; the
O(log2 n)-bit hash only succeeds with constant probability on each connected component, O(log n)
instances are used to ensure that all components succeed. An Ω(log3 n) lower bound argument and
the corresponding hard instance must simultaneously capture the above three factors.

1.3 Organization

We present overviews of the previous and new lower bounds in Section 2. In Section 3, we prove
a lower bound for a communication problem, called UR⊂dec. Finally, we prove the main theorem in
Section 4, by reducing from UR⊂dec.

2 Overview

In this section, we summarize the previous lower bound for spanning forest computation [NY19],
and present an overview of our lower bound proof. Both lower bound proofs are based on reductions
from variants of the communication problem universal relation.

Definition 2 (UR⊂). In the UR⊂ problem, there are two players Alice and Bob. Alice receives a
set S ⊆ [U ] and Bob receives a proper subset T ⊂ S as their inputs. Then Alice sends one message
to Bob, and Bob must find some element in S \ T with probability at least 1− δ.

The original version (the search version) of universal relation (called UR⊂) is used in the previous
spanning forest lower bound. By applying the above subsampling trick and sending the hashes,

1Here, it is important that the players have access to shared randomness, as it allows them to have the same
outcome in sampling.
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this task can be accomplished with O(log(1/δ) log2 U) bits of communication [FIS08]. It turns out
that this is optimal as long as δ > 2−U

0.99
[KNP+17]. The previous spanning forest lower bound is

based on a reduction from UR⊂ for U = nΘ(1) and δ = n−Θ(1), in which case, the optimal bound is
Θ(log3 n).

In order to prove a lower bound for connectivity, which is a decision problem, we first define
and prove a lower bound for a decision version of universal relation, called UR⊂dec, then we reduce
connectivity from it.

Definition 3 (UR⊂dec). In the UR⊂dec problem, Alice receives a set S ⊆ [U ], Bob receives a proper
subset T ⊂ S and a partition (P1, P2) of [U ]\T . It is promised that either S\T ⊆ P1, or S\T ⊆ P2.
Alice sends one message to Bob, and Bob must decide which part contains S \ T with probability
1− δ.

Clearly, this is an easier problem than UR⊂, since if Bob could recover any element in S \ T ,
then by checking if this element is in P1 or P2, he would be able to decide if S \ T ⊆ P1 or P2. In
Section 3, we prove in fact, the decision version is as hard as the search version.

It turns out that the reductions from UR⊂ and UR⊂dec to spanning forest and connectivity re-
spectively have similar main structures. On the other hand, the previous UR⊂ lower bound strat-
egy [KNP+17] completely fails on the decision problem UR⊂dec. Hence, the main technical contribu-
tion of this paper is the UR⊂dec lower bound proof. In the subsections below, we first overview the
reductions from the universal relation problems, and then present a summary of their communica-
tion lower bounds.

2.1 Previous reduction from UR⊂

Now let us see what the connection is between UR⊂ and distributed sketching for spanning forest.
Fix a vertex v. The player at v sees its neighborhood S, and sends a message Mv to the referee.
Suppose the referee figures out that there is a subset T of the neighbors of v, which have v as their
only neighbor. Then, the only way for {v} ∪ T to connect to the rest of the graph is through some
edge from v to S \ T . In the other words, in order to output any spanning forest, the referee must
find an element in S \T . Since v does not know T and the referee does not know S, intuitively the
communication between them must at least “solve” UR⊂.

However, this argument does not directly give us a proof. The main issue is that in distributed
sketching, every edge is shared between two players. In particular, the other “endpoint” in S\T also
knows this edge. Therefore, any vertex u who has v as its neighbor can simply tell the referee this
fact, and the referee learns an element (vertex) in S \T from the message of that vertex. To resolve
this issue, we put a “large number” of independent “v” and a “small number” of “other endpoints”
in the graph, so that the total amount of information revealed by the other “endpoints” becomes
negligible. More specifically (see also Figure 1a), we randomly permute the labels, and pick a
set of vertices V m to be all potential v. For each vmi ∈ V m, we independently construct a UR⊂

instance (Si, Ti) such that all vertices in Ti have vmi as their only neighbor (V l
i in Figure 1a) and all

vertices in Si \ Ti are contained in a much smaller set V r. Each vmi sees a randomly labeled set of
neighbors Si, and as in UR⊂, the player does not know Ti . Moreover, since |V r| � |V m|, the total
information that can be revealed by the other “endpoint” of S\T is at most |V r| ·poly log n� |V m|
(otherwise some vertex in V r must send a very long message). For an average vmi , this information
is negligible. By a standard information theoretic argument, we can show that for an average vmi ,
even if the referee does not receive messages from V r, he can still find a neighbor of vmi in V r with
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Figure 1: Ti is V l
i , and Si \ Ti is contained in V r.

high probability. It then implies that if there is a spanning forest protocol, then one can solve UR⊂

with the same communication and approximately the same error probability.
The final graph G consists of

√
n independent blocks of size

√
n, where each block is constructed

as above. If the referee can find a spanning forest with constant probability, i.e., find a spanning tree
in all blocks, then one can show that for one block, the referee must be able to find its spanning
tree with probability 1 − O(1/

√
n). Hence, by applying the above argument on one block, we

may reduce the problem from UR⊂ with error probability ≈ 1/
√
n and U = |V r| = nΘ(1). As we

mentioned above, there is an Ω(log3 n) UR⊂ lower bound under this setting of parameters, implying
an Ω(log3 n) lower bound for spanning forest.

2.2 Overview of our reduction

To make a reduction from UR⊂dec to connectivity, we begin by modifying the construction for each
block (see Figure 1b). We split the set V r into two sets V r

1 and V r
2 . Then for each vertex vmi ∈ V m,

we ensure that its neighbors in V r are either all in V r
1 or all in V r

2 . As before, the neighborhood of
vmi corresponds to a set Si, its neighbors in V l

i corresponds to its subset Ti. Now, let P1 = V r
1 and

P2 = V r
2 , then Si \ Ti is either a subset of P1 or a subset of P2. Based on which case it is, vmi is

either only connected to V r
1 , or only connected to V r

2 . What remains is to combine the blocks into
a graph G that forces the players to solve UR⊂dec instances with high probability (see Figure 2).

For each block, we construct two identical copies of a subgraph as above, and denote their
vertex sets by +V l,+V m,+V r and −V l,−V m,−V r respectively. Then, we add four special vertices
s1, s2, t1, t2 to the block. We connect s1 to a random +vmi , and connect s2 to its copy −vmi . Then
we connect t1 to all vertices in +V r

1 and −V r
2 , and connect t2 to all vertices in −V r

1 and +V r
2 .

Now, the block has two connected components. It is easy to verify that each vertex is either in
the same connected component with t1 or t2, but t1 and t2 are in different components. Moreover,
s1 and s2 are also in different components. This is because if +vmi , the only neighbor of s1, has
a neighbor in +V r

1 , then −vmi has a neighbor in −V r
1 , in which case, s1 and t1 are in the same

connected component, and s2 and t2 are in the same connected component, and vice versa. Thus,
we construct a block such that either

(i) s1 and t1 are in the same component, s2 and t2 are in the same component; or
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Figure 2: Subfigure (a) demonstrates one block. Subfigure (b) shows the two possible cases of the
connectivity of s1, s2, t1, t2 within the block.

(ii) s1 and t2 are in the same component, s2 and t1 are in the same component.
Deciding which is the case requires the referee to determine for this random vertex vmi , whether its
neighbors are in V r

1 or V r
2 , i.e., “solving” the UR⊂dec instance embedded at vmi .

We independently construct
√
n such blocks, and add an edge between t1 [resp. t2] of block i

and s1 [resp. s2] of block i+ 1 (where block
√
n+ 1 is block 1). This graph is connected if and only

if there is an odd number of blocks where case (ii) above happens. That is, deciding if the whole
graph is connected is equivalent to computing the XOR of

√
n bits, one for each block. It turns out

that in the distributed sketching model, if the referee computes the XOR with 3/4 probability, then
for most blocks, the referee can decide which case this block is in with probability 1 − O(1/

√
n).

By the same argument as before, it allows us to reduce connectivity from UR⊂dec with U = nΘ(1) and
δ = 1/nΘ(1). The formal proof can be found in Section 4.

2.3 Universal relation lower bound

The previous lower bound for UR⊂ [KNP+17] uses an information theoretic argument.2 Roughly
speaking, the goal is to show that many elements of S can be reconstructed from Alice’s message
π (possibly given some other information about S). Then it would imply that π contains a lot
of information, and thus, it has to be long. As a demonstration of the argument, let us assume
for now, that the protocol always succeeds (i.e., error probability δ = 0). Given Alice’s message
π, the reconstruction algorithm can set T = ∅ and simulate Bob. Bob returns an element x1 in
S \ ∅ = S, recovering one element. Next, it sets T = {x1}, and simulates Bob again, which returns

2[KNP+17] provided two proofs, we only discuss their first proof here.
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x2 ∈ S \ {x1}. Then, it sets T = {x1, x2}, and so on. This procedure reconstructs the whole set S
from π. Therefore, the message length must be at least Ω(U).

The above exact argument breaks when δ > 0. In the first round, we set T = ∅ and Bob returns
an element x1 ∈ S with probability 1 − δ. However, in the second round where T = {x1}, the
protocol no longer succeeds with probability 1− δ, since we are using the same randomness in both
rounds. In the other words, we have to condition on the randomness leading to a first-round output
of x1, which distorts its distribution. Since such an event may have probability as low as 1/|S|,
conditioning on it could significantly affect the error probability. To resolve this issue, [KNP+17]
applies the following strategy. In the second round, instead of setting T = {x1}, we also “mix”
another α-fraction of the remaining elements of S into T for some α ∈ (0, 1). That is, we take a
random subset of S \ {x1} of size α · |S| and give it to the reconstruction algorithm for free. The
algorithm sets T to be the union of {x1} and this subset, and simulates Bob. In this way, the
condition becomes more mild – instead of conditioning on the randomness leading to a first-round
output of x1, we only condition on the randomness leading to a first-round output that is in T .
It turns out that by mixing in an α-fraction of the remaining elements into T in each round for
α = 1/ log(1/δ), one can ensure that the later rounds succeed with high probability. This argument
can therefore be applied for Ω(log(1/δ) logU) rounds. Beyond the elements that are given, the
algorithm reconstructs Ω(log(1/δ) logU) extra elements in S in expectation. It implies that the
message length must be at least Ω(log(1/δ) log2 U).

2.4 Lower bound for decision version

Recall that in the decision version, Bob does not only get T , he also gets a bipartition (P1, P2) of
[U ] \T such that S \T is a subset of either P1 or P2. Therefore, in order to simulate Bob, we must
give the reconstruction algorithm a valid bipartition. This can be deadly – the bipartition (P1, P2)
contains at least O(|S|) bits of information about S, whereas Bob’s output only contains one bit.
Hence, we could at most recover O(logU) bits from Alice’s message π before giving away the entire
set S, which only has O(|S| logU) bits.

The key component in our lower bound proof is to analyze the information that can be learned
from π, without being given a valid partition (P1, P2). For simplicity, let us assume δ = 0 and
T = ∅ for now, i.e., let us focus on the first round in the previous argument for zero-error protocols.
Given Alice’s message, we can enumerate all possible partitions (P1, P2) of [U ], and simulate Bob
on them. Suppose for a partition (P1, P2), Bob returns that S \T (= S) is a subset of P1. Although
we have no way to verify whether it is even a valid input, Bob’s output at least tells us that S
cannot be a subset of P2. Since if S ⊆ P2, (P1, P2) would be a valid partition, in which case, Bob
has to output P2. Thus, for every partition (P1, P2), we rule out some possibilities for set S by
simulating Bob. The key question here is how much information we can learn by simulating Bob
on all partitions and T = ∅.

Suppose we could show that if all remaining possibilities for S contain some particular element
x1, i.e., we have learned that x1 must be in S, then we could proceed as in the previous argument.
However, this is not always the case. An easy counterexample is that for some integer k > 1, Alice
picks k elements from S and another k− 1 elements from [U ], and sends the set W of these 2k− 1
elements to Bob (without annotating which ones are from S). Then for T = ∅ and any (P1, P2),
Bob can just output the part that contains at least k elements from W . This part must contain at
least one element from S, and by the assumption that either S ⊆ P1 or S ⊆ P2, it must contain S.
However, if we apply the above strategy enumerating all possible (P1, P2) and simulating Bob, the
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remaining possibilities for S will simply be all S that contain at least k elements from W . There
is not an element x1 that is contained in all remaining possibilities for S.

However, this counterexample is not a bad case for the whole argument, because by telling
the reconstruction algorithm which of the k elements in W belong to S using O(k) extra bits, the
algorithm can recover k elements in S, which is worth k logU bits of information. Then the previous
argument still works. The main technical lemma in this paper is a structural result asserting that
essentially, these are the only possible type of counterexamples (see Lemma 7).

Lemma 4 (main technical lemma, informal). Fix any deterministic protocol. Suppose for some
collection S of Alice’s inputs, Alice sends the same message π on all S ∈ S, and Bob is able
to compute UR⊂dec for a random S ∈ S and T = ∅ with probability at least 3/4, then there must
exist one set S∗ ∈ S and some integer k ≥ 1 such that S∗ has intersection size k with at least
exp(−Θ(k))-fraction of the sets S ∈ S.

In the other words, maybe not all sets S consistent with π contain the same element x1, but
the lemma implies that there must exist a not-so-small fraction of the sets that contain many same
elements. This is because by averaging, at least |S∗|−k · exp(−Θ(k))-fraction of the sets has the
same intersection of size k with S∗. When |S∗| � U , this imposes a structure on the collection of
sets consistent with π. That is, a (� U−k)-fraction of sets contain the same k elements. We can
approximately view it as “describing” k elements using � k logU bits. This lemma also extends
to T 6= ∅. This allows us to mimic the previous argument.

We first apply Yao’s minimax principle to fix the randomness of the protocol. Our argument
starts with the collection S of all S on which Alice sends message π, and T = ∅. Then we

(a) apply Lemma 4 and find k elements such that (� U−k)-fraction of S contain all of them,
add those k elements to T , and remove all sets in S that do not contain T (corresponding to
recovering elements from S in the previous argument);

(b) next pick α(|S| − |T |) (we only consider S of the same size) random elements from [U ] \ T ,
add those elements to T , and remove all sets in S that do not contain T (corresponding to
“mixing” in α-fraction of random remaining elements in S).

We repeatedly apply these two steps, and eventually we have restricted all sets in S to contain |S|
specific elements. That is, the final size of S can be at most 1. Similar to the previous argument,
we can show that by mixing in a random α-fraction each time, the average success probability of
S in the later rounds will be at least 3/4, allowing us to apply Lemma 4.

To see why this argument implies a lower bound on |π|, observe that in step (b), the size of

S drops as expected – by a factor of
( |S|−|T |
α(|S|−|T |)

)
/
( U−|T |
α(|S|−|T |)

)
, the probability that a set S contains

α(|S| − |T |) random elements outside T . If the size of S also dropped as expected in step (a),

then in the whole process, the size of S would have dropped by the expected factor of
(
U
|S|
)−1

, the

probability that a set S contains |S| random elements. Combining it with the final size of S being
at most 1, we would only have obtained a trivial upper bound of

(
U
|S|
)

on the initial size of S. But

in step (a), the actual drop of the size of S is much slower. Thus, in total, the size of S dropped

by a factor of �
(
U
|S|
)−1

, implying a non-trivial upper bound of �
(
U
|S|
)

on the initial size of S.
Recall that the initial S was the collection of S on which Alice sends π. That means there must
be �

(
U
|S|
)

different inputs that can have Alice send the same message π. However, this argument

applies to all messages π. Thus, we must have many different messages in order to cover all
(
U
|S|
)

inputs S, implying a lower bound on |π|.
The actual proof is slightly different due to technical reasons, see the next section.
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3 Lower Bound for UR⊂dec

Recall that in the UR⊂dec problem, Alice gets a set S ⊆ [U ], Bob gets a proper subset T ( S, as well
as a partition (P1, P2) of [U ] \ T . It is guaranteed that either S \ T ⊆ P1, or S \ T ⊆ P2. In the
communication game, Alice sends one message π to Bob, and Bob must decide whether P1 or P2

contains S \ T with probability at least 1− δ. In this section, we prove the following lower bound
for the UR⊂dec problem.

Lemma 5. For any U and δ such that exp(−U1/4) < δ < 1/ log4 U , there is an input distribu-
tion DUR⊂dec

such that any one-way communication protocol that succeeds with probability at least
1 − δ on a random instance sampled from DUR⊂dec

must have expected communication cost at least

Ω(log(1/δ) log2 U).

Hard distribution DUR⊂dec
. Without loss of generality, assume U is a perfect cube. Let |S| =

m = U1/3, and we view [U ] as m disjoint blocks of size B = U2/3. Alice’s input set S is a
uniformly random set of size m, with one element from each block. Let α = 16

log 1/δ , and tr =

dm · (1 − (1 − α)r) + 2re for r = 0, 1, . . . , R − 1 be all possible sizes of T , where R = b 1
16α logmc.

Bob’s input set T is a uniformly random subset of S of size tr, for a uniformly random r in
{0, . . . , R− 1}. Finally, we put the whole set S \ T in either P1 or P2 randomly, and then put each
element in [U ] \ S randomly and independently in P1 or P2, i.e., (P1, P2) is a uniformly random
partition of [U ] \ T conditioned on S \ T ⊆ P1 or S \ T ⊆ P2.

Note that this distribution is valid when δ > exp(−U1/4) and U sufficiently large. In this case,
we have

tr < m(1− (1− α)R) + 2R < m−m7/8 +O(m3/4 logm) < m,

and tr ≥ 0. Therefore, T is always a proper subset of S. Also observe that

tr+1 − tr ≥ m((1− α)r − (1− α)r+1) + 1 ≥ 1.

Suppose there is a randomized communication protocol with error probability at most δ and
expected cost at most C. By Markov’s inequality and union bound, we can fix the randomness of the
protocol such that under DUR⊂dec

, the error probability is at most 2δ and the expected communication
cost is at most 2C. Thus, we may assume the protocol is deterministic.

Fix such a deterministic protocol. By Markov’s inequality and union bound again, for at least
1/2 of Alice’s sets S, the error probability conditioned on S is at most 8δ and Alice sends a message
of length at most 8C on S. Denote this collection of Alice’s sets by Sgood. Thus, |Sgood| ≥ 1

2B
m.

Note that this collection could depend on the protocol.

To prove the lemma, we fix a message π and consider the collection S0 of Alice’s sets S ∈ Sgood

on which Alice sends π. We pick π that maximizes |S0|, hence, |S0| ≥ 1
2B

m · 2−8C . We will show
that S0 has to be small, which will imply a lower bound on C.

To this end, we will describe a random process that generates a sequence of nested collections
S0 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ SI and a sequence of sets T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ TI such that each Ti is
one possible input set for Bob, and T0 = ∅. For each i, all S ∈ Si will contain Ti. Clearly, |Si| is
at most Bm−|Ti| for every i. We will then show that |Si|/Bm−|Ti| increases rapidly as i increases.
Combining it with the fact that |SI |/Bm−|TI | ≤ 1, we conclude that |S0|/Bm−|T0| = |S0|/Bm must
be very small.

9



Random process A. Now let us describe the random process A (see Figure 3). To initialize, we
fix a message π of length at most 8C, which is sent by Alice on the most number of sets S ∈ Sgood.
Then let S0 be all such sets, and let T0 be the empty set, i.e., |T0| = tr0 for r0 = 0. Next, we
iteratively generate collections Si and sets Ti of size tri for some ri < R.

In round i, we construct Si+1 and Ti+1 from Si and Ti. We first check if there are many pairs
of sets in Si that intersect outside Ti (recall that all sets in Si contain Ti). More specifically, we

try to find a ki ≥ 1 such that there are at least |Si|2
4·22ki pairs of sets in Si intersect on ki elements

outside Ti. If such ki does not exist, the random process aborts (and it fails). Otherwise, we fix

one such ki, and by averaging, there must be a set S∗ such that it intersects at least |Si|
4·22ki sets in

Si on ki elements outside Ti. Again by averaging, there must be a subset ∆T ⊆ S∗, of size ki and
disjoint from Ti, such that at least |Si|

4·22ki ·mki
sets S ∈ Si have (S ∩ S∗) \ Ti = ∆T . In particular,

they all contain Ti ∪∆T .
We then fix any such S∗ and ∆T . ∆T will be added to Ti+1. The next set Ti+1 will have size

tri+1 for ri+1 = ri + ki. Observe that |Ti+1| = tri+1 is at least |Ti ∪∆T | = tri + ki. Then we pick
tri+1 − tri − ki random blocks Bi that are disjoint from Ti ∪∆T . For each block in Bi, we pick one
element to add to Ti+1, and denote this set of tri+1 − tri − ki elements by ∆T ′. By averaging, there

exists such a set ∆T ′ such that at least |Si|
4·22ki ·mki ·Btri+1−tri−ki

sets in S ∈ Si have (S∩S∗)\Ti = ∆T

and S ⊇ ∆T ′. In particular, they all contain Ti ∪ ∆T ∪ ∆T ′. We fix any such ∆T ′. Finally, let
Ti+1 = Ti ∪ ∆T ∪ ∆T ′, and let Si+1 be a collection of any |Si|

4·22ki ·mki ·Btri+1−tri−ki
sets in Si that

contain Ti+1.
We repeat this process until ri+1 ≥ R, in which case, tri+1 becomes undefined. Then we do not

sample random blocks, and simply let Ti+1 = Ti ∪∆T and Si+1 be the collection of any |Si|
4·22ki ·mki

sets in Si that contain Ti+1, and end the process. To ensure the random process is well-defined, for
any step that “fixes any such X”, we mean fixing X to the lexicographically smallest.

Note that the only random part in the whole process is in sampling the tri+1 − tri − ki random
blocks Bi in each round. The selection of π, ki, S

∗,∆T and ∆T ′ after Bi is sampled is deterministic.
The “saving” of each round comes from ∆T : it increases the size of Ti by ki while |Si| is only reduced
by a factor of 1

4·(4m)ki
(rather than B−ki). As we will see later, the elements from random blocks

Bi ensure the existence of such ki in later rounds with high probability.
To avoid ambiguity in the terminology, error is only used when referring to the protocol out-

putting a wrong answer, and failure is only used when referring to the random process aborting
before reaching ri ≥ R.

The key property of A is that it does not always fail.

Lemma 6. The probability that A fails is at most 1/2 as long as exp(−U1/4) < δ < 1/ log4 U .

We will prove the lemma in the next subsection. Let us first show that it implies the claimed
UR⊂dec lower bound.

Proof of Lemma 5. By Lemma 6, A does not always fail. We draw a sample from A conditioned
on succeeding, and obtain collections S0, . . . ,SI . By construction, we have

|SI | = |S0| ·

(
I−2∏
i=0

1

4 · 22ki ·mki ·Btri+1−tri−ki

)
· 1

4 · 22kI−1 ·mkI−1

10



Random process A:
1. find π that maximizes |{S ∈ Sgood : Alice sends π on input S}|
2. let S0 := {S ∈ Sgood : Alice sends π on input S}
3. let r0 := 0, T0 := ∅
4. let i := 0
5. repeat

6. if there is no ki ≥ 1 such that |{S1, S2 ∈ Si : |(S1 ∩ S2) \ Ti| = ki}| ≥ |Si|2

4·22ki

7. the process fails, abort
8. find any ki, S

∗, and ∆T of size ki such that |{S2 ∈ Si : (S∗ ∩ S2) \ Ti = ∆T}| ≥ |Si|
4·22ki ·mki

9. let ri+1 := ri + ki
10. if ri+1 < R
11. pick tri+1 − tri − ki random blocks Bi that are disjoint from Ti ∪∆T
12. find any ∆T ′ consisting of exactly one element from each block in Bi, such that

|{S2 ∈ Si : (S∗ ∩ S2) \ Ti = ∆T, S2 ⊇ ∆T ′}| ≥ |Si|
4·22ki ·mki ·Btri+1

−tri
−ki

13. let Ti+1 := Ti ∪∆T ∪∆T ′

14. let Si+1 be the collection of any |Si|
4·22ki ·mki ·Btri+1

−tri
−ki

sets S ∈ Si that contain Ti+1

15. else
16. let Ti+1 := Ti ∪∆T
17. let Si+1 be the collection of any |Si|

4·22ki ·mki
sets S ∈ Si that contain Ti+1

18. i := i+ 1
19. until ri ≥ R
20. denote the final i by I

Figure 3: Random process A.

= |S0| · 4−I
(
B

4m

)∑I−1
i=0 ki

·B−kI−1

I−2∏
i=0

1

Btri+1−tri

≥ |S0| · 4−I
(
B

4m

)R
·B−(trI−1

+kI−1),

where the last inequality uses the fact that
∑I−1

i=0 ki = rI ≥ R and B > 4m. Then by the fact that
I ≤ R and |TI | = trI−1 + kI−1, we have

|SI | ≥ |S0| ·
(

B

16m

)R
·B−|TI |.

On the other hand, |SI | ≤ Bm−|TI |. Thus,

|S0| ≤ |SI | ·
(

16m

B

)R
·B|TI | ≤

(
16m

B

)R
·Bm.

However, by averaging, |S0| ≥ |Sgood| · 2−8C ≥ Bm · 2−8C−1. Therefore, we have 2−8C−1 ≤
(

16m
B

)R
,

which simplifies to
C ≥ Ω(R log(B/16m)) = Ω(log(1/δ) log2 U),

proving the lemma.
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3.1 Failure probability of A

Now let us bound the failure probability of A, proving Lemma 6. To this end, we will first show
that for any round i and any Si, Ti, if the conditional error probability of the protocol, under input
distribution DUR⊂dec

conditioned on S ∈ Si and T = Ti, is at most 1/4, then A does not fail in this
round.

Lemma 7. If conditioned on S ∈ Si and T = Ti, the error probability is at most 1/4, then we must
have ∑

S1,S2∈Si

(
2|(S1∩S2)\Ti| − 1

)
≥ |Si|

2

4
,

and consequently, there exists some ki ≥ 1 such that

|{S1, S2 ∈ Si : |(S1 ∩ S2) \ Ti| = ki}| ≥
|Si|2

4 · 22ki
.

Then we will upper bound the probability that A generates Si, Ti whose conditional error
probability is more than 1/4, by applying the following lemma. Fix k0, . . . , ki−1, which determines
r0, . . . , ri, and consider the distribution of Si and Ti (which has size tri) induced by A conditioned
on k0, . . . , ki−1. The lemma states that for any S ∈ Sgood, and any T ⊂ S of size tri , the probability

that Ti = T conditioned on Si 3 S and k0, . . . , ki−1 is at most than 26/α ·
(
m
tri

)−1
, i.e., the probability

of any set T conditioned on S ∈ Si can increase by at most a factor of 26/α (compared to the uniform
distribution over subsets of S of size tri).

Lemma 8. Fix any k0, . . . , ki−1, which determines r0, . . . , ri, such that ri < R. For any S ∈ Sgood
such that Pr[S ∈ Si | k0, . . . , ki−1] > 0 and any T ⊂ S of size tri, we must have

Pr[Ti = T | S ∈ Si, k0, . . . , ki−1] ≤ 26/α(
m
tri

) ,
over the randomness of A.

The above two lemmas together imply the claimed upper bound on the failure probability of A.

Proof of Lemma 6. By the definition of Sgood, for any S ∈ Sgood, the error probability conditioned
on S is at most 8δ. Recall that in DUR⊂dec

, the size of T is tr for a uniformly random r = 0, . . . , R−1.
It implies that for any fixed S ∈ Sgood and fixed r, the error probability conditioned on S and
|T | = tr is at most 8Rδ. Now instead of sampling a random subset T , suppose we replace the
conditional distribution of T conditioned on S, by the distribution of Ti generated by the random
process conditioned on S ∈ Si and k0, . . . , ki−1. Then by Lemma 8, for any k0, . . . , ki−1 such that
ri < R, and any S ∈ Sgood such that Pr[S ∈ Si | k0, . . . , ki−1] > 0, the expected error probability of
the protocol conditioned on S and T is at most 26/α+3Rδ. Note that |Si| is fixed given k0, . . . , ki−1,
hence, the expected error probability conditioned on S ∈ Si and T = Ti is also at most 26/α+3Rδ:

E
Si,Ti|k0,...,ki−1

[Pr[err | S ∈ Si, T = Ti]]

=
1

|Si|
· E
Si,Ti|k0,...,ki−1

∑
S∈Si

Pr[err | S, T = Ti]


12



=
1

|Si|
· E
Si,Ti|k0,...,ki−1

 ∑
S∈Sgood

1S∈Si · Pr[err | S, T = Ti]


=

∑
S∈Sgood

1

|Si|
· E
Si,Ti|k0,...,ki−1

[1S∈Si · Pr[err | S, T = Ti]]

=
∑

S∈Sgood

1

|Si|
· Pr[S ∈ Si | k0, . . . , ki−1] · E

Si,Ti|Si3S,k0,...,ki−1

[Pr[err | S, T = Ti]]

≤
∑

S∈Sgood

1

|Si|
· Pr[S ∈ Si | k0, . . . , ki−1] · 26/α+3Rδ

= 26/α+3Rδ.

By Markov’s inequality, the probability conditioned on k0, . . . , ki−1 that the random process gen-
erates Si, Ti such that

Pr[err | S ∈ Si, T = Ti] > 1/4

is at most 26/α+5Rδ. Thus, by Lemma 7, for any k0, . . . , ki−1 such that ri < R, the probability that
A fails in round i is at most 26/α+5Rδ. Averaging over k0, . . . , ki−1, it implies that the probability
that A does not fail in first i − 1 rounds but fails in round i is at most 26/α+5Rδ. Summing over
i = 0, . . . , R− 1 implies the overall failure probability is at most

26/α+5R2δ.

Since α = 16
log 1/δ , and R ≤ 1

768 · log(1/δ) logU and δ < 1/ log4 U , the probability that A fails is at

most 1/2. This proves the lemma.

In the following, we prove the two remaining lemmas.

Proof of Lemma 7. For each S ∈ Si, conditioned on S and T = Ti, by the construction of the hard
distribution, [U ] \T is randomly partitioned into (P1, P2) conditioned on S \T ⊆ P1 or S \T ⊆ P2.
We first observe that conditioned on S and T , the partition restricted to each block is uniform, i.e.,
the elements in the same block belong to P1 or P2 uniformly and independently. This is because
each block may have at most one element in S \T . Moreover, (P1, P2) restricted to different blocks
is independent of each other, up to switching the order of two parts. That is, conditioned on P1

and P2 restricted to first j blocks, the (unordered) set {P1 ∩ block j + 1, P2 ∩ block j + 1} is still a
uniformly random partition of block j + 1.

Therefore, to sample a random input conditioned on S ∈ Si and T = Ti, it is equivalent to do
the following:

1. for each block j, randomly partition the elements that are not in Ti into (Bj,1, Bj,2);
2. sample a uniformly random S ∈ Si;
3. pick a random b ∈ {1, 2}, let Pb be the union over j, the part in {Bj,1, Bj,2} that contain an

element in S \Ti (if no such element in the block, then a random part), let P3−b be the union
of the other parts.

Thus, conditioned on {(Bj,1, Bj,2)}j∈[m] in step 1, a partition (P1, P2) can be generated only if
there exists a1, . . . , am ∈ {1, 2} such that P1 =

⋃m
j=1Bj,aj (and thus, P2 =

⋃m
j=1Bj,3−aj ). Moreover,
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the probability that such a partition is generated (conditioned on step 1) is

A1 +A2

|Si|
· 2−|Ti|−1, (1)

where A1 := |{S ∈ Si : S \ Ti ⊂ P1}| and A2 := |{S ∈ Si : S \ Ti ⊂ P2}|. To see this, with
probability (A1 +A2)/|Si|, we pick a set S such that S \Ti ⊂ P1 or S \Ti ⊂ P2 in step 2. Then with
probability 1/2, we pick the right b, and finally, for each block that does not contain an element in
S \ Ti (i.e., that contains an element in Ti), with probability 1/2, we pick the right part to join Pb.

On the other hand, conditioned on such a partition (P1, P2) (and S ∈ Si, T = Ti), the error
probability is at least

min{A1, A2}
A1 +A2

=
1

2
·
(

1− |A1 −A2|
A1 +A2

)
,

since Bob outputs an answer based only on T, P1, P2 and the message, and all sets S ∈ Si have the
same message. Hence, no matter which part Bob answers, he makes at least min{A1, A2} errors
among A1 +A2 possible sets S (and all sets S are chosen with the same probability).

Combining it with (1), the error probability conditioned on the partitions {(Bj,1, Bj,2)}j∈[m] is
at least ∑

a1,...,am∈{1,2}

P1=
⋃B

j=1Bj,aj
,P2=

⋃B
j=1Bj,3−aj

A1 +A2

|Si|
· 2−|Ti|−1 · 1

2
·
(

1− |A1 −A2|
A1 +A2

)

=
1

2
−

∑
a1,...,am∈{1,2}

P1=
⋃B

j=1Bj,aj
,P2=

⋃B
j=1Bj,3−aj

A1 +A2

|Si|
· 2−|Ti|−1 · 1

2
· |A1 −A2|
A1 +A2

=
1

2
−

∑
a1,...,am∈{1,2}

P1=
⋃B

j=1Bj,aj
,P2=

⋃B
j=1Bj,3−aj

|A1 −A2|
|Si|

· 1

2|Ti|+2
.

By taking the expectation over {(Bj,1, Bj,2)}j∈[m] and switching the order of summation and ex-
pectation, we obtain that the error probability conditioned on S ∈ Si, T = Ti is at least

1

2
− 1

|Si| · 2|Ti|+2
·

∑
a1,...,am∈{1,2}

E
{(Bj,1,Bj,2)}j∈[m]

[|A1 −A2|] , (2)

where A1 = |{S ∈ Si : S \ Ti ⊂ P1}|, P1 =
⋃B
j=1Bj,aj and A2 = |{S ∈ Si : S \ Ti ⊂ P2}|, P2 =⋃B

j=1Bj,3−aj .
Now, observe that for any sequence a1, . . . , am, the marginal distribution of P1 (or P2) over a

random {(Bj,1, Bj,2)}j∈[m] is simply a uniform subset of [U ] \ Ti. By linearity of expectation, the
expectation of A1 is equal to

E[A1] =
|Si|

2|S\Ti|
=
|Si|

2m−|Ti|
.

Its variance is equal to

E[A2
1]− E[A1]2 =

∑
S1,S2∈Si

1

2|(S1∪S2)\Ti|
−
(
|Si|

2m−|Ti|

)2
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=
∑

S1,S2∈Si

(
1

22(m−|Ti|)−|(S1∩S2)\Ti|
− 1

22(m−|Ti|)

)
=

1

22(m−|Ti|)
·
∑

S1,S2∈Si

(
2|(S1∩S2)\Ti| − 1

)
.

Assuming for contradiction that the lemma does not hold, i.e.,
∑

S1,S2∈Si
(
2|(S1∩S2)\Ti| − 1

)
<

|Si|2
4 , then the variance is at most

E[(A1 − E[A1])2] = E[A2
1]− E[A1]2 <

1

22(m−|T |) ·
|Si|2

4
.

Similarly for A2, if the lemma does not hold, then

E[(A2 − E[A2])2] <
1

22(m−|T |) ·
|Si|2

4
.

Next, by triangle inequality and the fact that E[A1] = E[A2],

E[|A1 −A2|] ≤ E[|A1 − E[A1]|] + E[|A2 − E[A2]|].

Then by convexity,

E[|A1 − E[A1]|] ≤
√
E[(A1 − E[A1])2] <

|Si|
2 · 2m−|T |

.

and

E[|A2 − E[A2]|] ≤
√

E[(A2 − E[A2])2] <
|Si|

2 · 2m−|T |
.

Hence, E[|A1−A2|] < |Si|
2m−|T |

. Plug it into (2), we obtain that if the lemma does not hold, then the
error probability conditioned on S ∈ Si, T = Ti is strictly larger than

1

2
− 1

|Si| · 2|T |+2
· 2m · |Si|

2m−|T |
=

1

2
− 1

4
=

1

4
.

It contradicts with the lemma premise that it is at most 1/4, and hence, we must have

∑
S1,S2∈Si

(
2|(S1∩S2)\Ti| − 1

)
≥ |Si|

2

4
.

Finally, if for all ki ≥ 1, |{S1, S2 ∈ Si : |(S1 ∩ S2) \ Ti| = ki}| < |Si|2
4·22ki , then the above sum could

only be smaller than ∑
ki≥0

(
2ki − 1

)
· |Si|

2

4 · 22ki
<
|Si|2

4
.

This proves the lemma.

It remains to prove Lemma 8. It is similar to Lemma 5 in [KNP+17] and Claim B.3 in [NY19].
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Proof of Lemma 8. To upper bound the probability that Ti = T , first observe that it could only
happen if for all j = 0, . . . , i−1, all trj+1− trj −kj randomly chosen blocks in Bj contain an element
in T , because otherwise we would have added some element not in T to set Ti. By the fact that
exactly tri blocks contain an element in T , this probability is

i−1∏
j=0

( tri−trj−kj
trj+1−trj−kj

)
( m−trj−kj
trj+1−trj−kj

) =

i−1∏
j=0

(tri − trj − kj)!(m− trj+1)!

(tri − trj+1)!(m− trj − kj)!

=
tri !(m− tri)!

m!
·
i−1∏
j=0

(tri − trj − kj)!(m− trj )!
(tri − trj )!(m− trj − kj)!

≤ 1(
m
tri

) · i−1∏
j=0

(
m− trj

tri − trj − kj

)kj

≤ 1(
m
tri

) · i−1∏
j=0

(
m(1− α)rj − 2rj

m(1− α)rj −m(1− α)ri − 2rj + 2ri − 1− kj

)kj

≤ 1(
m
tri

) · i−1∏
j=0

(
m(1− α)rj

m(1− α)rj −m(1− α)ri

)kj

=
1(
m
tri

) · i−1∏
j=0

(
1

1− (1− α)ri−rj

)kj
.

Since rj = k0 + · · ·+ kj−1 for j = 0, . . . , i, the last product is

i−1∏
j=0

(
1

1− (1− α)ri−rj

)kj

≤
i−1∏
j=0

kj−1∏
l=0

(
1

1− (1− α)ri−(rj+l)

)

=

ri−1∏
x=0

1

1− (1− α)ri−x

≤
∞∏
x=1

1

1− (1− α)x

=

b1/αc∏
x=1

1

1− (1− α)x
·
∏

x>b1/αc

1

1− (1− α)x

which, by the fact that (1 − α)x ≤ 1 − 1
2αx when αx ≤ 1 and the fact that 1/(1 − ε) ≤ e2ε when

ε < 1/2, is

≤
b1/αc∏
x=1

2

αx
·
∏

x>b1/αc

e2(1−α)x
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which, by the fact that t! ≥ (t/e)t, is

≤
(

2

α

)b1/αc( e

b1/αc

)b1/αc
·
∏
x≥0

e2(1−α)x

≤
(

2e

1− α

)1/α

· e2/α

≤ 26/α.

4 Sketch Size Lower Bound

In this section, we prove our main theorem.

Theorem 1 (restated). For any (randomized) distributed sketching scheme that allows the referee
to decide if G is connected with probability at least 3/4, the average sketch size of all players must
be at least Ω(log3 n) bits in expectation.

Hard distribution Dconn. We begin by describing the hard instances. In a hard instance, the
graph G consists of

√
n “blocks” of size

√
n, where the i-th block consists of vertices labeled from

(i−1)
√
n+1 to i

√
n. To generate G, we first independently generate a subgraph Gi for each block.

Each block i has four special vertices s
(i)
1 , s

(i)
2 , t

(i)
1 , t

(i)
2 . Gi always forms two connected components

such that either
(a) s

(i)
1 and t

(i)
1 are in one component, s

(i)
2 and t

(i)
2 are in the other, or

(b) s
(i)
1 and t

(i)
2 are in one component, s

(i)
2 and t

(i)
1 are in the other.

We sample each Gi independently from the distribution Dblk, which we will describe in the next

subsection. To complete the construction, we add an edge between t
(i)
1 and s

(i+1)
1 and an edge

between t
(i)
2 and s

(i+1)
2 for i = 1, . . . ,

√
n, where block

√
n+ 1 is block 1 for simplicity of notations.

To decide if G is connected, let bi = 0 if s
(i)
1 and t

(i)
1 are in the same component within Gi, and

bi = 1 otherwise. It is easy to verify that the entire graph G is connected if and only if
⊕√n

i=1 bi = 1.
Intuitively, if the referee can decide the XOR of all bi with constant probability, then it should be
at least able to decide some bi with probability 1 − 1/

√
n on average. In the next subsection, we

will show that deciding one bi with such a small error probability requires sketch size of Ω(log3 n).

Lemma 9. There is a distribution Dblk such that if a protocol can decide whether s1 connects to
t1 or t2 with probability 1 − 2/

√
n on a random graph sampled from Dblk, then the average sketch

size is at least Ω(log3 n) in expectation.

Now, we use an embedding argument to prove Theorem 1 assuming the lemma.

Proof of Theorem 1. Let us first fix a protocol P that can decide the connectivity of a random graph
G sampled from Dconn with error probability at most 1/4. Suppose the expected average sketch
size is L. By Markov’s inequality and union bound, we may fix the random bits of P such that the
error probability is at most 1/3 and the expected average sketch size is 4L. In the following, we
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assume that P is deterministic. Observe that no vertex in the graph can simultaneously see edges
in more than one block, and thus, every sketch sent to the referee depends only on at most one of
the blocks. Since all Gi are sampled independently, it implies that they must remain independent
even conditioned on all sketches.

Now, let εi ∈ [−1/2, 1/2] be the random variable denoting the bias of bi conditioned on the

sketches. That is, conditioned on all sketches, s
(i)
1 and t

(i)
1 are in the same component in Gi with

probability 1/2 + εi. In this case, from the view of the referee (i.e., conditioned on all sketches), by
the independence of the blocks, the probability that the graph is not connected is equal to

Pr

 √n⊕
i=1

bi = 0

 = Pr

 √n⊕
i=2

bi = 0 ∧ b1 = 0

+ Pr

 √n⊕
i=2

bi = 1 ∧ b1 = 1


=

(
1

2
+ ε1

)
Pr

 √n⊕
i=2

bi = 0

+

(
1

2
− ε1

)1− Pr

 √n⊕
i=2

bi = 0


=

1

2
+ 2ε1 ·

Pr

 √n⊕
i=2

bi = 0

− 1

2


=

1

2
+ (2ε1)(2ε2) ·

Pr

 √n⊕
i=3

bi = 0

− 1

2


= · · ·

=
1

2
+

1

2

√
n∏

i=1

(2εi).

No matter what the referee outputs, the answer is wrong with probability at least

1

2
−

∣∣∣∣∣∣12
√
n∏

i=1

(2εi)

∣∣∣∣∣∣ .
Since the overall error probability is at most 1/3, we have

E

∣∣∣∣∣∣
√
n∏

i=1

(2εi)

∣∣∣∣∣∣
 ≥ 1

3
.

By the fact that all Gi are independent and each sketch depends only on one Gi, all εi are inde-

pendent. Hence,
∏√n
i=1 E[|2εi|] ≥ 1

3 . By Markov’s inequality and union bound, there exists some i∗

such that E[|2εi∗ |] ≥ 1− 4√
n

and the expected average sketch size of block i∗ is at most 8L.

Next, we embed a random graph Gblk sampled from Dblk into block i∗ and show that by
simulating P, the referee can decide if s1 connects to t1 or t2 with high probability. We first fix any
bijection between the vertex labels of Gblk and the labels of block i∗. Given Gblk, each player first

maps the labels according to the bijection. Then for the four special vertices s
(i∗)
1 , s

(i∗)
2 , t

(i∗)
1 , t

(i∗)
2 ,
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they locally add one extra neighbor t
(i∗−1)
1 , t

(i∗−1)
2 , s

(i∗+1)
1 and s

(i∗+1)
2 respectively. Then each vertex

computes a sketch of their new neighborhood and sends it to the referee. The expected average
sketch size is at most 8L by the definition of i∗. The referee receives sketches from all vertices in
block i∗, samples the rest of the graph (which is independent of Gi∗), simulates all other vertices
and computes the sketches. Over the randomness of Gblk as well as the referee’s sample of the
rest of G, the whole graph follows the hard distribution Dconn. By the above argument, we have

E[|2εi∗ |] ≥ 1 − 4√
n

. Recall that εi∗ is the random variable such that s
(i∗)
1 and t

(i∗)
1 are in the same

component within Gi∗ with probability 1/2 + εi∗ conditioned on the sketches. Finally, the referee
examines the conditional distribution of Gblk conditioned on the sketches, and computes εi∗ . If
εi∗ ≥ 0, the referee outputs “s1 and t1 are in the same component in Gblk”, otherwise it outputs
“s1 and t2 are in the same component”.

The error probability conditioned on the sketches is equal to 1
2 − |εi∗ |, whose expectation is

E
[

1

2
− |εi∗ |

]
≤ 2√

n
.

Since this protocol decides if s1 connects to t1 or t2 for a random graph sampled from Dblk with
error probability at most 2/

√
n and sketch size 8L, by Lemma 9, we must have L ≥ Ω(log3 n). This

proves the theorem.

4.1 Sketch size lower bound for one block

In this subsection, we prove Lemma 9. We begin by defining a hard distribution Dblk that allows us
to prove a lower bound on the expected maximum sketch size. Later, we will show how to extend
it to expected average sketch size.

Hard distribution for one block Dblk. For simplicity of notations, let us assume the vertices
have labels from −1

2

√
n to 1

2

√
n. We begin by describing the graph on positive labeled vertices,

from 1 to 1
2

√
n. The main part consists of four sets V l, V m, Ṽ m, V r:

• V m and Ṽ m have n1/4 vertices, and a perfect matching is placed between them;
• V r has 2n1/8 vertices, divided into two parts V r

1 and V r
2 of size n1/8;

• V l consists of n1/4 groups V l
1 , . . . , V

l
n1/4 of sizes at most n1/8.

Thus, the four sets use in total at most 2n3/8 � 1
2

√
n vertices. Each vertex vmj ∈ V m is associated

with group V l
j ⊂ V l. The only possible edges between the four sets are the matching between V m

and Ṽ m, the edges between vmj and the associated V l
j and the edges between V m and V r.

To construct such a graph, we first pick random V m, Ṽ m, V r
1 and V r

2 with the corresponding
sizes, and place a uniformly random perfect matching between V m and Ṽ m. For each vertex
vmj ∈ V m, we independently sample a random instance (Sj , Tj , Pj,1, Pj,2) from the hard distribution

DUR⊂dec
for UR⊂dec for U = n1/8 and δ = 4n−1/32, where DUR⊂dec

is the distribution in Lemma 5. Then

we connect vmj to |Tj | random unused vertices, and they form the set V l
j . If Sj \ Tj ⊆ Pj,1, we

connect vmj to |Sj \Tj | random vertices in V r
1 , otherwise, we connect it to |Sj \Tj | random vertices

in V r
2 . This completes the graph on positive-labeled vertices.
Next, we copy the subgraph to the vertices with negative labels. That is, if vertices with labels

a, b > 0 have an edge between them, then we add an edge between vertices with labels −a and −b.
Then we define the vertex sets −V l,−V m,−Ṽ m,−V r over the negative labeled vertices similarly.
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−V l
1

−V l
2

−V l
3

−V l
4

−V l
5

−V r
1

−V r
2

V l VmṼm
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t2
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Figure 4: A hard instance for one block.

Finally, we connect the subgraph to the four special vertices s1, s2, t1, t2. We connect all vertices
in V r

1 and −V r
2 to t1, and all vertices in V r

2 and −V r
1 to t2. We pick a random vertex ṽmj∗ ∈ Ṽ m

and connect it to s1, then we connect −ṽmj∗ to s2. At last, we connect all unused vertices to t1. See
Figure 4.

It is not hard to verify that the block has two connected components, and t1 and t2 must be
in different components. Moreover, if s1 is in the same component with t1, then the path between
them must go through V r

1 , in which case, there is a path from s2 to t2 going through −V r
1 , i.e., s2

and t2 are in the same component. Likewise, if s1 is in the same component with t2, then the path
must go through V r

2 , and hence, s2 and t1 are in the same component.

To decide whether s1 is in the same component with t1 or t2, we need to solve the UR⊂dec instance
embedded at the vertex vmj∗ , which shares a common neighbor (ṽmj∗) with s1. This is because the

neighbors of vmj∗ that are not in V l are all contained in either V r
1 or V r

2 , and we need to decide which
case it is (see below for more details). Recall we have proved in the previous section that with error
probability δ, UR⊂dec requires message length at least Ω(log(1/δ) log2 U), which is Ω(log3 n) for our
setting of parameters. We restate the lower bound below.

Lemma 5 (restated). For any U and δ such that exp(−U1/4) < δ < 1/ log4 U , there is an input
distribution DUR⊂dec

such that any one-way communication protocol that succeeds with probability at
least 1 − δ on a random instance sampled from DUR⊂dec

must have expected communication cost at

least Ω(log(1/δ) log2 U).

To prove Lemma 9, we apply an embedding argument similar to [NY19] to make a reduction
from UR⊂dec, and then apply the UR⊂dec lower bound. Given an UR⊂dec instance (S, T, P1, P2) for
U = n1/8, consider the following procedure to construct a graph Gblk for a block on vertices labeled
from −1

2

√
n to 1

2

√
n (note that this procedure as is may not be completed by either player without

communication):
1. pick random V m, Ṽ m of size n1/4 from the vertices with positive labels, and place a uniformly

random perfect matching between them;
2. pick a random vertex vmj∗ ∈ V m, let ṽmj∗ ∈ Ṽ m be the vertex it matches to;
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3. pick a random injection f : [U ]→ {1, . . . , 1
2

√
n} \ (V m ∪ Ṽ m);

4. set V l
j∗ to f(T );

5. set V r
1 to the union of f(P1) and n1/8 − |P1| other random unused vertices;

6. set V r
2 to the union of f(P2) and n1/8 − |P2| other random unused vertices;

7. connect vmj∗ to f(S);
8. sample the neighborhoods of V m \ {vmj∗} according to Dblk;
9. copy the graph to negative labeled vertices according to Dblk;

10. connect s1 to ṽmj∗ , s2 to −ṽmj∗ , t1 to all vertices in V r
1 and −V r

2 , t2 to all vertices in V r
2 and

−V r
1 .

Note that vmj∗ connects to all |T | vertices in V l
j∗ , it connects to |S \ T | vertices in V r, which are all

in either V r
1 or V r

2 . When (S, T, P1, P2) is sampled from DUR⊂dec
, the neighborhood of vmj∗ follows

Dblk. Since the rest of the graph is also sampled according to Dblk, the whole graph follows the
hard distribution Dblk. Moreover, S \ T ⊂ P1 if s1 and t1 are in the same connected component,
and S \ T ⊂ P2 if s1 and t2 are in the same component.

Denote by µ the joint distribution of S, T, P1, P2 and Gblk following the above procedure. We use
±V m to denote V m∪−V m, and ±V l,±Ṽ m,±V r are defined similarly. For a vertex v, we denote the
sketch of its neighborhood by sk(v). Similarly for a set of vertices V , sk(V ) denotes the collection
of all its sketches.

Suppose there is a protocol Pblk that decides if s1 is the same component with t1 or t2 with
error probability 2/

√
n such that

• the expected average sketch size of ±V m is at most L, and
• the expected average sketch size of ±V r is at most L.

Note that both conditions are implied if the expected maximum sketch size is at most L. We are
going to use this protocol to solve the communication problem UR⊂dec using O(L) bits of communi-
cation in expectation and with low error probability.

Protocol for UR⊂dec. The players first sample V m, Ṽ m, vmj∗ , f and the perfect matching Π using
public random bits according to µ (step 1 to step 3). Then Alice, who knows S, privately computes
f(S) (step 7), which together with ṽmj∗ is the neighborhood of vmj∗ , then she simulates Pblk as vmj∗
and its copy −vmj∗ , and sends the sketches sk(vmj∗) and sk(−vmj∗) to Bob. Bob, who knows T, P1, P2,

computes f(T ), f(P1), f(P2), and samples V r
1 , V

r
2 and V l

j∗ according to µ (step 4 to step 6). Then
he samples the neighborhood for all vertices in V m \ {vmj∗} according to µ (step 8). Now, Bob

knows the sets V l
1 , . . . , V

l
n1/4 , V

m, Ṽ m, V r
1 , V

r
2 , and he knows the neighborhoods of s1, s2, t1, t2 and

the neighborhoods of all vertices in V l, V m \ {vmj∗}, Ṽ m. Bob computes the sketches for all these
vertices and the sketches for their copies with negative labels. Together with Alice’s message,
Bob knows sk(±V l), sk(±V m), sk(±Ṽ m), sk(s1), sk(s2), sk(t1), sk(t2). Bob examines the posterior
distribution of the neighborhood of vmj∗ conditioned on

• the sets ±V l, ±V m, ±Ṽ m, ±V r,
• the matching Π between V m and Ṽ m,
• the index j∗, and
• the sketches sk(±V l), sk(±V m), sk(±Ṽ m), sk(s1), sk(s2), sk(t1), sk(t2).

If in this posterior distribution, vmj∗ connects to V r
1 with probability at least 1/2, Bob returns

“S \ T ⊆ P1”, otherwise, he returns “S \ T ⊆ P2”.
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Communication cost. The only message in the above protocol is the two sketches sk(vmj∗) and
sk(−vmj∗). Since vmj∗ is a random vertex in V m, the expected length |sk(vmj∗)| is simply the expected
average sketch size of vertices in V m. Similarly, the expected length |sk(−vmj∗)| is the expected
average sketch size of −V m. By the assumption of Pblk, the expected message length is at most 2L.

Error probability. It remains to analyze the error probability of the protocol. If at the end of
the protocol, Bob also knew sk(±V r), then by simulating Pblk as the referee, Bob would be able
to detect if s1 is in the same component with t1 or t2, with an overall error probability of at most
2/
√
n on a random instance. In particular, he would be able to decide if vmj∗ has its neighbors in

V r
1 or V r

2 , i.e., S \ T ⊂ P1 or S \ T ⊂ P2. In the other words, in the posterior distribution of the
neighborhood of vmj∗ as in the protocol but further conditioned on sk(±V r), let ε be such that vmj∗
has no neighbors in V r

1 with probability 1− ε, then we must have E[min{ε, 1− ε}] upper bounded
by the overall error probability 2/

√
n. To upper bound the error probability of the protocol, we are

going to show that whether we condition on sk(±V r) does not distort the posterior distribution by
much in expectation.

The expected total size of sk(±V r) is at most 2Ln1/8 by the assumption of Pblk. Denote by
N(v) the neighborhood of v. We have the mutual information

I(sk(±V r);N(vm1 ), . . . , N(vm
n1/4) | Π, sk(±V l), sk(±V m), sk(±Ṽ m), sk(s1), sk(s2), sk(t1), sk(t2)) ≤ 2Ln1/8,

where Π is the matching between V m, Ṽ m, and for simplicity of notations, we omitted the sets
V l, V m, Ṽ m, V r in the condition. Then observe that conditioned on Π, sk(±V l), sk(±V m), we have
sk(±V r) and N(vm1 ), . . . , N(vm

n1/4) are independent of sk(±Ṽ m), sk(s1), sk(s2), sk(t1), sk(t2). To
see this,
• the neighborhoods of t1 and t2 are deterministic given the sets V r

1 , V
r

2 ;
• each vertex in Ṽ m has a fixed neighbor in V m given the matching;
• one vertex in Ṽ m [resp. −Ṽ m] has s1 [resp. s2] as its neighbor, which is determined indepen-

dent of the rest of the graph.
Hence, we may remove them from the condition,

I(sk(±V r);N(vm1 ), . . . , N(vm
n1/4) | Π, sk(±V l), sk(±V m)) ≤ 2Ln1/8.

Next, observe thatN(vm1 ), . . . , N(vm
n1/4) are still independent even conditioned on Π, sk(±V l), sk(±V m).

By the superadditivity of mutual information with independent random variables, we have

n1/4∑
j=1

I(sk(±V r);N(vmj ) | Π, sk(±V l), sk(±V m)) ≤ 2Ln1/8.

Since conditioned on Π, sk(±V l), sk(±V m), sk(±V r), N(vm1 ), . . . , N(vm
n1/4), j∗ is still uniformly ran-

dom, we have

I(sk(±V r);N(vmj∗) | j∗,Π, sk(±V l), sk(±V m))

=

n1/4∑
j=1

1

n1/4
· I(sk(±V r);N(vmj∗) | j∗ = j,Π, sk(±V l), sk(±V m))
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=
1

n1/4
·
n1/4∑
j=1

I(sk(±V r);N(vmj ) | Π, sk(±V l), sk(±V m))

≤ 2Ln−1/8.

Let distµ(X | Y ) denote the distribution of X conditioned on Y . By Pinsker’s inequality, con-
cavity of square root and the fact that mutual information is equal to the expected KL-divergence,
we have

E[‖distµ(N(vmj∗) | j∗,Π, sk(±V l), sk(±V m))− distµ(N(vmj∗) | j∗,Π, sk(±V l), sk(±V m), sk(±V r))‖1]

≤ E


√√√√√2DKL

 N(vmj∗) | j∗,Π, sk(±V l), sk(±V m)

N(vmj∗) | j∗,Π, sk(±V l), sk(±V m), sk(±V r)




≤

√√√√√E

2DKL

 N(vmj∗) | j∗,Π, sk(±V l), sk(±V m)

N(vmj∗) | j∗,Π, sk(±V l), sk(±V m), sk(±V r)


=
√

2I(sk(±V r);N(vmj∗) | j∗,Π, sk(±V l), sk(±V m))

≤
√

4Ln−1/8.

Again by the fact that N(vmj∗) is independent of sk(±Ṽ m) and sk(s1), sk(s2), sk(t1), sk(t2), con-

ditioned on j∗,Π, sk(±V l), sk(±V m), or conditioned on j∗,Π, sk(±V l), sk(±V m), sk(±V r), the dis-
tribution

distµ(N(vmj∗) | j∗,Π, sk(±V l), sk(±V m), sk(±Ṽ m), sk(s1), sk(s2), sk(t1), sk(t2))

is
√

4Ln−1/8-close to

distµ(N(vmj∗) | j∗,Π, sk(±V l), sk(±V m), sk(±Ṽ m), sk(±V r), sk(s1), sk(s2), sk(t1), sk(t2))

in expectation. Note that the former distribution is exactly what Bob examines. However, we
know that in the latter distribution, N(vmj∗) is disjoint from V r

1 with probability 1 − ε such that

E[min{ε, 1 − ε}] ≤ 2/
√
n. Hence, in the former distribution, we also have E[min{ε, 1 − ε}] ≤

2/
√
n+
√

4Ln−1/8, which is at most 4n−1/32 when L ≤ n1/16. By answering S \ T ⊂ P1 if ε > 1/2
and S \ T ⊂ P2 if ε ≤ 1/2, the overall error probability of the protocol is at most δ = 4n−1/32.
Finally, by Lemma 5, we must have L ≥ min{n1/16,Ω(log3 n)} = Ω(log3 n).

4.2 Extending to average sketch size

The above argument shows that if the error probability of the sketching scheme for a block is at
most 2/

√
n, and the expected average sketch size of ±V m and that of ±V r are both at most L,

then L must be at least Ω(log3 n). However, since |V m| + |V r| �
√
n, it does not directly prove

a lower bound on the expected average sketch size of all vertices. In the following, we show how
to prove the same lower bound on L when the expected average sketch size of all vertices is at
most L. The main idea is simple: with constant probability, we construct a graph such that most
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vertices have neighborhoods that look like those of V m; with constant probability, most vertices
have neighborhoods that look like those of V r. Therefore, if the overall average sketch size is L,
then it implies that the expected average sketch sizes of V m and V r are both at most O(L). We
also need to ensure that the block always consists of two connected components such that s1, s2

are in different components and t1, t2 are in different components. We begin by describing the hard
distribution Dblk.

Hard distribution Dblk. Let Ddeg,m be the degree distribution of a vertex in V m according to
Dblk. Then for every v ∈ V m, the marginal distribution of its neighborhood is d uniformly random
vertices, for d following Ddeg,m. Similarly, let Ddeg,r be the degree distribution of a vertex in V r.
Then for v ∈ V r

1 [resp. v ∈ V r
2 ], the marginal distribution of its neighborhood is d uniformly random

vertices, for d following Ddeg,r, conditioned on t1 [resp. t2] being its neighbor. In the distribution
Dblk, we randomly choose one of the following three procedures to generate the block.

(i) We sample the block from the previous distribution Dblk.

(ii) We choose between the following two cases randomly: connect s1 to t1 and s2 to t2; connect
s1 to t2 and s2 to t1. We pick half of the vertices S with positive labels, and let S be the
remaining half. For each vertex v ∈ S, we sample its degree dv according to Ddeg,m, and
sample dv vertices in S to be its neighbors. Then we connect all S to t1. Finally, we copy the
graph (as well as the incident edges to t1) to the negative-labeled vertices.

(iii) We choose between the following two cases randomly: connect s1 to t1 and s2 to t2; connect s1

to t2 and s2 to t1. We partition the remaining positive labeled vertices into four sets of equal
sizes S1, S1, S2, S2. For each vertex v ∈ S1 [resp. v ∈ S2], we sample its degree dv according
to Ddeg,r, sample dv − 1 vertices in S1 [resp. v ∈ S2] to be its neighbors and connect v to t1
[resp. t2]. Then we connect all S1 to t1 and S2 to t2. Finally we copy the graph (as well as
the incident edges to t1 and t2) to the negative-labeled vertices.

It is easy to verify that the block always has two connected components such that s1, s2 are in
different components and t1, t2 are in different components.

If there is a protocol that solves an instance sampled from Dblk with error probability 2/
√
n and

expected average sketch size L. Then its error probability conditioned on choosing procedure (i) is
at most 6/

√
n, i.e., the error probability for Dblk is at most 6/

√
n. Moreover, its expected average

sketch size conditioned on choosing procedure (ii) is at most 3L. Since a constant fraction of the
vertices in this case have their neighborhoods identically distributed as vertices in ±V m according
to Dblk. It implies that the expected average sketch size of ±V m on a instance sampled from Dblk

is at most O(L). Similarly, from procedure (iii), we obtain that the expected average sketch size
of ±V r on a instance sampled from Dblk is also at most O(L). Finally, by the argument from the
previous subsection, we conclude that L ≥ Ω(log3 n). This proves Lemma 9.
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