
Matching Triangles and Basing Hardness

on an Extremely Popular Conjecture∗

Amir Abboud1, Virginia Vassilevska Williams1, and Huacheng Yu1

1Computer Science Department, Stanford University

Abstract

Due to the lack of unconditional polynomial lower bounds, it is now in fashion to prove conditional
lower bounds in order to advance our understanding of the class P. The vast majority of these lower
bounds are based on one of three famous hypotheses: the 3-SUM conjecture, the APSP conjecture, and
the Strong Exponential Time Hypothesis. Only circumstantial evidence is known in support of these
hypotheses, and no formal relationship between them is known. In hopes of obtaining “less conditional”
and therefore more reliable lower bounds, we consider the conjecture that at least one of the above three
hypotheses is true. We design novel reductions from 3-SUM, APSP, and CNF-SAT, and derive interesting
consequences of this very plausible conjecture, including:

• Tight n3−o(1) lower bounds for purely-combinatorial problems about the triangles in unweighted
graphs.

• New n1−o(1) lower bounds for the amortized update and query times of dynamic algorithms for
single-source reachability, strongly connected components, and Max-Flow.

• New n1.5−o(1) lower bound for computing a set of n st-maximum-flow values in a directed graph
with n nodes and Õ(n) edges.

• There is a hierarchy of natural graph problems on n nodes with complexity nc for c ∈ (2, 3).

Only slightly non-trivial consequences of this conjecture were known prior to our work. Along the way
we also obtain new conditional lower bounds for the Single-Source-Max-Flow problem.

∗A preliminary version of this paper has appeared in STOC 2015.

1



1 Introduction

A central goal in theoretical computer science is to understand the exact complexity of natural computational
problems. For many such problems, O(nc) time algorithms are known, for some constant c > 1, and a proof
that O(nc−ε) algorithms, for some ε > 0, do not exist is highly desirable. Unfortunately, obtaining such
“truly super-linear” unconditional lower bounds for problems in P seems far beyond the current state of
the art in complexity. The urgency of such lower bounds, due to both intellectual curiosity and practical
relevance, has led researchers to settle for conditional lower bounds. A reductions-based approach, which can
be viewed as a refinement of NP-hardness, has been gaining popularity, with many recent results providing
satisfactory answers to our urgent needs for lower bounds. In this approach, one assumes that a certain
famous problem with an O(na) time upper bound that has resisted improvements for many years, requires
na−o(1) time, and derives nb−o(1) lower bounds for other problems.

Most known conditional lower bounds for the exact polynomial time complexity of problems are based on
one of the following three popular conjectures, regarding fundamental problems in computational geometry,
graph algorithms, and satisfiability. See Appendix A for background on these conjectures and a brief survey
of the known conditional lower bounds.

The 3-SUM Conjecture: There is no algorithm that can check whether a list of n numbers contains three
that sum to zero (the 3-SUM problem) in O(n2−ε) time for any ε > 0.

The APSP Conjecture: There is no algorithm that can compute all pairs shortest paths (APSP) on n
node graphs with edge weights in O(n3−ε) time for any ε > 0.

Strong Exponential Time Hypothesis (SETH): For every δ > 0 there is an integer k ≥ 3 such that
k-SAT on n variables and O(n) clauses cannot be solved in 2(1−δ)npoly (n) time.

No formal relationship is known between these conjectures, and as far as we know, any subset of them
can be true. A loose relationship between SETH and 3-SUM was shown by Pǎtraşcu and Williams [59]: if
k-SUM can be solved in no(k) time, then the weaker conjecture ETH1 is false, and since SETH implies ETH,
SETH must be false as well. We remark that the conjectured lower bounds are assumed to hold even against
randomized algorithms.

Lower bounds based on a weaker conjecture. In this work we search for the weakest hypothesis
that is still useful for proving interesting lower bounds for natural polynomial time problems. An obvious
candidate is the assumption that at least one of the popular conjectures is true.

Conjecture 1. At least one of the 3-SUM conjecture, the APSP conjecture, or SETH, is true.

Conjecture 1 seems much more believable than any of the above three conjectures, since to refute it,
it must be the case that all three of the computational geometry, graph algorithms, and exact algorithms
communities have missed breakthrough algorithms for their core problems. Given the great popularity of
each of these conjectures individually, Conjecture 1 is extremely popular.

Conjecture 1 is especially useful when trying to prove limitations to powerful new algorithmic tools. The
recent groundbreaking tools of Laplacian system solvers [67] and interior-point methods [46, 55] are a great
example. These new tools have allowed for celebrated algorithmic improvements over longstanding upper
bounds for different versions of Max-Flow, including recent best-paper award winners [54, 66, 51, 47, 23].
With such a powerful tool at hand, one might consider a lower bound based on the hardness of a single
problem, e.g. APSP, as a challenge to refute the APSP conjecture with the tool, rather than an impossibility
result. However, lower bounds based on Conjecture 1 can be more safely regarded as impossibility results
- in fact, such lower bounds are at least as believable as any other known conditional lower bounds for a
problem in P.

1ETH stipulates that there is some ε > 0 such that 3SAT is not in 2εnpoly n time.

2



Previous results. Besides the large number of lower bounds that are based on a single conjecture, there
are few examples of lower bounds that are based on two of the conjectures. The works of Pǎtraşcu [57], and
Vassilevska and Williams [73] prove that if a triangle of total weight 0 in an edge-weighted graph on n nodes
can be found in O(n3−ε) time, the both the 3-SUM and APSP conjectures would be refuted. More recently,
Abboud, Vassilevska Williams, and Weimann [6] show that an O(n2−ε) algorithm for the Local Alignment
problem from Bioinformatics refutes both the 3-SUM conjecture and SETH. No non-trivial lower bounds
were known under Conjecture 1.

1.1 Our results

Using a large collection of new reductions and algorithms we obtain interesting consequences of Conjecture 1.

Intermediate problems. Our main contribution is in the identification of two innocent-looking graph
problems, which we call Triangle-Collection and ∆-Matching-Triangles, that allow for tightly efficient reduc-
tions from each of our hard problems. Let ∆ ≥ 1 be an integer.

Definition 1.1 (Triangle-Collection). Given a node-colored graph G, is it true that for all triples of distinct
colors a, b, c there is a triangle (x, y, z) in G in which x has color a, y has color b, and z has color c?
(Does the set of all triangles in the graph “collect” all triples of colors?)

Definition 1.2 (∆-Matching-Triangles). Given a node-colored graph G, is there a triple of distinct colors
a, b, c such that there are at least ∆ triangles (x, y, z) in G in which x has color a, y has color b, and z has
color c?
(Are there ∆ triangles with “matching” colors?)

An equivalent way to define these problems is: given a k-partite graph G on n nodes, Triangle-Collection
asks whether every triple of partitions has a triangle among them, and ∆-Matching-Triangles asks whether
there is a triple of partitions with at least ∆ triangles among them.

Note that an O(n3) algorithm for each of these problems is trivial and the output is a single bit, yet the
following theorem shows that if an O(n3−ε) algorithm existed for some ε > 0, we would have groundbreaking
algorithms for 3-SUM, APSP, and CNF-SAT! It is quite surprising that these simple problems are hiding such
“hardness” to be a bottleneck for these three famous problems (and many others by the known reductions).

Theorem 1.1. Conjecture 1 implies that Triangle-Collection and ∆-Matching-Triangles, with ω(1) < ∆ <
no(1), on graphs with n nodes cannot be solved in O(n3−ε) time, for any ε > 0.

Observe that the ∆-Matching-Triangles problem with ∆ = 1 simply asks if there is a triangle in the graph
and can therefore be solved in O(nω) time, where ω < 2.373 is the matrix multiplication exponent [74, 34].
However, when ∆ increases to ω(1) it must require n3−o(1) time under Conjecture 1. It is natural to
wonder what is the complexity of the problem when ∆ > 1 is a constant. Studying this question, we have
discovered a surprising hierarchy of n-node graph problems with increasing complexities, starting at nω±o(1)

and approaching n3±o(1). These results are presented at the end of this section.
Besides allowing us to give a tight lower bound for a natural combinatorial problem based on the extremely

weak Conjecture 1, the Triangle-Collection problem serves as a good intermediate problem for obtaining other
good from Conjecture 1. The simplicity and purely-combinatorial nature of the problem allow for simple
reductions to other (more well-studied) problems, while the tightness of the lower bound means that no
efficiency is lost by reducing from it.

New lower bounds for dynamic problems. We consider variants of classic dynamic problems such as
Single-Source-Reachability(#SSR), Strongly Connected Components(#SCC), Subgraph Connectivity(#SS-
Sub-Conn), and Max-Flow. For example, #SSR asks to maintain the number of nodes reachable from a
single source in a dynamic directed graph. See Appendix A for background on dynamic algorithms and the
many known algorithms for these problems.

3



After a sequence of reductions from 3-SUM by Pǎtraşcu [57] that was later optimized by Abboud and
Vassilevska [5] and by Kopelowitz, Pettie and Porat [48], we can conclude that the above problems require

n
2
3−o(1) amortized update if the 3-SUM conjecture holds. This lower bound does not match the known upper

bounds, and in fact, Abboud and Vassilevska [5] show that there is a higher n1−o(1) lower bound under
SETH. However, obtaining a higher lower bound from the 3-SUM conjecture using Pǎtraşcu’s approach
seems impossible, due to certain inefficiencies in the reduction, and obtaining a higher lower bound from
3-SUM has remained an open question. No lower bound for these problems was known under the APSP
conjecture.

We give simple reductions from Triangle-Collection to these classic dynamic problems to obtain linear
n1−o(1) lower bounds on the amortized update times, under our very weak Conjecture 1. The tightness of
our reduction from 3-SUM to the purely-combinatorial Triangle-Collection problem allows us to overcome
the n

2
3−o(1) barrier for lower bounds under the 3-SUM conjecture.

Theorem 1.2. Conjecture 1 implies that any dynamic algorithm for #SSR, #SCC, #SS-Sub-Conn, and
Max-Flow requires either amortized n1−o(1) update or query times, or n3−o(1) preprocessing time.

Our lower bound for dynamic Max-Flow hints on a barrier for efficient Max-Flow algorithms: changing
one edge of the input, corresponding to one constraint in the linear program, will make the algorithm spend
linear time to recompute the optimal solution, in an amortized sense. Next, we look for barriers for Max-Flow
computations in static graphs.

New lower bounds for variants of Max-Flow. Equipped with Conjecture 1 and its realization in the
simple Triangle-Collection problem, we try to obtain reductions to Max-Flow, in hopes of proving under a
weak assumption that certain tasks will not be solvable in near-linear time.

Breakthrough algorithms for s, t-Max-Flow were found in recent years using the powerful tools of Lapla-
cian systems solvers, and interior-point methods [66, 47, 54, 51]. It also seems that these algorithms take
near-linear time in practice, and the bottleneck for improving the upper bounds might be in the limitations
of our current analysis. Thus, attempting to prove super-linear lower bounds for Max-Flow under a conjec-
ture we believe to hold might be ill-advised. Instead, we consider two other versions of Max-Flow, in which
we have multiple pairs of sources and sinks, and for which the potential of these new powerful tools is still
unexplored.

Definition 1.3 (Single-Source-Max-Flow). Given a directed edge-capacitated graph G and source vertex
s ∈ V , output, for every t ∈ V , the maximum flow that can be transferred in G from s to t.

Definition 1.4 (ST-Max-Flow). Given a directed edge-capacitated graph G and two subsets of vertices
S, T ⊆ V (G), output, for every pair of nodes s ∈ S, t ∈ T , the maximum flow that can be transferred in G
from s to t.

Let T (n,m) be the time complexity of Max-Flow. The current bound is T (n,m) = Õ(m
√
n) by Sidford

and Lee [51]. Obviously, Single-Source-Max-Flow can be solved in O(n · T (n,m)) time, and ST-Max-Flow
can be solved in O(|S||T |T (n,m)) time. In the unit-capacity case, Cheung et al. [22] solve the all-pairs
version, i.e. ST-Max-Flow with S = T = V (G) in O(mω) time, and Single-Source-Max-Flow in O(nω−1m)
time. In general graphs, Hao and Orlin [36] show that the maximum flow between O(n) st-pairs can be found
in the time it takes for a single Max-Flow computation, however these pairs cannot be specified in advance.
 La̧cki et al. [50] obtained a near-linear time algorithm for Single-Source-Max-Flow in planar digraphs. Note
that in undirected graphs, all-pairs-max-flow can be read from the Gomory-Hu tree of the graph, which can
be computed in Õ(mn) time [37].

First, we devise a simple reduction from Triangle-Collection to ST-Max-Flow and prove that a near-
linear-time algorithm for it would shatter our conjectures.

Theorem 1.3. Conjecture 1 implies that ST-Max-Flow on a network with n nodes and O(n) edges requires
n1.5−o(1) time, even when |S| = |T | =

√
n.

4



Although this lower bound does not match the currently known n · T (n) upper bounds, where T (n) =
Õ(n1.5) is the time it takes to solve Max-Flow on sparse graphs, it gives the first connection between a
Max-Flow-like problem and our popular conjectures. Moreover, this result implies that under Conjecture 1,
any O(m1.5−ε) time algorithm for Max-Flow, cannot also output the maximum flow between n st-pairs of
our choice.

This new connection to Max-Flow allows us to obtain perhaps more currently relevant conditional lower
bounds for Single-Source-Max-Flow.

Theorem 1.4. If for some ε > 0, Single-Source-Max-Flow on a graph with n nodes, Õ(n) edges with
capacities in [n], can be solved in O(n2−ε) time, then MAX-CNF-SAT on n variables and poly (n) clauses
can be solved in 2(1−δ)npoly (n) time, for some δ > 0, and SETH is false.

Note that the current best upper bound is n · T (m), and this lower bound would be tight if Max-Flow
is in T (m) = m1+o(1) time. A first interesting consequence of this result is that, under SETH, unlike for
shortest paths where the s, t version and the single-source versions have roughly the same complexity, the
single-source version of Max-Flow (requires n2−o(1)) is much harder than the s, t version (is in O(n1.5) time),
at least on sparse graphs. Another interesting consequence is that, under SETH, either Max-Flow requires
m1+δ−o(1) time, for some δ > 0, or the following counter-intuitive thing is true: it is not possible to compute
n single-source flows in a network faster than by calling an st-flow algorithm n times.2 In the full version
of the paper we give other reductions from Triangle-Detection and APSP to single-source Max-Flow and
Min-Cost-Flow, obtaining other interesting consequences.

Towards a better understanding of P. The time hierarchy theorem promises the existence of problems
with complexity Θ(nc) for any constant c > 1, and is proven by constructing a diagonalizing Turing-Machine,
but are there natural problems with complexity n2.1, n2.7, or n2.9? And what would such problems look like?
Obviously, an unconditional answer to this question will require concrete polynomial lower bounds, and we
are satisfied with a conditional answer. For integers k > 2, we have a good sense of what an nk hierarchy
might look like: the k-Dominating-Set problem has complexity nk±o(1) under SETH [59, 29], and it is quite
intuitive that the complexity of this problem increases from n5 to n6 as k increases from 5 to 6. But what
about a hierarchy of problems with complexity Θ(nc) for c ∈ (2, 3)? Even under one of the conjectures, it is
not clear how to find such problems. 3

It turns out that the ∆-Matching-Triangles problem, which asks if there is a triple of colors containing
at least ∆ triangles, allows us to find such hierarchy of problems, even under our very weak Conjecture 1!
Recall that when ∆ = 1 there is an O(nω) upper bound, and when ω(1) < ∆ < no(1) we have a an n3−o(1)

lower bound based on the very weak Conjecture 1. In Section 3, we obtain a truly subcubic algorithm for
∆-Matching-Triangles for any fixed integer ∆ ≥ 1.

Theorem 1.5. The ∆-Matching-Triangles problem on an n-node graph G can be solved in Õ
(
n3−c∆

)
time

for c∆ = 2(3−ω)2

(5−ω)∆+1−ω > 0.

Moreover, Theorem 1.1 also proves a truly-super-quadratic lower bound that approaches n3−o(1) for ∆-
Matching-Triangles, for a large enough constant ∆, assuming Conjecture 1.

Corollary 1.1. Conjecture 1 implies that for any δ < 1, there is an integer ∆ ≥ 1 such that ∆-Matching-
Triangles requires n2+δ−o(1) time.

Combining the lower and the upper bounds, we conclude that there is some constant D such that for every
integer ∆ > D, ∆-Matching-Triangles has time complexity Θ̃(nc∆) for some c∆ ∈ (2, 3). We also remark

2  La̧cki et al. [50] conjecture that computing all n2 st-flows in a general graph can be done faster than by calling a Max-Flow
algorithm n2 time.

3An uninteresting way to find such problems is by padding the input to APSP for example, so that all nodes but the first
nc/3 are ignored, however we would not consider such a problem natural as it would not contribute to our understanding of
what makes the computational complexity of a problem increase from n2.7 to n2.8.

5



that when ∆ increases beyond no(1), the complexity of ∆-Matching-Triangles decreases to truly subcubic
yet again.

Finally, in order to obtain a better understanding of the complexity of ∆-Matching-Triangles for smaller
constants ∆, like ∆ = 3, we consider the following conjecture.

Conjecture 2. At least one of the 3-SUM conjecture or the APSP-conjecture holds.

We are able to show a much better lower bound from Conjceture 2, which is n3−9/(∆+3)−o(1). For example,
this bound is n2.1−o(1) when ∆ = 7, and is n2.9−o(1) when ∆ = 87. Examining the reductions, we notice
that this lower bound applies for a restricted version of the problem which we call ∆-Matching-Triangles*
(defined in Section 2), which turns out to have a matching upper bound, allowing us to prove the following
hierarchy theorem.

Theorem 1.6. Conjecture 2 implies that for any ∆ > 6, the complexity of ∆-Matching-Triangles* is exactly
n3−9/(∆+3)±o(1).

2 Reductions to Matching Triangles

Recall the definitions of ∆-Matching-Triangles and Triangle-Collection problem in the introduction. In this
section, we are going to reduce the three hard problems to ∆-Matching-Triangles and Triangle-Collection.

First, we show 3-SUM and APSP-hardness using EW-Triangle as an intermediate problem, since it
requires n3−o(1) time unless both conjectures are false.

Definition 2.1 (EW-Triangle). Given a graph G = (V,E) with integer edge weights w : E → [−nc, nc],
determine if there is a triangle (a, b, c) of total weight w(x, y) + w(y, z) + w(x, z) = 0.

Our main ingredient in the reductions from EW-Triangle is a set of no(1) mappings from integers in
[−nc, nc] to vectors in [−p, p]d where (p/3)d > nc so that three numbers sum to 0, if and only if in at least
one of the mappings, the three corresponding vectors will sum to a certain target vector t. The basic idea is
to group the bits of a number into blocks of size log p and guess all the carries. The following mapping was
suggested by Abboud, Lewi, and Williams [3] as a step towards reducing k-SUM to k-Clique. Besides using
this lemma, our reductions are very different from theirs.

Lemma 2.1 ([3]). For any integers n, c, d, p ≥ 1 such that p ≥ 3nc/d, there is a set of s = 2O(d) mappings
f1, . . . , fs : [−nc, nc]→ [−p/3, p/3]d and s target vectors t1, . . . , ts ∈ [−p, p]d such that for any three numbers
x, y, z ∈ [−nc, nc]: x+ y + z = 0 if and only if for some i ∈ [s], fi(x) + fi(y) + fi(z) = ti.

EW-Triangle to Matching-Triangles We are now ready to prove the new reduction from EW-Triangle
to ∆-Matching-Triangles. This is perhaps the most novel reduction in this work. After reducing the edge-
weights to vectors with small values in each coordinate, we remove the numbers completely and simulate
them using pointers. The summation of numbers is simulated by a path that walks along these pointers. A
path on three edges that starts and ends at the same node (a triangle) will correspond to a sum of three
numbers being zero.

Lemma 2.2. An instance of EW-Triangle on n nodes, m edges, and edge weights in [−nc, nc] can be reduced
to s = 2O(∆) instances of ∆-Matching-Triangles on O(n · nc/∆ ·∆) nodes and O(mnc/∆∆) edges in linear
time.

Proof. Given G = (V,E), V = A ∪ B ∪ C,w : E → [−nc, nc] as input to EW-Triangle, we construct an
unweighted graph G′i = (V ′i , E

′
i) on O(n · nc/∆ ·∆) nodes with node colors χ : V ′i → [n] as follows.

First, apply Lemma 2.1 with d = ∆ and p = O(nc/∆) to construct s = 2O(∆) mappings from integers
to vectors and apply them to each of the edge weights in G. For each i ∈ [s], we use the mapping fi and
the target vector ti to construct a graph G′i with nodes V ′i = A′i ∪ B′i ∪ C ′i. For each node a ∈ A we add
d nodes a1, . . . , ad to A′i and set their color to a (we abuse notation and assume that each node in A is a

6



number in [n]). The node ai will help us simulate the addition in the ith dimension of the vectors. For nodes
b ∈ B, c ∈ C we add d · 2p nodes bj,x and cj,x to B′i and C ′i, where j ∈ [d] and x ∈ [−p, p]. Intuitively, the
index j corresponds to the dimension and the index x corresponds to the value in that dimensions. Let the
color of every bj,x node be b and the color of every cj,x node be c (we abuse notation again and assume that
every node in B ∪ C has a unique number in [n+ 1, 3n]). We now define the edges of G′i.

• (A to B) For each edge (a, b) in G where a ∈ A, b ∈ B, we map the weight of the edge using fi to get
a vector fi(w(a, b)) ∈ [−p, p]d and we add d edges to G′i: for each dimension j ∈ [d] we add an edge
from aj to bj,x where x = fi(w(a, b))[j] is the value in the jth dimension of the vector corresponding
to the weight.

• (B to C) For each edge (b, c) in G where b ∈ B, c ∈ C, we map the weight of the edge using fi to get a
vector fi(w(b, c)) ∈ [−p, p]d and for each dimension j ∈ [d] we add up to 2p edges to G′i: for each value
x ∈ [−p, p] we let y = x+ fi(w(b, c))[j] and if y ∈ [−p, p] we add an edge from bj,x to cj,y. That is, for
each dimension j ∈ [d] the edges we add simulate an increase of fi(w(b, c))[j] in the value at the jth

dimension.

• (C to A) Finally, for each edge (c, a) in G where c ∈ C, a ∈ A, we map the weight of the edge using fi
to get a vector fi(w(c, a)) ∈ [−p, p]d and we add d edges to G′i: for each dimension j ∈ [d] we add an
edge from cj,x to aj where x = ti[j]− fi(w(c, a))[j].

The number of nodes in G′i is n∆ + n∆2p + n∆2p = O(n1+c/∆∆), while the number of edges is m∆ +
m∆nc/∆ = O(mnc/∆∆). The number of colors is |A|+ |B|+ |C| = 3n. If one of the s = 2O(∆) instance of
∆-Matching-Triangles is a YES instance, we say that G contains a triangle of weight 0. The following claim
shows the correctness of our reduction.

Claim 1. There is a triangle (a, b, c) ∈ A×B ×C in G of weight 0 iff for some i ∈ [s], there are at least ∆
triangles in G′i with colors a, b, c.

Proof. For the first direction, assume (a, b, c) ∈ A×B×C is a triangle in G and w(a, b)+w(b, c)+w(c, a) = 0.
By Lemma 2.1, we know that for some i ∈ [s], the vectors sum to fi(w(a, b)) + fi(w(b, c)) + fi(w(c, a)) = ti.
Therefore, for every j ∈ [d] we have that (aj , bj,x), (bj,x, cj,y), (cj,y, aj) ∈ E(G′i) where x = fi(w(a, b))[j] and
y = x + fi(w(b, c))[j] = fi(w(a, b))[j] + fi(w(b, c))[j], since under our assumption y = ti[j] − fi(w(c, a))[j].
By our assignment of colors to nodes, we get ∆(= d) triangles with colors a, b, c in G′i.

For the second direction, assume that there are ∆ triangles in G′i for some i ∈ [s] using the same triple
of colors. First note that a triangle cannot use two colors from a single partition A,B, or C, since the nodes
of each partition form an independent set. Therefore, the triple of colors must be of the form a, b, c for some
colors corresponding to nodes a ∈ A, b ∈ B, c ∈ C. By construction of our graphs G′i, we know exactly which
are the ∆ triangles: for each j ∈ [d] the node aj has only one neighbor in B with color b and one neighbor
in C with color c and therefore we can have at most one triangle, which is (aj , bj,x, cj,y) in G′i. For each
j ∈ [d], this triangle exists iff fi(w(a, b))[j] +fi(w(b, c))[j] = ti[j]−fi(w(c, a))[j]. Thus, there are ∆ triangles
iff fi(w(a, b))[j] + fi(w(b, c))[j] + fi(w(c, a))[j] = ti[j] for every j ∈ [d]. By Lemma 2.1, this occurs only if
w(a, b) + w(b, c) + w(c, a) = 0. �

�

Corollary 2.1. If there is an algorithm which solves ∆-Matching-Triangles on n-node graph in O(n3−ε)
time for any constant ε > 0, any ω(1) < ∆(n) < o(log n), we can solve EW-Triangle in O(n3−ε+o(1)) time.

EW-Triangle to Triangle-Collection Note that our lower bounds for ∆-Matching-Triangles increase
as ∆ grows from 1 to O(log n/ log log n). In fact, the ∆ = 1 can be solved in truly subcubic O(nω) time.
Interestingly, we are able to show the highest n3−o(1) lower bounds for the “∆ = 0 case” as well, by reductions
from APSP, 3-SUM, and CNF-SAT.

7



We first define a “restricted” version of Triangle-Collection, called Triangle-Collection*. Then we reduce
EW-Triangle problem to the restricted version. Finally, we will reduce Triangle-Collection* to Triangle-
Collection.

Definition 2.2 (Triangle-Collection*). Given an undirected tripartite node colored graph G with partitions
A,B,C of the following form:

• A contains n∆ nodes denoted aj where a ∈ [n] and j ∈ [∆] so that aj is colored with color a.

• B and C contain n∆p nodes each, denoted bj,x and cj,x where b, c ∈ [n], j ∈ [∆], and x ∈ [p] so that
bj,x (cj,x) is colored b (c).

• For each node aj in A and colors b, c, there is exactly one edge of the form {aj , bj,x} and exactly one
edge of the form {aj , cj,y}, for some x, y ∈ [p].

• A node bj,x in B can only be connected to nodes of the form cj,y in C (no edges across different j’s).

Is it true that for all triples of distinct colors a, b, c there is a triangles (x, y, z) in G in which x has color
a, y has color b, and z has color c?

Lemma 2.3. An instance of EW-Triangle on n nodes and edge weights in [−nc, nc] can be reduced to
s = 2O(∆) instances of Triangle-Collection* on O(n ·nc/∆ ·∆) nodes and O(n2+2c/∆∆) edges in linear time.

Proof. The reduction is similar to the one in the proof of Lemma 2.2, flipping one side of the edges to make
the absence of a (aj , bj,?, cj,?) triangle correspond to the sum being zero on the jth dimension.

Take the unweighted graphs G′i = (V ′i , E
′
i) in the proof of Lemma 2.2, where V ′i = A′i ∪B′i ∪ C ′i. We flip

all the edges between B′i and C ′i, and get a collection of 2O(∆) new graphs G′′i . According to the proof of
Claim 1, there is a zero-weight triangle (a, b, c) in G if and only if there are no triangle of colors (a, b, c) in
G′′i for some i. It is not hard to verify that all G′′i s have the format of Triangle-Collection* input graphs.

�

Lemma 2.4. An instance of Triangle-Collection* on n-node graphs can be reduced to an instance of Triangle-
Collection on O(n) nodes.

Setting ∆ = 2Θ(
√

logn) gives us the following corollary.

Corollary 2.2. If there is an algorithm solving Triangle-Collection on n-node graph in O(n3−ε) time for
any constant ε > 0, we can solve EW-Triangle in O(n3−ε+o(1)) time.

Proof of Lemma 2.4. The only problem we need to worry about is that there is no restriction on the triple
of colors in the general Triangle-Collection problem. That is, we do not want to find a triangle-free triple of
colors such that they are not from sets A,B,C respectively. To solve this issue, given an input graph G for
Triangle-Collection*, for every pair of nodes a, a′ ∈ A we add edges (aB , a

′
B), (aC , a

′
C) to G. Similarly, for

nodes b, b′ ∈ B and c, c′ ∈ C, we add edges (bA, b
′
A), (bC , b

′
C), (cA, c

′
A), (cB , c

′
B) to G. Then, for every pair

a ∈ A, b ∈ B we add an edge (aB , bA), for every pair a ∈ A, c ∈ C we add an edge (aC , cA), and for every
pair b ∈ B, c ∈ C we add an edge (bC , cB) to G. Finally, we get a graph G′. It makes every triple of colors
that is not in A×B × C contain a triangle, but does not add new triangles for triples in A×B × C.

Claim 2. If a triple of colors (x, y, z) is not in A×B × C, then that triple contains a triangle in G′.

Proof. If all three colors come from the same partition, e.g. x, y, z ∈ A (or B or C) then the nodes xB , yB , zB
form a triangle, by construction. If, however, two nodes come from the same partition, e.g. x, y ∈ A but
z ∈ B (the other cases are similar), then the nodes xB , yB , zA form a triangle in every G′i, by construction.
�

The new nodes in G′ add triangles to every “invalid” triple of colors, while for every “valid” triple, the
existence of triangles does not change. This proves the correctness of our reduction.

�

8



A hierarchy with exact bounds We note that by standard random hashing of the edge-weights by
working modulo a random prime, EW-Triangle with c = 3 (weights in [−nc, nc]) is as hard as the more
general case. Thus, Conjecture 2 implies an n3−o(1) lower bound for EW-Triangle even with c = 3, and
therefore together with Lemma 2.2 it implies an n3−9/(∆+3)−o(1) lower bound for ∆-Matching-Triangles.
Observe that the proof of Lemma 2.2 proves hardness even for input graphs of a restricted form, thus
obtaining the same lower bound even for the following problem:

Definition 2.3 (∆-Matching-Triangles*). Given an undirected tripartite node colored graph G on N =
O(n∆p) nodes, with partitions A,B,C of the following form, where p = O(n3/∆):

• A contains n∆ nodes denoted aj where a ∈ [n] and j ∈ [∆] so that aj is colored with color a.

• B and C contain n∆p nodes each, denoted bj,x and cj,x where b, c ∈ [n], j ∈ [d], and x ∈ [p] so that
bj,x (cj,x) is colored b (c).

• For each node aj in A and colors b, c, there is exactly one edge of the form {aj , bj,x} and exactly one
edge of the form {aj , cj,y}, for some x, y ∈ [p].

• A node bj,x in B can only be connected to nodes of the form cj,y in C (no edges across different j’s).

Is there a triple of distinct colors a, b, c such that there are at least ∆ triangles (x, y, z) in G in which x
has color a, y has color b, and z has color c?

Reminder of Theorem 1.6 Conjecture 2 implies that for any ∆ > 6, the complexity of ∆-Matching-
Triangles* is exactly n3−9/(∆+3)±o(1).

In such restricted instances, one can check in O(∆) time whether there are ∆ triangles with a given triple
of colors, and therefore the problem can be solved in O((#colors)3 + (#nodes)2) which is O(N3−9/(∆+3))
when ∆ > 6 is constant, matching our lower bound, and proving Theorem 1.6.

SETH to Matching-Triangles Next, we prove a new SETH lower bound. Our reduction uses the
same split-and-list technique that is used in all of the SETH-based lower bounds, yet unlike most previous
reductions, ours splits the variables into three sets, not two. Moreover, since our reduction incurs an overhead
of 2M where M is proportional to the number of clauses, we introduce new tricks to reduce the dependence
on the number of clauses.

Lemma 2.5. If ∆-Matching-Triangles on N -node graphs can be solved in O(N c∆) time, then CNF-SAT on

n variables and m clauses can be solved in O
((

∆2n/3+m/3∆
)c∆)

time.

Proof. Given a CNF formula F on n variables and m clauses as input of CNF-SAT. First we split the
variables into three sets U1, U2, U3 of size n/3 each and enumerate over all the N = 2n/3 partial assignments
to each set. Also we arbitrarily divide m clauses into 3∆ groups C1, . . . , C3∆, each of which contains m/3∆
clauses.

Then we construct a graph G on O(N∆2m/3∆) nodes V1 ∪ V2 ∪ V3, containing O(∆2m/3∆) nodes for
each partial assignment. Let αi be a partial assignment to variables in Ui. For each group C3k+i, partial
assignment αi and bit string si ∈ {0, 1}m/3∆, we build a vertex vαi,k,si ∈ Vi. The bit string si will correspond
to some subset of clauses of group C3k+i. Then for every partial assignment, we assign a different color.
Thus we have 3N colors in total. Finally, we need to describe the edges in G. We add an edge between
vαi,k,si ∈ Vi and vαi+1,k,si+1

∈ Vi+1
4, if αi+1 satisfies exactly the subset si of group C3k+i and αi, αi+1

together with the subset si+1 satisfy all clauses in C3k+i+1 (C3k+1 if i = 3). Basically, si corresponds to the
subset which αi+1 satisfies. When considering a pair of partial assignments, together with the information
carried about the third part, we can decide whether we have satisfied enough clauses in one group.

We claim that for any triple of partial assignments α1, α2, α3 and k ∈ [∆], there is a triangle among
vertices vα1,k,∗, vα2,k,∗, vα3,k,∗ if and only if they satisfy all clauses in C3k+1, C3k+2, C3k+3. If there is a

4For simplicity of notations, let α4 = α1, s4 = s1, V4 = V1

9



triangle (vα1,k,s1 , vα2,k,s2 , vα3,k,s3), there are edges between any two of them. This means α2 satisfies exactly
the subset s1 of C3k+1, and α1, α3 together with s1 satisfy all clauses of C3k+1. Therefore, they satisfy clauses
in all these three groups due to symmetry. On the other hand, if they satisfy clauses in the three groups,
let si be the subset of clauses αi+1 satisfies, there can only be edges between vαi,k,si and every vαi+1,k,∗.
Since α1, α2, α3 satisfy all clauses in C3k+i+1 (C3k+1 if i = 3), vαi,k,si and vαi+1,k,si+1 will be connected by
an edge. They form the only triangle between these vertices.

Based on above claim and the way we assign colors, it is not hard to see that there are ∆ triangles of the
same triple of colors if and only if there is a triple of partial assignments satisfies enough clauses in every

group. Using the algorithm for ∆-Matching-Triangles, we can solve CNF-SAT in O
((

∆2n/3+m/3∆
)c∆)

time

as we stated. �

Above reduction together with the sparsification lemma [16], give us the following corollary.

Corollary 2.3. If there is an algorithm solving ∆-Matching-Triangles on N -node graph in O(N3−ε) time
for any constant ε > 0, any ω(1) < ∆(N) < No(1), we can solve k-SAT in O

(
2n(1−ε/6)

)
time for every

k ≥ 3, refuting SETH.

Proof. Given a k-SAT instance, we first apply the sparsification lemma [16] to get 2ε/6 “sparse” k-SAT
instances with n variables and cn clauses, where c ≤ (6k/ε)O(k). By Lemma 2.5, each instance runs in
O
(
2n(1−ε/3)

)
time. The total running time will be O

(
2n(1−ε/6)

)
. �

SETH to Triangle-Collection Now we reduce CNF-SAT to Triangle-Collection. By Lemma 2.4, it is
sufficient to reduce it to the restricted version.

Lemma 2.6. If there is an algorithm which solves Triangle-Collection* on N -node graphs in O(N c1∆c2)
time, then CNF-SAT on n variables and m = nO(1) clauses can be solved in 2nc1/3nO(1) time.

Proof. Given a CNF formula F on n variables and m = nc clauses, we split the variables into three sets
U1, U2, U3 of size n/3 each and enumerate over all the N = 2n/3 partial assignments to each set.

We will construct a graph G on O(Nm) nodes A ∪ B ∪ C, containing O(m) nodes for each partial
assignment. Suppose α is the ith partial assignment to the variables in U1, then add m nodes α1, . . . , αm to
the set A and set their color to i. Suppose β is the ith partial assignment to the variables in U2, then add
2m nodes β1,T , . . . , βm,T and β1,F , . . . , βm,F to B and set their color to N + i. Finally, suppose γ is the ith

partial assignment to the variables in U3, then add a node γ to the set C with color 2N + i. Note that every
color corresponds to a partial assignment.

The edges of G are defined according to the satisfiability relations between partial assignments and
clauses. We say that a partial assignment ρ satisfies a clause C iff ρ sets one of the literals of C to true. For
each triple of partial assignments α, β, γ to U1, U2, U3 (respectively), we define the following edges. For each
j ∈ [m], we check whether α, β, γ satisfy C - the jth clause in our formula F , and then:

• We add an edge between αj and βj,T if α or β satisfy C, and we add an edge between αj and βj,F
otherwise.

• We add an edge between βj,F and γj if γ does not satisfy C.

• We add an edge between αj and γj .

By the construction of G, it fits the input graph of Triangle-Collection*. We claim that a triple of colors
will have no triangles in G iff the corresponding triple of partial assignments satisfy all clauses. To see this,
note that a triangle must be of the form αj → βj,x → γj where x ∈ {T, F}, and that each αj can participate
in at most one such triangle. Moreover, this triangle exists in G iff the partial assignment obtained by
combining (α, β, γ) does not satisfy the jth clause in F , by construction.

By the assumption on Triangle-Collection* algorithm, we can solve CNF-SAT in 2nc1/3nO(1) time.
�

10



Corollary 2.1 only proves hardness of ∆-Matching-Triangles when ∆ is sub-logarithm in n. However, the
following lemma shows the hardness does not decrease when ∆ increases, as long as it is sub-polynomial in
n.

Lemma 2.7. If we can solve ∆-Matching-Triangles on n-node graph G in O(nc∆) time, then we can solve
∆′-Matching-Triangles in O

(
((∆−∆′)n)

c)
time for ∆′ < ∆.

Proof. Given an instance of ∆′-Matching-Triangles G on n nodes, we add ∆′−∆ nodes to each of the color.
Then take the i-th newly added node in all colors, make them a complete graph. It adds exactly ∆′ − ∆
triangles to every triple of colors. Then run ∆-Matching-Triangles algorithm on the new graph. The running
time is O

(
((∆−∆′)n)

c)
. �

Now we are ready to prove Theorem 1.1.

Reminder of Theorem 1.1 Conjecture 1 implies that Triangle-Collection and ∆-Matching-Triangles, with
ω(1) < ∆(n) < no(1), on graphs with n nodes cannot be solved in O(n3−ε) time, for any ε > 0.

Proof. By Corollary 2.1, Corollary 2.3 and Lemma 2.7, we can get for ω(1) < ∆ < no(1), ∆-Matching-
Triangles cannot be solve in O(n3−ε) time, for any ε > 0 under Conjecture 1. Then by Corollary 2.2 and
Lemma 2.6 and Lemma 2.4, we can prove the hardness for Triangle-Collection under Conjecture 1. �

From the theorem, we have the following corollary stating a “Hierarchy” between n2 and n3.

Reminder of Corollary 1.1 Conjecture 1 implies that for any δ < 1, there is an integer ∆ ≥ 1 such that
∆-Matching-Triangles requires n2+δ−o(1) time.

Proof. Assume for contradiction that there is an ε > 0 such that ∆-Matching-Triangles can be solve in
O(n3−ε) for all constant ∆ ≥ 1. Therefore, there is a sequence {a∆}∆≥1 of positive numbers such that ∆-
Matching-Triangles on n-node graphs can be solve in a∆n

3−ε steps. Let ∆(n) = max{∆ : a∆ ≤ nε/2a1,∆ ≤
√
n}.

We claim that with this parameter ∆(n), it contradicts with Theorem 1.1.
When n ≥ max{k2, (ak/a1)2/ε}, ∆(n) ≥ k. This shows ∆(n) > ω(1). Also by definition, ∆(n) < no(1).

But ∆(n)-Matching-Triangles can be solve in a∆(n)n
3−ε ≤ a1n

3−ε/2 = O(n3−ε/2) time. It contracts with the
fact that such ∆(n)-Matching-Triangles cannot be solve in any truly subcubic time. �

3 Algorithm for Matching Triangles

In this section, we show how to solve ∆-Matching-Triangles efficiently when ∆ is small.

Reminder of Theorem 1.5 ∆-Matching-Triangles problem on an n-node graph G can be solved in

Õ
(
n3−c∆

)
time for c∆ = 2(3−ω)2

(5−ω)∆+1−ω > 0.

Proof. Without loss of generality, we may assume that the graph G is tripartite. We use two different
approaches to detect if there are ∆ triangles with the same triple of colors based on the number of nodes of
the colors.5 Let C1, C2, C3 be the sizes of the colors.

First approach: In this case, we check if there are ∆ triangles with the same triple of colors such that
the sizes of the three colors are at most C1, C2, C3 respectively. Let us focus on the colors with at most
C1, C2, C3 vertices in each part of the graph. We first arbitrarily assign an index for every vertex of a color
from one to the size of the color. We enumerate the indices of vertices of ∆−1 triangles. There are

(
C1C2C3

∆−1

)
possibilities. For any two colors from different part in G, we check if all indices and corresponding edges of
the ∆− 1 triangles exist in these two colors. If some of them are missing, it means together with any third
color, these two colors cannot have those ∆− 1 triangles currently enumerated to. Thus we delete all edges
between them from G. After we have checked for every pair of colors, we get a new graph G′ depending on
the indices of ∆−1 triangles. The last triangle will be different from first ∆−1. That is, for each of the first

5We may also call it the size of the color in the rest of the proof.

11



∆− 1 triangles, there is one edge that is different from the last one. We enumerate all 3∆ possibilities, and
remove the corresponding edges from each possible pair of colors in G′. At last we check if the remaining
graph H has a triangle (without color restriction) using matrix multiplication in O(nω) time.

We claim that the graph G has ∆ triangles with the same triple of colors if and only if we found an H
with a triangle in the algorithm. If G has such ∆ triangles, at some point of the algorithm, we will enumerate
to the correct indices of first ∆− 1 triangles. G′ will still contain the last triangle. Then eventually we will
enumerate to a right guess of different edges from the first ∆− 1 triangles. In this case, the resulting H still
has the last triangle unremoved. H has a triangle. On the other hand, if at some point of the algorithm, we
get an H with some triangle T in it. Look at the triple of colors which T has, their edges are not all deleted,
which means they have all the edges of first ∆− 1 currently enumerated to. These three colors contain the
current first ∆− 1 triangles, and T is different from all of them, since there is one edge removed from each
of them.

The first approach correctly checks for all small-sized colors in

Õ

((
C1C2C3

∆− 1

)
3∆nω

)
time.

Second approach: We check if there are ∆ triangles with the same triple of colors with size at least
C1, C2, C3 respectively. First we delete all colors of small size from G, and get a graph G′. Note that in
each part of G′, there are at most n/C1, n/C2, n/C3 different colors respectively. If there are more than
(∆ − 1)n3/(C1C2C3) + 1 triangles, which can be detected in Õ(nω) time, there must be ∆ such triangles.
We can report YES immediately. Otherwise, we can list all the triangles in G′ efficiently. [12] proposed
an algorithm that can list t triangles in an n-node graph in Õ

(
nω + n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)

)
time. Let

c = 2(3− ω)/(5− ω). Applying this algorithm to G′, in

Õ
(
nω + n3(ω−1)/(5−ω)(∆n3/(C1C2C3))2(3−ω)/(5−ω)

)
= Õ

(
nω + n3(∆/(C1C2C3))c

)
time, we can list all triangles and check if there are ∆ of them with the same triple of colors using a table
of size n3/(C1C2C3).

Main algorithm: In the following, we show how to combine these two approaches to get an efficient
algorithm for general G. We divide the colors into log n groups based on their size. The colors in Group i
will have between 2i and 2i+1 nodes. We go over all triples of groups. For Groups u, v, w, the first approach
runs in

Õ

((
2u+v+w

∆− 1

)
3∆nω

)
time, while the second approach runs in

Õ
(
nω + n3(∆/2u+v+w)c

)
time. The algorithm first computes these two values, and then picks the faster one to detect if there are ∆
such triangles among Groups u, v, w. There are log3 n such triples of groups, the algorithm runs in

Õ

(
max

0≤u,v,w≤logn
min

{(
2u+v+w

∆− 1

)
3∆nω, nω + n3(∆/2u+v+w)c

})

12



time. The maximum value is achieved when two terms are equal:

Õ

(
max

0≤u,v,w≤logn
min

{(
2u+v+w

∆− 1

)
3∆nω, nω + n3(∆/2u+v+w)c

})
≤Õ

(
max

0≤s≤3 logn
min

{
2s(∆−1)3∆nω/(∆− 1)!, n3(∆/2s)c

})
≤Õ

((
n3−ω∆c3−∆(∆− 1)!

)(∆−1)/(∆−1+c)
3∆nω/(∆− 1)!

)
≤Õ

((
n3∆c

)(∆−1)/(∆−1+c) (
3∆nω/(∆− 1)!

)c/(∆−1+c)
)

≤Õ
(
n3−(3−ω)c/(∆−1+c)

)
=Õ

(
n3−c∆

)
We have the running time as we stated. �

4 Reductions to Other Problems

Recall the definition of Triangle-Collection* from Section 2. Lemmas 2.6 and 2.3 prove that even this
restricted version of Triangle-Collection has an n3−o(1) lower bound under Conjecture 1. In this section we
reduce this version to well-studied problems to prove our new lower bounds.

Triangle-Collection* to Dynamic Problems. The following reductions to dynamic problems prove
Theorem 1.2.

Lemma 4.1. Triangle-Collection* can be reduced to Õ(n2) updates and queries of #SSR, #SCC, #SS-Sub-
Conn, or Max-Flow on a dynamic graph on O(n) nodes.

Proof. (#SSR) Let G be the input to Triangle-Collection*, we construct a graph H by directing the edges of
G from B to C and removing part A from the graph (it will be implicitly simulated). We also add a source
node s which will be dynamically represent the different colors of A. We also add a target node tc, for every
color c of C, and we add a path of length ∆2 starting at tc so the nodes on this path are reachable from s if
and only if tc is reachable from s. We have a phase for each color a of A, in which we perform two stages.
In the first stage, we go over all colors c of C and add an edge from cj,x to tc for every j ∈ [∆], where x is
so that {aj , cj,x} is an edge in G. In the second stage, we go over all colors b of B and edges s → bj,x for
every j ∈ [∆], where x is so that {aj , bj,x} is an edge in G, then we ask the query and check if s can reach
at least (∆2 + 2∆)n nodes, before removing the added edges and moving on to the next b.

Observe that the answer to the query in one of the (a, b) stage is “no” (s reaches less than (∆2 + 2∆)n
nodes), iff there is a triple of colors a, b, c without any triangles. To see this, note that this happens iff s
cannot reach some node tc when the query is asked.

(Max-Flow) In the above reduction, add a target node t and connect every tc node to it with an edge
of capacity 1. The other edges of the graph will have capacity n. Observe that the answer to the query is
again determined by whether s can real tc for all colors c.

(#SS-Subgraph-Connectivity) In the reduction to #SSR, replace the addition of the cj,x → tc edges by
“turning on” updates on the cj,x nodes. Similarly, replace the addition of s→ bj,x edges with “turning on”
the bj,x node updates. Again, the query allows us to learn whether s can “reach” evert tc node.

(#Strongly Connected Components) Consider the reduction to #SSR again. Add two new nodes xB
and xC . Connect every node in B bidirectionally to xB , similarly from C and xc. Add edges from the tc
nodes to s. At the (a, c) substage, consider the cj,x nodes (the neighbors of aj) and remove their edges to
and from xC , instead, bi-connect them to tc. At the (a, b) substage, consider the bj,x nodes (the neighbors
of aj) and remove their edges to and from xB , instead, bi-connect them to s. The claim now is that the
number of strongly connected components is 3 iff s can reach all the tc nodes. The first direction is clear: if

13



s can reach every tc then we have the xB and xC components and the rest of the graph is one big component
containing all the neighbors of a and the tc nodes. The second is also simple: if some tc cannot be reached
from s through B, then there is no way it can be reached at all, and it will be in a fourth components.

�

Reductions to flow. Finally, we present our reduction to ST-Max-Flow on a static graph, proving The-
orem 1.3. The reduction shows how to use flow to count the number of different groups of nodes through
which there is a path from the source to the target.

Lemma 4.2. Triangle-Collection* on N nodes can be reduced to ST-Max-Flow on a graph with O(N2) nodes
and edges, and |S| = |T | = O(N).

Proof. Given a tripartite graph G as input to Triangle-Collection*, we construct a flow network H as input
to ST-Max-Flow as follow.

The nodes of H will be composed of five partitions: S,A′, B′, C ′, T . For each color a of A (in G) we
create a node sa in S. For each pair of colors a of A and b of B we create a node ab in A′. For each node
bj,x ∈ B we create a node b′j,x in B′. For each node cj,x ∈ B we create a node c′j,x in C ′. For each color c of
C we create a node tc in T .

Next, we define the edges of H. Add edges of capacity 1 from sa to the ab nodes for every color b of B.
For each edge {aj , bj,x} in G, add an edge ab → b′j,x to H with capacity 1. For each edge {bj,x, cj,y} in G,
add an edge b′j,x → c′j,y to H with capacity 1. For each node c′j,x ∈ C ′, add an edge of capacity n from c′j,x
to tc to H. Finally, for every color a of A and node cj,x ∈ C such that {aj , cj,x} is not an edge in G, we add
an edge sa → c′j,x of capacity n to H.

Note that the number of nodes and edges in H is O(|A||B|) = O(N2), and that |S| = |T | = n. The next
claim proves the correctness of our reduction.

Claim 3. For a pair of nodes sa ∈ S, tc ∈ T , the maximum flow from sa to tc in H is nd(p − 1) + n if
for every color b of B, the subgraph of G induced by the colors a, b, c contains a triangle, and is smaller
otherwise.

For the first direction, assume that for every color b of B, the triple a, b, c contains a triangle. Note that
sa can push n units of flow along each of the edges sa → c′j,x and then along the edges c′j,x → tc, and by
our assumptions on G, there are exactly d(p − 1) such edges in H, resulting in a total of nd(p − 1) units
of flow. We will call this “base flow”. We claim that every color b can contribute another unit of flow if
the triple a, b, c contains a triangle in G. Indeed, sa can push one unit of flow to ab for every color b and
then find the j ∈ [d] for which (aj , bj,x, cj,y) is a triangle in G and push a unit of flow along the edges
ab → b′j,x → c′j,y → tc. Note that since {aj , cj,y} is an edge in G, we have not pushed any flow along the
edge c′j,y → tc in our “base flow”. Moreover, since we are adding up to n additional units of flow, we will
not violate any of the capacity constraints. Thus, after these additions we end up with nd(p− 1) + n units
of flow.

For the other direction, assume that for some color b, the triple a, b, c does not contain a triangle. This
implies that for every j ∈ [d], the edge b′j,x → c′j,y is not in H, where x, y are such that the edges {aj , bj,x} and
{aj , cj,y} are in G. We will show that that at least one of the edges leaving sa cannot be saturated in a legal
flow in H, thus implying that the maximum flow is less than the sum of capacities on the ({sa}, H \ {sa})
cut, which is nd(p− 1) +n. If there is no flow on the edge sa → ab, we are done. Otherwise, one unit of flow
is pushed along the path sa → ab → b′j,x → c′j,z → tc, for some j ∈ [d] and x, z such that {aj , bj,x}, {bj,x, cj,z}
are in G. But by the above, we know that {aj , cj,z} is not an edge in G, and therefore the edge sa → c′j,z is
in H. Only n flow can leave c′j,z, while there is one unit coming from part B′, which implies that only n− 1
units of flow can come from the edge sa → c′j,z, and we are done again, since we found an edge leaving sa
that is not saturated. �

14



5 Reductions to Single-Source Max-Flow

To prove Theorem 1.4 we give a simple reduction from MAX-CNF-SAT to Single-Source-Max-Flow. Note
that our lower bound is not only based on SETH, but on the weaker assumption that MAX-CNF-SAT cannot
be solved in 2(1−ε)npoly (m) time - a problem for which even 2n/poly (n) algorithms are not known.

Lemma 5.1. MAX-CNF-SAT on n variables and m clauses can be reduced to O(m) instances of Single-
Source-Max-Flow on graphs with N = 2n/2 nodes and O(2n/2m) edges with capacities in [N ].

Proof. Let F be the input CNF formula on n variables and m clauses. As usual, we split the variables into
two parts of size n/2 and enumerate all N = 2n/2 partial assignments for each part. Our goal is to find
the pair of partial assignments α, β that satisfy the maximum number of clauses. We have an instance of
Single-Source-Max-Flow for each value K ∈ [m] in which we check if there is a pair α, β that satisfies at
least K clauses, using a single call to Single-Source-Max-Flow on a graph defined as follows.

Create a layer A containing a node vα for each partial assignment α to the first set of variables, and a
layer B containing a node vβ for each partial assignment β to the second set of variables. Add a layer C in
the middle, containing a node cj for each clause Cj in our CNF formula. Add edges vα → cj of capacity 1
for each pair of α,Cj such that α does not satisfy Cj (does not set any of the literals to true), and add edges
cj → vβ of capacity 1 for each pair β,Cj such that β does not satisfy Cj . Finally, add a source node s, and
connect it with edges s→ vα of capacity (m−K + 1), for each β.

Observe that the number of paths from a node vα to a node vβ is exactly the number of clauses that
are not satisfied by the (α, β) assignment. Therefore, the maximum flow from s to a node vβ would be
n(m−K + 1), unless for some α, there do not exist (m−K + 1) paths from vα to vβ , and thus we have a
pair α, β that satisfy at least m− (m−K + 1) + 1 = K clauses. �

Finally, we present reductions from Triangle detection to Single-Source-Max-Flow. An equivalent formu-
lation of Triangle detection is: given a tripartite graph (A,B,C), determine if there is a triple of nodes, one
from each partition, that form a clique.

Proposition 1. If Single-Source-Max-Flow with capacities in {1, n} on a directed graph with n nodes and
m edges can be solved in T (m,n) time, then Triangle detection on a graph with m edges can be solved in
T (O(m+ n log n), O(n)) time.

Proof. Given a Triangle detection instance (A,B,C), construct the following flow instance. First, create
another copy of the nodes of A, call it A′. For every edge between parts A and B, add a directed edge
from A to B, and similarly direct the edges from B to C. Then, replace the edges between A and C with
corresponding edges from C to A′. Add a layer X on O(log n) nodes. Connect a ∈ A to every node xi ∈ X
for which the ith bit in the integer a ∈ [n] is 1. Connect xi ∈ X to every node a′ ∈ A′ for which the ith bit
in the integer a ∈ [n] is 0. Set all the above capacities to n. Add a source node s and connect it to all the
nodes in A with capacity 1. The correctness of the reduction follows from the following simple claim: for a
node t = a′ ∈ A′, the max s, t-flow is n if a is in a triangle, and n− 1 otherwise. To see this, note that the
max flow from s to a′ is n iff there is a path from a to a′, and such path must go through B ∪C, and every
such path corresponds to a triangle. �

By incurring an overhead of n2 extra edges, we can get a reduction to the unit capacity case.

Proposition 2. If Single-Source-Max-Flow with unit capacities on a directed graph with n nodes and m
edges can be solved in T (m,n) time, then Triangle detection on a graph with m edges can be solved in
T (O(n2), O(n)) time.

Proof. In the previous proof, remove the X layer, and instead add an a directed edge from a1 to a′2 for any
a1 6= a2. Set the capacity of all the edges to 1 and the same claim still holds. �

One interesting corollary of the above reductions is that a combinatorial algorithm for Single-Source-Max-
Flow on dense unit capacity networks that runs in truly subcubic time would imply, via [73], a combinatorial
truly subcubic Boolean Matrix Multiplication algorithm.

15



A final simple modification to the above reductions is to augment the triangle detection instance with
edge weights, in order to solve the Minimum Weight Triangle problem (a problem equivalent to APSP under
subcubic reductions [73]). In the above reductions, we would add the weights as costs to the flow instance
and ask for the Single-Source min-cost-max-flow. This gives an APSP based lower bound for the min-cost
version.

Acknowledgement. We thank Søren Dahlgaard for his helpful comments.

References

[1] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences between
graph centrality problems, apsp and diameter. SODA, 2015.

[2] Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-sum conjecture. In ICALP (1), pages
1–12, 2013.

[3] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Algorithms - ESA
2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, pages
1–12, 2014.

[4] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to
algorithm design. SODA, 2015.

[5] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for
dynamic problems. FOCS, 2014.

[6] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of
sequences. In ICALP (1), pages 39–51, 2014.

[7] Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness of jumbled
indexing. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 114–125, 2014.

[8] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. In Proc. SODA,
2005.

[9] I. Baran, E.D. Demaine, and M. Pǎtraşcu. Subquadratic algorithms for 3sum. Algorithmica, 50(4):584–
596, 2008.

[10] Gill Barequet and Sariel Har-Peled. Some variants of polygonal containment and minimum hausdorff
distance undertranslation are 3SUM-hard. In Proc. SODA, pages 862–863, 1999.

[11] M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan. A new approach to incremental cycle
detection and related problems. CoRR, abs/1112.0784, 2011.

[12] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing triangles. In
Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, pages 223–234, 2014.

[13] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square - on the complexity of quadratic-
time solvable problems. CoRR, abs/1407.4972, 2014.

[14] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan
Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions, and X+Y. Algorithmica,
69(2):294–314, 2014.

16



[15] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless SETH fails. FOCS, 2014.

[16] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause width and clause
density for SAT. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20
July 2006, Prague, Czech Republic, pages 252–260, 2006.

[17] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of small
depth circuits. In Parameterized and Exact Computation, pages 75–85. Springer, 2009.

[18] T. M. Chan. Dynamic subgraph connectivity with geometric applications. SIAM J. Comput., 36(3):681–
694, 2006.

[19] T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dynamic connectivity: Connecting to networks and geometry.
In FOCS, pages 95–104, 2008.

[20] K. Chen, P. Hsu, and K. Chao. Approximate matching for run-length encoded strings is 3sum-hard. In
CPM, pages 168–179. Springer, 2009.

[21] Otfried Cheong, Alon Efrat, and Sariel Har-Peled. On finding a guard that sees most and a shop that
sells most. In Proc. SODA, pages 1098–1107, 2004.

[22] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network coding, and expander
graphs. SIAM Journal on Computing, 42(3):733–751, 2013.

[23] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua Teng.
Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 273–282, 2011.

[24] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases of perfect
matchings. In STOC, pages 301–310, 2013.

[25] Evgeny Dantsin and Alexander Wolpert. On moderately exponential time for SAT. In Proc. 13th
International Conference on Theory and Applications of Satisfiability Testing, pages 313–325, 2010.

[26] Mark de Berg, Marko de Groot, and Mark H. Overmars. Perfect binary space partitions. Computational
Geometry: Theory and Applications, 7(81):81–91, 1997.

[27] C. Demetrescu and G. F. Italiano. Fully dynamic transitive closure: Breaking through the o(n2) barrier.
In Proc. FOCS, volume 41, pages 381–389, 2000.

[28] R. Duan. New data structures for subgraph connectivity. In ICALP (1), pages 201–212, 2010.

[29] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominating set. Theor.
Comp. Sci., 326(1-3):57–67, 2004.

[30] J. Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM Journal on Com-
puting, 28(4):1198–1214, 1999.

[31] S. Even and Y. Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.

[32] D. Frigioni and G. F. Italiano. Dynamically switching vertices in planar graphs. Algorithmica, 28(1):76–
103, 2000.

[33] A. Gajentaan and M. Overmars. On a class of o(n2) problems in computational geometry. Computational
Geometry, 5(3):165–185, 1995.

17



[34] François Le Gall. Powers of tensors and fast matrix multiplication. CoRR, abs/1401.7714, 2014.

[35] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan. Incremental cycle detection, topological
ordering, and strong component maintenance. ACM Transactions on Algorithms, 8(1):3, 2012.

[36] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a directed graph.
J. Algorithms, 17(3):424–446, 1994.

[37] Ramesh Hariharan, Telikepalli Kavitha, Debmalya Panigrahi, and Anand Bhalgat. An õ(mn) gomory-hu
tree construction algorithm for unweighted graphs. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 605–614, 2007.

[38] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decremental algo-
rithms for single-source reachability and shortest paths on directed graphs. In Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 674–683, 2014.

[39] E. A. Hirsch. Two new upper bounds for SAT. In Proc. SODA, pages 521–530, 1998.

[40] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001.

[41] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J.
Comput. Syst. Sci., 63(4):512–530, 2001.

[42] G. F. Italiano. Finding paths and deleting edges in directed acyclic graphs. Inf. Process. Lett., 28(1):5–
11, 1988.

[43] Z. Jafargholi and E. Viola. 3sum, 3xor, triangles. Electronic Colloquium on Computational Complexity
(ECCC), 20:9, 2013.

[44] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. CoRR, abs/1311.3171, 2013.

[45] Allan Grønlund Jørgensen and Seth Pettie. Threesomes, degenerates, and love triangles. CoRR,
abs/1404.0799, 2014.

[46] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the
16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984, Washington, DC,
USA, pages 302–311, 1984.

[47] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time al-
gorithm for approximate max flow in undirected graphs, and its multicommodity generalizations. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 217–226, 2014.

[48] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 3sum hardness in (dynamic) data structures. CoRR,
abs/1407.6756, 2014.

[49] J. Lacki. Improved deterministic algorithms for decremental reachability and strongly connected com-
ponents. ACM Transactions on Algorithms, 9(3):27, 2013.

[50] Jakub Lacki, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Single source - all sinks
max flows in planar digraphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 599–608, 2012.

[51] Yin Tat Lee and Aaron Sidford. Following the path of least resistance : An õ(m sqrt(n)) algorithm for
the minimum cost flow problem. CoRR, abs/1312.6713, 2013.

[52] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on bounded
treewidth are probably optimal. In SODA, pages 777–789, 2011.

18



[53] J. Erickson M. Soss and M. H. Overmars. Preprocessing chains for fast dihedral rotations is hard or
even impossible. Computational Geometry: Theory and Applications, 26(3):235–246, 2002.

[54] Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and back.
In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 253–262, 2013.

[55] Yurii Nesterov and A. S. Nemirovskii. An interior-point method for generalized linear-fractional pro-
gramming. Math. Program., 69:177–204, 1995.

[56] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-SAT. J.
ACM, 52(3):337–364, 2005.

[57] M. Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In STOC, pages 603–610, 2010.

[58] M. Pǎtraşcu and E. D. Demaine. Logarithmic lower bounds in the cell-probe model. SIAM J. Comput.,
35(4):932–963, 2006.

[59] M. Pǎtraşcu and R. Williams. On the possibility of faster SAT algorithms. In Proc. SODA, pages
1065–1075, 2010.

[60] L. Roditty. Decremental maintenance of strongly connected components. In SODA, pages 1143–1150,
2013.

[61] L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter and radius
of sparse graphs. In Proceedings of the 45th annual ACM symposium on Symposium on theory of
computing, STOC ’13, pages 515–524, New York, NY, USA, 2013. ACM.

[62] L. Roditty and U. Zwick. Improved dynamic reachability algorithms for directed graphs. In FOCS,
pages 679–689, 2002.

[63] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In ESA, pages 580–591, 2004.

[64] P. Sankowski. Dynamic transitive closure via dynamic matrix inverse. In Proc. FOCS, volume 45, pages
509–517, 2004.

[65] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proc. FOCS,
pages 410–414, 1999.

[66] Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 263–
269, 2013.

[67] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, Chicago, IL, USA, June 13-16, 2004, pages 81–90, 2004.

[68] M. Thorup. Near-optimal fully-dynamic graph connectivity. In STOC, pages 343–350, 2000.

[69] V. Vassilevska and R. Williams. Finding, minimizing, and counting weighted subgraphs. In Proc. STOC,
pages 455–464, 2009.

[70] R. Williams. A new algorithm for optimal constraint satisfaction and its implications. In Proc. ICALP,
pages 1227–1237, 2004.

[71] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 664–673, 2014.

19



[72] Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In SODA, pages
1867–1877, 2014.

[73] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix and triangle
problems. In Proc. FOCS, pages 645–654, 2010.

[74] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 887–898, 2012.

A Background

Conditional lower bounds. Here, we give a brief survey of the three conjectures and the known lower
bounds.

The first, and most prominent example of this approach concerns the 3-SUM problem: given n integers
in {−O(n3), . . . , O(n3)}, do three of them sum to zero? A simple algorithm solves the problem in O(n2)
time, and only logarithmic improvements are known, by Baran, Demaine, and Pǎtraşcu [9] and more recently
by Grønlund and Pettie [45] for the more general problem on real numbers. The following widely-believed
conjecture states that no nε factor improvements are possible for 3-SUM.

The 3-SUM Conjecture: There is no algorithm that can solve 3-SUM on n numbers in O(n2−ε) time
for some ε > 0.

Since the seminal work of Gajentaan and Overmars [33], there have been many papers proving the
hardness of computational geometry problems, based on the 3SUM conjecture, e.g. [26, 53, 30, 8, 21, 10].
More recently, the 3-SUM Conjecture has been used in surprising ways to show polynomial lower bounds
for combinatorial problems in dynamic algorithms [57, 5, 48], Graph algorithms [57, 43, 69, 2], and pattern-
matching [20, 6, 7].

The second example of this approach is the work on subcubic-equivalences with the All-Pairs-Shortest-
Paths (APSP) problem: given an n node graph with edge weights in {−nc, . . . , nc}, compute the distances
between all pairs of nodes. Despite many attempts, only sub-polynomial improvements are known over the
classic O(n3) algorithms for the problem. The current best is the recent n3/2Ω(

√
logn) of Williams [71]. A

widely-believed conjecture in graph algorithms states that n3−o(1) time is required to solve APSP.

The APSP Conjecture: There is no algorithm that can solve APSP on n node graphs in O(n3−ε) time
for some ε > 0.

A long list of problems are known to be subcubic-equivalent to APSP in the sense that if any of them
can be solved in O(n3−ε) time, then all of them can [73, 14, 1]. In addition, many conditional lower bounds
have been shown under the APSP conjecture [69, 2, 63, 5].

The third example concerns the exact complexity of CNF-SAT: given a CNF formula on n variables and
m clauses, is it satisfiable? The best upper bounds remain of the form 2n−o(n)poly (m) (e.g. [39, 56, 65, 4]).
SETH of Impagliazzo, Paturi and Zane [40, 41] states that better algorithms do not exist.

The Strong Exponential Time Hypothesis (SETH): There is no algorithm that can solve CNF-SAT
on n variables and m clauses in 2(1−ε)npoly (m) time for some ε > 0.

Recently, many surprising SETH-based lower bounds have been shown in several different areas like
graph algorithms [59, 61, 13, 1, 5], pattern matching [6, 72, 70], computational geometry [15], and exact
algorithms [17, 25, 52, 24]. Moreover, it is known that refuting SETH implies new circuit lower bounds [44].

20



Dynamic algorithms. A very active area of research concerns finding efficient algorithms that can main-
tain certain properties of a dynamic graph - i.e. a graph that undergoes a sequence of insertions and deletions
of nodes or edges. Algorithms with low amortized update and query times are desirable. The classic connec-
tivity problem in undirected graphs has an algorithm with O(log n log3 log n) amortized update time [68], and
a near-matching Ω(log n) unconditional, cell-probe, lower bound [58]. For many other classic problems, the
best known algorithms require an O(nc) amortized update time for some c > 0, while no unconditional lower
bounds beyond Ω(log n) are known. Some examples include maintaining the number of strongly connected
components (#SCC) [35, 11, 62, 49, 60, 38], the number of nodes reachable from a fixed source node (#SSR)
[64, 27, 31, 42] in a directed graph under edge updates. Another example is to maintain the number of
nodes connected to a fixed source in an undirected graph under node updates (#SS-Subgraph-Connectivity)
[32, 18, 19, 28]. Trivial O(m + n) update time algorithms for these problems recompute the answer after
every update, and many faster algorithms have been proposed in recent years.

In search of better understanding of the complexity of these problems, Pǎtraşcu [57] proposed to prove
lower bounds conditioned on the 3-SUM conjecture. After a sequence of reductions from 3-SUM by Pǎtraşcu
[57] that was later optimized by Abboud and Vassilevska [5] and by Kopelowitz, Pettie and Porat [48], we
can conclude that the above problems require n2/3−o(1) amortized update if the 3-SUM conjecture holds.
This lower bound does not match the known upper bounds, and in fact, Abboud and Vassilevska [5] show
that there is a higher n1−o(1) lower bound under SETH. However, as explained by the later works, obtaining
a higher lower bound from the 3-SUM conjecture using Pǎtraşcu’s approach seems impossible, due to certain
inefficiencies in some of the steps in the reduction, and obtaining a higher lower bound from 3-SUM has
remained an open question. No lower bound for these problems was known under the APSP conjecture.

In Section 4, we give simple reductions from the Triangle-Collection to these classic dynamic problems
to obtain linear n1−o(1) lower bounds on the amortized update times, under our very weak Conjecture 1.
The tightness of our reduction from 3-SUM to the purely-combinatorial Triangle-Collection problem allows
us to overcome the n2/3−o(1) barrier for lower bounds under the 3-SUM conjecture.

We also add the dynamic Max-Flow problem to the list: what is the maximum flow from a source s to a
target t in an n-node directed graph with capacities in [n] that undergoes edge insertions and deletions.

21


