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Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer graphics, computer vision,
molecular biology, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can
be constructed and compared quickly, while still discriminating between similar and dissimilar shapes.

In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal
models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring
global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the
comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration,
feature correspondence, or model fitting.

We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance between two
random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus airplanes) in a
moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications,
and model degeneracies. They can be evaluated quickly, and thus the proposed method could be applied as a pre-classifier in a
complete shape-based retrieval or analysis system concerned with finding similar whole objects. The paper describes our early
experiences using shape distributions for object classification and for interactive web-based retrieval of 3D models.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]: Design Methodology—Classifier design and evaluation

General Terms: Reliability, Experimentation

Additional Key Words and Phrases: Shape analysis, shape representation

1. INTRODUCTION

Determining the similarity between 3D shapes is a fundamental task in shape-based recognition, re-
trieval, clustering, and classification. Its main applications have traditionally been in computer vision,
mechanical engineering, and molecular biology. However, due to three recent developments, we believe
that 3D model databases will become ubiquitous, and the applications of 3D shape analysis and match-
ing will expand into a wide variety of other fields. First, improved modeling tools and scanning devices
are making acquisition of 3D models easier and less expensive, creating a large supply of publically avail-
able 3D data sets (e.g., the Protein Data Bank [Holm and Sander 1998]). Second, the World Wide Web is
enabling access to 3D models constructed by people all over the world, providing a mechanism for wide-
spread distribution of high quality 3D models (e.g., avalon.viewpoint.com). Finally, 3D graphics hard-
ware and CPUs have become fast enough and cheap enough that 3D data can be processed and displayed
quickly on desktop computers, leading to a high demand for 3D models from a wide range of sources.

Unfortunately, since most 3D file formats (VRML, 3D Studio, etc.) have been designed for visualiza-
tion, they contain only geometric and appearance attributes, and usually lack semantic information
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that would facilitate automatic matching. Although it is possible to include meaningful structure and
semantic tags in some 3D file formats (the “layer” field associated with entities in AutoCad models
is a simple example), the vast majority of 3D objects available via the World Wide Web will not have
them, and there are few standards regarding their use. In general, 3D models will be acquired with
scanning devices, or output from geometric manipulation tools (file format conversion programs), and
thus they will have only geometric and appearance information, usually completely devoid of structure
or semantic information. Automatic shape-based matching algorithms will be useful for recognition,
retrieval, clustering, and classification of 3D models in such databases.

Databases of 3D models have several new and interesting characteristics that significantly affect
shape-based matching algorithms. Unlike images and range scans, 3D models do not depend on the
configuration of cameras, light sources, or surrounding objects (e.g., mirrors). As a result, they do not
contain reflections, shadows, occlusions, projections, or partial objects. This greatly simplifies finding
matches between objects of the same type. For example, it is plausible to expect that the 3D model of a
horse contains exactly four legs of roughly equal size. In contrast, any 2D image of the same horse may
contain fewer than four legs (if some of the legs are occluded by tall grass), or it may contain “extra
legs” appearing as the result of shadows on the barn and/or reflections in a nearby pond, or some of
the legs may appear smaller than others due to perspective distortions. These problems are vexing for
traditional computer vision applications, but generally absent from 3D model matching.

In other respects, representing and processing 3D models is more complicated than for sampled mul-
timedia data. The main difficulty is that 3D surfaces rarely have simple parameterizations. Since
3D surfaces can have arbitrary topologies, many useful methods for analyzing other media (e.g.,
Fourier analysis) have no obvious analogs for 3D surface models. Moreover, the dimensionality is
higher, which makes searches for pose registration, feature correspondences, and model parameters
more difficult, while the likelihood of model degeneracies is higher. In particular, most 3D models
in large databases, such as the World Wide Web, are represented by “polygon soups”—unorganized
and degenerate sets of polygons. They seldom have any topology or solid modeling information; they
rarely are manifold; and most are not even self-consistent. We conjecture that almost every 3D com-
puter graphics model available today contains missing, wrongly oriented, intersecting, disjoint, and/or
overlapping polygons. As a few classic examples, the Utah teapot is missing its bottom and rim,
and the Stanford Bunny [Stanford University Graphic Laboratory 1996] has several holes along its
base. The problem with these degenerate representations is that most interesting geometric features
and shape signatures are difficult to compute, and many others are ill-defined (e.g., what is the vol-
ume of a teapot with no bottom?). Meanwhile, fixing the degeneracies in such 3D models to form
a consistent solid region and manifold surface is a difficult problem [Barequet and Kumar 1997;
Gueziec et al. 1998; Murali and Funkhouser 1997], often requiring human intervention to resolve
ambiguities.

In this paper, we describe and analyze a method for computing 3D shape signatures and dissimi-
larity measures for arbitrary objects described by possibly degenerate 3D polygonal models. The key
idea is to represent the signature of an object as a shape distribution sampled from a shape func-
tion measuring global geometric properties of the object. The primary motivation for this approach is
that the shape matching problem is reduced to the comparison of two probability distributions, which
is a relatively simple problem when compared to the more difficult problems encountered by tradi-
tional shape matching methods, such as pose registration, parameterization, feature correspondence,
and model fitting. The challenges of this approach are to select discriminating shape functions, to de-
velop efficient methods for sampling them, and to robustly compute the dissimilarity of probability
distributions. This paper presents our initial steps to address these issues. For each issue, we describe
several options and present experimental evaluation of their relative performance. Overall, we find
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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that the proposed method is not only fast and simple to implement, but it also provides useful discrim-
ination of 3D shapes and thus is suitable as a pre-classifier for a recognition or similarity retrieval
system.

The remainder of the paper is organized as follows. The next section contains a summary of re-
lated work. An overview of the proposed approach appears in Section 3, while detailed descriptions of
issues and proposed solutions for implementing our approach appear in Section 4. Section 5 presents
results of experiments aimed at evaluating the robustness and discrimination of shape distributions.
Section 6 describes our initial efforts in building a 3D search engine based on shape distributions.
Finally, Section 7 contains a summary of our experiences and proposes topics for future work.

2. RELATED WORK

The problem of determining the similarity of two shapes has been well-studied in several fields. For a
broad introduction to shape matching methods, please refer to any of several survey papers [Alt and
Guibas 1996; Arman and Aggarwal 1993; Besl and Jain 1985; Loncaric 1998; Pope 1994; Veltkamp
and Hagedoorn 1999]. To briefly review, prior matching methods can be classified according to their
representations of shape: 2D contours, 3D surfaces, 3D volumes, structural models, or statistics.

The vast majority of work in shape matching has focused on characterizing similarity between ob-
jects in 2D images (e.g., Chang and Smith [1995]; Flickner et al. [1995]; Jacobs et al. [1995]; Ogle and
Stonebraker [1995]). Unfortunately, most 2D methods do not extend directly to 3D model matching. The
main problem is boundary parameterization. Although the 1D boundary contours of 2D shapes have a
natural arc length parameterization, 3D surfaces of arbitrary genus do not. As a result, common repre-
sentations of 2D contours for shape matching, such as Fourier descriptors [Arbter et al. 1990], turning
functions [Arkin et al. 1991], bending energy functions [Young 1974], arch height functions [Lin et al.
1992], size functions [Uras and Verri 1994, 1997], and order structures [Carlsson 1999] have no direct
analogs for 3D models. Similarly, computationally efficient methods based on dynamic programming
(e.g., Tappert [1982] and Tsai and Yu [1985]) cannot be applied to 3D objects. Another problem is that
the dimensionality of 3D data is higher, which makes registration, finding feature correspondences,
and fitting model parameters more expensive. As a result, methods that match shapes using defor-
mations [Amit et al. 1991; Jain et al. 1996; Pentland and Sclaroff 1991; Sclaroff and Pentland 1995;
Terzopoulos and Metaxas 1991] are far more difficult in 3D.

Shape matching has also been well-studied for 3D objects. For instance, representations for regis-
tering and matching 3D surfaces include extended Gaussian images [Horn 1984], spherical attribute
images [Delingette et al. 1992, 1993], harmonic shape images [Zhang and Hebert 1999], and spin images
[Johnson and Hebert 1999]. Unfortunately, these previous methods usually assume that a topologically
valid surface mesh or an explicit volume is available for every object. In addition, volumetric dissimi-
larity measures based on wavelets [Gain and Scott 1999] or earth mover’s distance [Rubner et al. 1998]
usually rely upon a priori registration of objects’ coordinate systems, which is difficult to achieve auto-
matically and robustly. Geometric hashing [Lamdam and Wolfson 1988] is a potential solution, but it
requires a large amount of storage for complex models.

Another popular approach to shape analysis and matching is based on comparing high-level repre-
sentations of shape. For instance, model-based approaches first decompose a 3D object into a set of
features (or parts), and then compute a dissimilarity measure between objects based on the differences
between their features and/or their spatial relationships. Example representations of this type include
generalized cylinders [Binford 1971], superquadrics [Solina and Bajcsy 1990], geons [Wu and Levine
1994], deformable regions [Basri et al. 1998], shock graphs [Siddiqi et al. 1998], medial axes [Bardinet
et al. 2000], and skeletons [Bloomenthal and Lim 1999; Storti et al. 1997]. These methods work best
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when 3D models can be segmented into a canonical set of features naturally and correspondences can be
found between features robustly. Unfortunately, these tasks are difficult and not always well-defined for
arbitrary 3D polygonal models (e.g., what is the canonical skeleton for an unconnected set of polygons?).
Moreover, feature detection and segmentation algorithms tend to be sensitive to small perturbations to
the model, placing undue burden on subsequent feature correspondence and dissimilarity computation
steps. Finally, the combinatorial complexity of finding correspondences in large discrete models usually
leads to long computation times and/or large storage requirements.

Finally, shapes have been compared on the basis of their statistical properties. The simplest approach
of this type is to evaluate distances between feature vectors [Duda et al. 2001] in a multidimensional
space where the axes encode global geometric properties, such as circularity, eccentricity, or algebraic
moments [Prokop and Reeves 1992; Taubin and Cooper 1992]. Other methods have compared discrete
histograms of geometric statistics. For example, Aherne et al. [1997]; Ashbrook et al. [1995a, 1995b,
1995c]; Evans et al. [1992, 1993]; Riocreux et al. [1994]; Thacker et al. [1995]; Huet and Hancock
[1996], and Ikeuchi et al. [1996] have all represented shapes in 2D images by histograms of angles
and distances between pairs of 2D line segments. Belongie et al. [2001] and Mori et al. [2001] have
represented 2D shapes by the distributions of points on their boundaries with respect to multiple
reference frames. For 3D shapes, Ankerst et al. [1999] have used shape histograms decomposing shells
and sectors around a model’s centroid. Besl [1995] has considered histograms of the crease angle for all
edges in a 3D triangular mesh. Besl’s method is the most similar to our approach. However, it works
only for manifold meshes, is sensitive to cracks in the models and small perturbations to the vertices,
and it is not invariant under changes to mesh tessellation. Moreover, the histogram of crease angles
does not always match our intuitive notion of rigid shape. For example, adding any extra arm to a
human body results in the same change to a crease angle histogram, no matter whether the new arm
extends from the body’s shoulder or the top of its head.

To summarize, many previous approaches have had difficulty with 3D polygon soups because they
invariably require a solution to at least one of the following difficult problems: reconstruction, parame-
terization, registration, or correspondence. The motivation behind our work is to develop a fast, simple,
and robust method for matching 3D polygonal models without solving these problems.

3. OVERVIEW OF APPROACH

Our approach is to represent the shape signature for a 3D model as a probability distribution sampled
from a shape function measuring geometric properties of the 3D model. We call this generalization of
geometric histograms a shape distribution. For instance, one example shape distribution, which we call
D2, represents the distribution of Euclidean distances between pairs of randomly selected points on
the surface of a 3D model. While our hypothesis is that the distribution describes the overall shape
of the represented object, samples from this distribution can be computed quickly and easily. Once
we have computed the shape distributions for two objects, the dissimilarity between the objects can
be evaluated using any metric that measures distance between distributions (e.g., LN norm), possibly
with a normalization step for matching scales.

The key idea is to transform an arbitrary 3D model into a parameterized function that can easily
be compared with others (see Figure 1). In our case, the domain of the shape function provides the
parameterization (e.g., the D2 shape distribution is a 1D function parameterized by distance), and
random sampling provides the transformation.

The primary advantage of this approach is its simplicity. The shape matching problem is reduced
to sampling, normalization, and comparison of probability distributions, which are relatively simple
tasks when compared to prior methods that required reconstructing a solid object or manifold surface
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 1. Shape distributions facilitate shape matching because they represent 3D models as functions with a common
parameterization.

from degenerate 3D data, registering pose transformations, finding feature correspondences, or fitting
high-level models. Our approach works directly on the original polygons of a 3D model, making few
assumptions about their organization, and thus it can be used for similarity queries in a wide variety
of databases, including ones containing degenerate 3D models, such as those currently available on the
World Wide Web.

In spite of its simplicity, we expect that our approach is useful for discriminating whole objects with
different gross shapes (results of experiments testing this hypothesis are presented in Section 5). This
hypothesis satisfies several properties desirable for a shape matching method:

• Invariance: shape distributions have all the transformation invariance properties of the sampled
shape function. For instance, the D2 shape function yields invariance under rigid motions and mirror
imaging. In this case, invariance under scaling can be added by normalization of shape distributions
before comparing them and/or by factoring out scale during the comparison. Other shape functions
that measure angles or ratios between lengths are invariant to all similarity transformations.
• Robustness: random sampling ensures that shape distributions are insensitive to small perturba-

tions. Intuitively, since every point in a 3D model contributes equally to the shape distribution, the
magnitude of changes to the shape distribution are related to the magnitude of the changes to the 3D
model. For example, if a small percentage of a 3D model is perturbed (e.g., by adding random noise,
by adding a small bump onto a surface, or by adding small objects arbitrarily throughout space),
then a distribution of random samples from the model must also change by a small percentage. This
property provides insensitivity to noise, blur, cracks, and dust in the input 3D models. We conjecture
that the distributions for most global shape functions based on distances and/or angles also vary
continuously and monotonically for local shape changes.
• Metric: the dissimilarity measure produced by our approach adopts the properties of the norm we use

to compare shape distributions. In particular, if the norm is a metric, so is our dissimilarity measure.
This property holds for most common norms, including LN norms, Earth Mover’s Distance, and so
forth.
• Efficiency: construction of the shape distributions for a database of 3D models is generally fast and

efficient. For instance, the complexity of taking S samples of the D2 shape function from a 3D model
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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with N triangles is Slog(N ). The resulting shape distributions can be concisely approximated by
functions with constant complexity storage and comparison costs.
• Generality: shape distributions are independent of the representation, topology, or application do-

main of the sampled 3D models. As a result, our shape similarity method can be applied equally well
to databases with 3D models stored as polygon soup, meshes, constructive solid geometry, voxels, or
any other geometric representation as long as a suitable shape function can be computed from each
representation. Moreover, a single database (such as the World Wide Web) can contain 3D models
in a variety of different representations and file formats. Finally, shape distributions can be used
in many different application domains for comparison of natural, deformable shapes (e.g., animals)
and/or man-made objects (e.g., machined parts).

The interesting issues to be addressed in implementing the proposed shape matching approach are:
1) to select discriminating shape functions, 2) to efficiently construct shape functions for each 3D model,
and 3) to compute a dissimilarity measure for pairs of distributions.

The following sections describe our initial efforts to address these issues. The goal of our study
is to investigate whether shape distributions can be used to produce a dissimilarity measure with the
desirable properties listed above, while providing enough discrimination between similar and dissimilar
shapes to be useful for a particular application. We consider this work to be a preliminary investigation,
thus we consider only simple and general-purpose methods to address each issue in Section 4. We
evaluate them experimentally for a database of 3D polygonal models downloaded from the World Wide
Web in Section 5, and we describe a prototype search engine for retrieval of 3D models based on
similarity to interactively sketched queries in Section 6.

4. METHOD

In this section, we provide a detailed description of the methods we use to build shape distributions
from 3D polygonal models and compute a measure of their dissimilarities.

4.1 Selecting a Shape Function

The first and most interesting issue is to select a function whose distribution provides a good signature
for the shape of a 3D polygonal model. Ideally, the distribution should be invariant under similarity
transformations, and it should be insensitive to noise, cracks, tessellation, and insertion/removal of
small polygons.

In general, any function could be sampled to form a shape distribution, including ones that incorporate
domain-specific knowledge, visibility information (e.g., the distance between random but mutually visi-
ble points), and/or surface attributes (e.g., color, texture coordinates, normals and curvature). However,
for the sake of clarity, we focus on a small set of shape functions based on geometric measurements (e.g.,
angles, distances, areas, and volumes). Specifically, in our initial investigation, we have experimented
with the following shape functions (see Figure 2):

• A3: Measures the angle between three random points on the surface of a 3D model.
• D1: Measures the distance between a fixed point and one random point on the surface. We use the

centroid of the boundary of the model as the fixed point.
• D2: Measures the distance between two random points on the surface.
• D3: Measures the square root of the area of the triangle between three random points on the surface.
• D4: Measures the cube root of the volume of the tetrahedron between four random points on the

surface.
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Fig. 2. Five simple shape functions based on angles (A3), lengths (D1 and D2), areas (D3), and volumes (D4).

Fig. 3. Example D2 shape distributions. In each plot, the horizontal axis represents distance, and the vertical axis represents
the probability of that distance between two points on the surface.

These five shape functions were chosen mostly for their simplicity and invariances. In particular,
they are quick to compute, easy to understand, and produce distributions that are invariant to rigid
motions (translations and rotations). They are invariant to tessellation of the 3D polygonal model,
since points are selected randomly from the surface. They are insensitive to small perturbations due
to noise, cracks, and insertion/removal of polygons, since sampling is area weighted. In addition, the
A3 shape function is invariant to scale, while the others have to be normalized to enable comparisons.
Finally, the D2, D3, and D4 shape functions provide a nice comparison of 1D, 2D, and 3D geometric
measurements.

In spite of their simplicity, we find these general-purpose shape functions to be fairly distinguishing
as signatures for 3D shape, as significant changes to the rigid structures in the 3D model affect the
geometric relationships between points on their surfaces. For instance, consider the D2 shape function,
whose distributions are shown for a few canonical shapes in Figure 3(a–f). Note how each distribution is
distinctive. Note also how continuous changes to the 3D model affect the D2 distributions. For instance,
Figure 3(g) shows the distance distributions for ellipsoids of different semi-axis lengths (a, b, c) overlaid
on the same plot. The left-most curve represents the D2 distribution for a line segment—ellipsoid
(0, 0, 1); the right-most curve represents the D2 distribution for a sphere—ellipsoid (1, 1, 1); and, the
remaining curves show the D2 distribution for ellipsoids in between—ellipsoid (r, r, 1) with 0 < r < 1.
Note how the change from sphere to line segment is continuous. Similarly, Figure 3(h–i) show the D2
distributions of two unit spheres as they move 0, 1, 2, 3, and 4 units apart. In each distribution, the
first hump resembles the linear distribution of a sphere, while the second hump is the cross-term of
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distances between the two spheres. As the spheres move farther apart, the D2 distribution changes
continuously.

4.2 Constructing Shape Distributions

Having chosen a shape function, the next issue is to compute and store a representation of its dis-
tribution. Analytic calculation of the distribution is feasible only for certain combinations of shape
functions and models (e.g., the D2 function for a sphere or line). So, in general, we employ stochastic
methods. Specifically, we evaluate N samples from the shape distribution and construct a histogram by
counting how many samples fall into each of B fixed sized bins. From the histogram, we reconstruct a
piecewise linear function with V (≤ B) equally spaced vertices, which forms our representation for the
shape distribution. We compute the shape distribution once for each model and store it as a sequence
of V integers.

One issue we must be concerned with is sampling density. The more samples we take, the more accu-
rately and precisely we can reconstruct the shape distribution. On the other hand, the time to sample
a shape distribution is linearly proportional to the number of samples, so there is an accuracy/time
tradeoff in the choice of N . Similarly, a larger number of vertices yields higher resolution distribu-
tions, while increasing the storage and comparison costs of the shape signature. In our experiments, we
have chosen to err on the side of robustness, taking a large number of samples for each histogram bin.
Empirically, we have found that using N = 10242 samples, B= 1024 bins, and V = 64 vertices yields
shape distributions with low enough variance and high enough resolution to be useful for our initial
experiments. Adaptive sampling methods could be used in future work to make robust construction of
shape distributions more efficient.

A second issue is sample generation. Although it would be simplest to sample vertices of the 3D
model directly, the resulting shape distributions would be biased and sensitive to changes in tessellation.
Instead, our shape functions are sampled from random points on the surface of a 3D model. Our method
for generating unbiased random points with respect to the surface area of a polygonal model proceeds as
follows. First, we iterate through all polygons, splitting them into triangles as necessary. Then, for each
triangle, we compute its area and store it in an array along with the cumulative area of triangles visited
so far. Next, we select a triangle with probability proportional to its area by generating a random number
between 0 and the total cumulative area and performing a binary search on the array of cumulative
areas. For each selected triangle with vertices (A, B, C), we construct a point on its surface by generating
two random numbers, r1 and r2, between 0 and 1, and evaluating the following equation:

P = (1−√r1) A+√r1(1− r2) B +√r1r2 C (1)

Intuitively,
√

r1 sets the percentage from vertex A to the opposing edge, while r2 represents the per-
centage along that edge (see Figure 4). Taking the square-root of r1 gives a uniform random point with
respect to surface area.

4.3 Comparing Shape Distributions

Having constructed the shape distributions for two 3D models, we are left with the task of comparing
them to produce a dissimilarity measure. There are many standard ways of comparing two functions f
and g representing probability distributions [Puzicha et al. 1999]. Examples include the Minkowski LN
norms, Kolmogorov-Smirnov distance, Kullback-Leibler divergence distances [Kullback 1968], match
distances [Shen and Wong 1983; Werman et al. 1985], earth mover’s distance [Rubner et al. 1998],
and Bhattacharyya distance [Bhattacharyya 1943]. Other methods, perhaps based on 2D curve match-
ing [Alt and Guibas 1996; Veltkamp and Hagedoorn 1999], could also be used.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 4. Sampling a random point in a triangle.

Fig. 5. Comparison of shape distributions can be performed by computing the LN norm of the PDF (left) or CDF (right) repre-
sentations. In this example, areas of the gray regions in each plot represent the corresponding L1 norm.

In our implementation, we have experimented with eight simple dissimilarity measures. The first
two are the χ2 statistic and the Bhattacharyya distance, which are commonly used for comparing
binned data. The remaining six are Minkowski LN norms of the probability density functions (pdfs)
and cumulative distribution functions (cdfs) for N = 1, 2,∞ (see Figure 5).1 The dissimilarity measures
are computed as follows, assuming f and g represent pdfs for two models, while f̂ and ĝ represent
the corresponding cdfs that is, f̂ (x) = ∫ x

−∞ f :

• χ2: D( f , g ) = ∫ ( f −g )2

f +g .

• Bhattacharyya: D( f , g ) = 1− ∫ √ f g .
• PDF LN : Minkowski LN norm of the pdf: D( f , g ) = (

∫ | f − g |N )1/N .
• CDF LN : Minkowski LN norm of the cdf: D( f , g ) = (

∫ | f̂ − ĝ |N )1/N .

Since each shape distribution is represented as a piecewise linear function, analytic computation of
these norms can be done efficiently in time proportional to the number of vertices used to store the
distributions.

For certain shape functions, we must add a normalization step to the comparison process to account
for differences in scale. So far, we have investigated three methods for normalization (see Figure 6):
1) align the maximum sample values, 2) align the mean sample values (or similarly the median), and
3) search for the scale that produces the minimal dissimilarity measure during each comparison. The
first two of these can be evaluated analytically, and thus are very fast and they can be applied on a per
model basis prior to comparison. However, they may not produce the minimal dissimilarity measures
due to mismatching scales. The third method performs an optimization procedure during each pair-
wise distribution comparison. Specifically, if f and g represent shape distributions for two models, the

1The cdf L1 and the cdf L∞ norms are the L1 earth mover’s [Rubner et al. 1998] and the Kolmogorov-Smirnov distances,
respectively.
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Fig. 6. Shape distributions can be normalized for scale using the maximum sample value (left), the mean (middle), or by
searching for the best scale factor during comparison (right).

minimal dissimilarity measure with normalization is defined as:

min
s

D( f (x), sg (sx)) (2)

We have implemented a simple method to perform the search over s. First, we scale our distributions
so that the mean sample in each distribution has value 1. Then we evaluate D( f (x), sg (sx)) for values
of log s from −10 to 10, in 100 equally spaced intervals. We return the minimum among the results as
the dissimilarity measure for the normalized shape distributions.

5. EXPERIMENTAL RESULTS

The methods described in the preceding sections have been implemented in C++ and incorporated
into a shape matching system that runs on Silicon Graphics and PC/Windows computers. We have
integrated them into a shape-based classifier (Section 5.3) and an interactive search engine (Section 6).

In order to test the effectiveness of the proposed methods, we executed a series of shape match-
ing experiments with a database of 3D models downloaded from a variety of sites on the World Wide
Web. The models comprised sets of independent polygons, without structure, adjacency information,
or registered coordinate systems. The models contained anywhere from 20 to 186,000 polygons, with
the average model containing around 7,000 polygons. Very few of the models formed a single manifold
surface or even a well-defined solid region. Instead, they almost all contained cracks, self-intersections,
missing polygons, one-sided surfaces, and/or double surfaces—none of which caused significant arti-
facts during rendering with a z-buffer, but all of which are problematic for most 3D shape matching
algorithms. The experiments were run on a PC with a 400 MHz Pentium II processor and 256MB of
memory. In our initial experiments, we used the D2 shape function, the MEAN normalization method,
and the PDF L1 norm for computing our dissimilarity measure.

5.1 Robustness Results

In our first experiment, we tested the robustness of our dissimilarity measure to transformations and
perturbations of the 3D models. Specifically, we chose ten representative 3D models (shown in Figure 7),
and applied eight transformations to each of them. The resulting database had nine versions of each
model (the original and eight transformed variants), making 90 models in all. The transformations
were as follows:

• Scale: Grow by a factor of 10 in every dimension.
• Anisotropic scale: Grow by 5% in the Y dimension and 10% in the Z dimension.
• Rotate: Rotate by 45 degrees around the X axis, then the Y axis, then the Z axis.
• Mirror: Mirror over the YZ plane, then over the XZ plane, then over the XY plane.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 7. Images of the ten 3D models used in our initial robustness experiments.

Fig. 8. Car model after (a) perturbing vertices by 1%, or (b) deleting 5% of polygons.

• Shear: Grow the Y and Z dimensions by 5% and 10% of the X dimension, respectively.
• Noise: Perturb each vertex randomly by 1% of the longest length of the model’s bounding box.

As vertices were not shared by adjacent polygons, this transformation introduced thin cracks (see
Figure 8(a)).
• Delete: Randomly remove 5% of the polygons (note the holes in the bumper and windshield in

Figure 8(b)).
• Insert: Randomly insert copies of 5% of the polygons.

We tested the robustness of our sampling method by generating the D2 shape distribution for each
model. The resulting shape distributions for all 90 models are plotted in Figure 9 (scaled to align their
mean values). Note that only ten distinct curves are apparent in the plot. This is because each “thick”
curve appears as the result of seven nearly overlapping shape distributions computed for different
variants of the same model. For instance, the curve containing the tall spike in the middle is drawn
seven times, once for each variant of the mug model. The results of this experiment demonstrate our
sampling method’s repeatability and confirm its robustness to similarity transformations, noise, and
small cracks and holes.
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Fig. 9. D2 shape distributions for seven variants of ten models.

Fig. 10. D2 shape distributions for tessellations of two models.

We further investigated the robustness of our method by testing it with different polygon tessellations
of two 3D shapes. We used the Simplification Envelopes software provided by Cohen et al. [1996] to pro-
duce 8 versions of the Stanford Bunny [Stanford University Graphics Laboratory 1996] ranging from
70,000 down to 600 triangles, and 6 versions of a sphere ranging from 200 down to 28 triangles. Then,
we constructed D2 shape distributions for each of these versions. The resulting 14 curves are shown in
Figure 10. Note that the shape distributions vary slightly from original models to the simplified ver-
sions, but not significantly when compared to differences between the original models. This experiment
corroborates our expectation that shape distributions are insensitive to changing tessellation and, more
specifically, stable under model simplification.

As a final step in this experiment, we investigated the ability of our shape matching method to dis-
criminate among classes of shapes in this simple database. Specifically, we computed our dissimilarity
measure for all pairs of the 90 shape distributions, using the the mean values for normalization and the
pdf L1 norm for comparison. The resulting dissimilarity measures are shown as a matrix in Figure 11.
In this visualization of the matrix, the lightness of each element (i, j ) is proportional to the magnitude
of the computed dissimilarity between models i and j . That is, each row and column represent the dis-
similarity measures for a single model when compared to all other models in the database (the matrix is
symmetric). Darker elements represent better matches, while lighter elements indicate worse matches.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 11. Similarity matrix for nine variants of ten 3D models. Lightness indicates the dissimilarity between models.

The ordering of the classes is alphabetical so one should not expect any particular darkness pattern
except the clearly visible 9×9 blocks of matrix elements with indistinguishable colors. This pattern
demonstrates the robustness of our distribution comparison method, as all variants of the same model
produce almost the same dissimilarity measure when compared to all variants of every other model.
Moreover, note the darker blocks of 9×9 matrix elements along the main diagonal. This pattern results
from the fact that all 9 variants of every shape match each other better than they match any other
shape. Accordingly, for this simple database, our method could be used to assign all 90 models perfectly
to one of the 10 classes using a nearest neighbor classifier.

5.2 Similarity Results

These initial results are encouraging, but a more interesting and challenging test is to determine how
well our method can match classes of shapes in a larger and more diverse database. To investigate this
question, we executed a series of tests on a database of 133 models retrieved from the World Wide Web
and grouped qualitatively (by function more than by shape) into 25 classes by a third party. Figure 13
summarizes the types and sizes of these classes.

There are several noteworthy characteristics of this test database. First, note that each class contains
an arbitrary number of objects, usually determined by how many models were found in a quick search
of the Web (e.g., the plane class has significantly more models than the others). Second, note that the
similarity between classes varied greatly. For instance, some classes were very similar to one another
(e.g., pens and missiles look alike), while some were quite distinct (belts). Third, note that the similarity
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Fig. 12. Example classes of shapes in our database: mugs (top row), cars (middle row), and boats (bottom row).

of objects within each class also varied. Some classes (such as ball, mug, openbook, pen, and sub)
contained 3D models with shapes greatly resembling each other, while others (such as animal, boat,
car, and plane) contained models with a wide variety of shapes. This diversity within classes is shown
in Figure 12, which contains pictures of three models from the mug, car, and boat classes. Note that the
mugs are visually quite similar, while the cars and boats are significantly different. Other classes are
even more diverse. For instance, the planes class contains biplanes, fighter jets, propeller planes, and
commercial jets, all similar in function, but quite different in shape.

To investigate the ability of our shape matching methods to match classes of objects, we ran an
experiment by computing the D2 shape distributions for all 133 models. They are shown in Figure 13—
each plot shows the D2 distribution for all 3D models of one class, normalized by their means. Examining
these distributions qualitatively, we find that the shape distributions for most objects within a single
class are highly correlated, as multiple curves appear almost on top of one another. Moreover, many
of the classes have a distinctive shape distribution that could be used for classification. For instance,
balls have a nearly linear distribution with a sharp falloff on the right, mugs have one sharp peak in
the middle, belts have a peak on the right, and lamps have two large peaks with a valley in between.
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 13. D2 shape distributions for 133 models grouped into 25 classes. Each plot represents a probability distribution of distance.

To a limited degree, it is possible to infer the gross shape of some objects from their D2 shape
distributions. For instance, referring to Figure 14, balls have a distribution resembling a sphere, belts re-
semble a circle, mugs resemble a cylinder, and lamps resemble two spheres separated by some distance.

Although several classes (e.g., cars) have similar-looking unimodal shape distributions, the “humps”
in the distributions of different classes are usually distinguishable by their locations, heights, and
shapes. For instance, consider the Figure 15, which shows the shape distributions for 5 tanks (gray)
and 6 cars (black). Although the gross characteristics of these two classes of shape distributions are
similar (i.e., a single hump), it seems that a computer program should be able to discriminate between
them, generally producing a dissimilarity measure that is lower for pairs of models within the same
class.

To test this hypothesis, we used the D2 shape function, MEAN normalization method, and L1 norm to
compute the dissimilarity for all pairs of 133 models in our test database. Figure 16 shows the similarity
matrix for this test. As in Figure 11, the lightness of each element (i, j ) is proportional to the magnitude
of the computed dissimilarity between models i and j (i.e., darker elements represent better matches).
Thus, if the similarity metric were ideal (i.e., if it were able to read the mind of the human that formed
the classes), the dissimilarity measures for models in the same class would be less (appear darker)
than for ones in different classes. That is, we hope to see a sequence of darker blocks along the main
diagonal, with sizes corresponding to the numbers of models in each class, with mostly lighter colors in
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Fig. 14. D2 shape distributions indicate the global shape of an object.

Fig. 15. Shape distributions of 5 tanks (gray) and 6 cars (black).

the off-diagonal matrix elements. Given the ambiguity and diversity of the database, we believe that it
would be optimistic to expect this result.

Examining the matrix in Figure 16, we see that the dissimilarity values computed with our method are
fairly discriminating in this test. There are many dark blocks readily apparent along the main diagonal
corresponding to groups of objects within the same class that produce good matches (e.g., mugs, phones,
chairs, planes, spaceships, etc.). Meanwhile, most elements off-diagonal are lighter shades, indicating
relatively few false positives. Off-diagonal blocks of dark elements often represent matches between
classes (e.g., spaceship versus plane). Surprisingly, several of the classes with very diverse models (e.g.,
cars and planes) can be distinguished very clearly as dark blocks in this plot, indicating that our method
is useful for discriminating them from other models in the database in spite of their diversity. On the
other hand, there are other classes whose models did not match well in this test (e.g., boats, helicopters,
etc.). Some of these failures are due to the inherent difficulties of shape matching without real world
knowledge (e.g., the boats were more similar in function than shape), while others are probably due
to the limitations of our implementation (e.g., LN norms produce large dissimilarities for lamps, even
though their D2 distributions are very distinctive).

5.3 Classification Results

To test how well our shape matching method works for object classification and to determine which
combinations of shape functions, normalization methods, and comparison norms yield the best results,
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 16. Similarity matrix for our database of 133 3D models.

Table I. Evaluation of Shape Functions (using
MEAN and PDF L1)

Shape First Second Nearest Sample
Function Tier Tier Neighbor Time (s)

A3 38% 54% 55% 12.6
D1 35% 48% 56% 8.6
D2 49% 66% 66% 8.6
D3 42% 58% 58% 13.5
D4 32% 42% 47% 15.8

we ran a series of “leave one out” classification tests. In every test, we compared the shape distribution
of each model in the database (the query model) against all others and classified each model according
to its closest matches. The test was repeated 90 times for all combinations of the 5 shape functions, 3
normalization methods, and 6 comparison norms described in Section 4.

Tables I–III contain three cross-sections of the results measured in these tests. In each table, the first
column indicates the shape function, normalization method, or comparison norm (unless otherwise
specified, the D2 shape function, the MEAN normalization method, and the PDF L1 norm were used).
The “First Tier” column lists the percentage of top k−1 matches (excluding the query) from the query’s
class, where k is the size of the class. This criteria is stringent, since each model in the class has only
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Table II. Evaluation of Normalization Methods
(using D2 and PDF L1)

Scale First Second Nearest Compare
Method Tier Tier Neighbor Time (ms)

MAX 41% 56% 63% 0.1
MEAN 49% 66% 66% 0.1

SEARCH 49% 66% 68% 9.0

Table III. Evaluation of Comparison Methods (using D2
and MEAN)

Norm First Second Nearest Compare
Method Tier Tier Neighbor Time (ms)
χ2 48% 63% 64% 0.1

Bhattacharyya 45% 60% 63% 0.1
PDF L1 49% 66% 66% 0.1
PDF L2 47% 64% 62% 0.1
PDF L∞ 42% 59% 61% 0.1
CDF L1 46% 63% 59% 0.2
CDF L2 44% 63% 59% 0.1
CDF L∞ 43% 59% 57% 0.1

one chance to be in the first tier. An ideal matching would give no false positives and return a score
of 100%.

The “Second Tier” column lists the same type of result, but for the top 2(k−1) matches. The “Nearest
Neighbor” column lists the percentage of the test in which the top match was from the query’s class.
Finally, the right-most column contains the computation times for sampling and comparison of shape
distributions. Note that sampling times are in seconds, while comparison times are in milliseconds.

From the results in these tables, we make the following observations. First, the D2 shape function
classified objects better than the other four shape functions. There are several plausible explanations
for why the others did not perform as well (see Figure 17). First, the D1 distributions tend to be sensitive
to bumps on the surface of an object (note the spikes in the D1 distributions for missiles in Figure 17
caused by fins protuding from the missiles’ bodies). Second, D1 distributions seem to be sensitive to
shifts in an object’s center of mass (note the offsets in peaks of the D1 distributions for mugs in Figure 17
caused by different sized handles). Third, the A3, D3 and D4 distributions produce distributions that
are similar in shape for diverse object classes, probably due to averaging (note the smoothness of the
D3 and D4 distributions in Figure 17). Although the intra-class diversity for D3 and D4 is smaller
than for the other shape functions, the inter-class diversity is also smaller, which results in a less
discriminating classifier. Overall, in our tests, since the D2 shape function produces distributions with
the best combination of distinctiveness and stability, it is the best object classifier. Interestingly, we
found that combining all five shape functions into a voting-based multiclassifier system [Duda et al.
2001] provides only 2–3% improvement in classification rates.

Second, in our tests, the MAX scaling method is not as good as MEAN or SEARCH as it suffers from
instability due to high variation in the maximum sample found. Scaling the entire shape distribution
based on the maximum sample affects the signature for the entire object. This result is intuitive, as
the mean is a more stable statistic than the maximum. For the other normalization methods (MEAN
and SEARCH) the classification results were approximately the same. We found that searching helps
minimize the difference between shape distributions, but this did not significantly improve the dis-
criminability of the method on this database. As a result, we conclude it is better to normalize shape
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Fig. 17. A3, D1, D2, D3, and D4 shape distributions for several object classes. In each plot, the vertical axis represents probability.

distributions according to the means, which can be done once per model and can be incorporated into
an indexed shape-based retrieval system.

Third, the PDF L1 norm was the best performer for comparing shape distributions in our test. While
the differences are small, it outperformed even the χ2 statistic and Bhattacharyya distance. In gen-
eral, the pdfs did better than the cdfs, possibly because peaks and valleys of pdf curves are easier to
discriminate using LN norms than the steep areas and plateaus of cdf curves. Meanwhile, the L2 and
L∞ norms performed worse than the L1 norms, in general. For higher N , the LN norms become less
forgiving of large differences, and thus perhaps our comparisons became more sensitive to outliers or
normalization errors.

Overall, using the D2 shape distribution, mean normalization, and L1 norm, our system produced
a top-match within the same class for 66% of the models. This result is shown visually in Figure 18.
Each row i represents a shape matching query with the ith object. Black matrix elements in each row
indicate the two top matches (the query object and its nearest neighbor); red elements indicate other
objects matching in the first tier; and blue elements represent other matches in the second tier. Looking
at the matrix, we conclude that the top matches are mostly from the same class as the query object and
that shape distributions provide a useful signature for shape-based retrieval of 3D models.

5.4 Comparison to Moments

As a final test, we compare our shape distribution method against a classifier that represents 3D models
with a sequence of discrete surface moments:

mpqr =
∫

boundary
x p yqzr dx dy dz (3)
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Fig. 18. Matrix representing results of classification queries (rows) for each of 133 3D models. Black matrix elements indicate
the query object and its nearest neighbor. Red elements indicate other top matches in the first tier. Blue elements represent the
remaining matches in the second tier.

In our implementation of the moments-based classifier, the first two moments are used to register
the models in a common coordinate system (as in Elad et al. [2001]):

(1) Translation: translate so first moments vanish.
(2) Rotation: calculate second moments and assemble the associated covariance matrix. Factor the

covariance matrix using Singular Value Decomposition (SVD), and orient the model by applying
the unitary matrix of this decomposition.

(3) Scale: scale so that the maximum eigenvalue value of the SVD is 1.

After registration, moments up to a user-specified order are calculated and stored as a shape signa-
ture. In our notation, M3 specifies that 3rd order moments and lower were used as shape descriptors
(i.e., p + q + r ≤ 3), and similarly for M4 through M7. The shape signatures are compared using a
component-by-component L2 norm.

Table IV and Figure 19 compare the results achieved with this moment-based classifier versus the
method proposed in this paper. Specifically, Table IV reports “First Tier,” “Second Tier,” and “Nearest
Neighbor” statistics, while Figure 19 shows plots of precision-recall curves averaged over all objects in
the test database. We find that D2 shape distributions outperform moments for classification of models
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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Table IV. Comparison of Classification Results Achieved with
Shape Distributions versus Moments of Different Orders

First Second Nearest
Method Tier Tier Neighbor

D2 49% 66% 66%
M3 35% 46% 63%
M4 41% 52% 64%
M5 28% 38% 55%
M6 34% 44% 54%
M7 27% 33% 51%

Fig. 19. Precison-recall plots comparing retrieval results achieved with shape distributions versus moments of different orders.

in our tests. The differences are more significant for more stringent classification criteria (i.e., First-
Tier) and for higher-order moments, which are known to be sensitive to noise [Prokop and Reeves 1992].
Further studies are required to test whether D2 shape distributions perform better than moments for
larger databases or for other shape matching applications.

6. 3D SEARCH ENGINE

As an initial study of applications for shape distributions, we have developed a web-based search engine
for 3D polygonal models. The motivation is to provide a tool with which users can retrieve models from
a 3D database based on their shape attributes.

In the early prototype system [Chen 2001], the user draws a 3D query model using a Java applet
(Teddy [Igarashi et al. 1999]) running in any web browser. The resulting set of polygons is sent to a
web server, which computes its D2 shape distribution and a dissimilarity measure for all models in a
3D database using the methods described in this paper. Links to images and 3D data for the K most
similar models are returned in a web page for the user to peruse.

Sample results obtained with this 3D search engine are shown in Table V (these queries represent
typical results—they are not a sampling of our best results). The images in the leftmost column show
the query 3D models drawn by the user, while the columns on the right show the closest matches among
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Table V. 3D Query Models (left column) and the Five Top Matches for Each Query
Returned by Web-based Search Engine. D2 Dissimilarity Measures are Shown Below

Each Match

the 3D models in our test database of 133 models (dissimilarity values are shown below each match).
For instance, a query with a crudely drawn chair (top row) returned four chairs and a table in the top
five matches; a query with a cartoonish four-legged animal (second row) returned a triceratops, a cow,
two tanks, and a blimp; and, so on. In all examples, the 3D query models were drawn in a couple of
minutes or less by an undergraduate student, Joyce Chen, and the results were returned within ten
seconds or so. In these experiments, almost all of the time was spent building the shape distribution
for the query model, while comparing the shape distributions was almost instantaneous. For larger
databases, more sophisticated indexing methods would be required for interactive performance.

Even though this simple 3D search engine is rather crude, it seems to provide a useful tool for
retrieving models based on their gross shapes. Further investigation is required to determine whether
this tool is useful in practice and which query interfaces are most useful for shape-based retrieval of
models from large databases.

7. DISCUSSION AND CONCLUSION

The main contribution of this paper is the idea of using random sampling to produce a continuous
probability distribution to be used as a signature for 3D shape. The key feature of this approach is that
ACM Transactions on Graphics, Vol. 21, No. 4, October 2002.
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it provides a framework within which arbitrary and possibly degenerate 3D models can be transformed
into functions with natural parameterizations, allowing simple function comparison methods to produce
robust dissimilarity metrics.

Our initial experiences verify many of the expected features of this approach. First, it is simple to
implement—our whole system requires around 2000 lines of C++ code. Second, it is fast—the system
takes about ten seconds to construct a shape distribution for typical 3D models containing thousands
of polygons, and it computes the dissimilarity measure for any pair of shape distributions in less than
a millisecond. Third, invariance and robustness properties can be ensured by choosing shape functions
and norms with the desired properties—the D2 shape function is invariant to rigid body and mirror
transformations, and it is insensitive to noise, blur, cracks, tessellation, and dust in the input 3D
models. Normalization of shape distributions provides invariance to scale, and using the LN norm for
comparison of distributions ensures that our dissimilarity measure is a metric.

Our experimental results demonstrate that shape distributions can be fairly effective at discriminat-
ing between groups of 3D models. Overall, we achieved 66% accuracy in our classification experiments
with a diverse database of degenerate 3D models assigned to functional groups. The D2 shape distri-
bution was more effective than moments during our classification tests. Unfortunately, it is difficult to
evaluate the quality of this result as compared to other methods, as it depends largely on the details of
our test database. However, we believe that it demonstrates that our method is useful for the discrimi-
nation of 3D shapes, at least for preclassification prior to more exact similarity comparisons with more
expensive methods.

An important issue for further research in 3D shape matching is development of benchmark databases
containing degenerate 3D polygonal models so that different shape analysis methods can be compared.
Of course, there are also many improvements that could be made to our initial prototype system in
future work. First, one could investigate more sophisticated shape functions, possibly based on domain
specific information or local geometric properties suitable for articulated figures. Second, it would be
possible to develop more efficient shape distribution sampling and reconstruction methods, possibly
based on adaptive strategies. Third, one could investigate using shape distributions with more sophis-
ticated classifiers, possibly based on neural networks. Fourth, combining shape distributions with other
attributes (e.g., surface colors, moments, etc.) for improved discriminability is an interesting topic for
further investigation. Finally, we are currently investigating a variety of user interfaces for specifying
3D shape-based queries in interactive retrieval systems.

Another important topic for future work is to study the theoretical properties of shape distributions.
For instance, it would be nice to develop a theory concerning which shape functions and norms are
good classifiers of shape. We are investigating provable properties for the D2 shape function. Unique-
ness properties for homometric discrete point sets (ones with the same distance distribution) have been
proven by Skiena et al. Skiena et al. [1990]. They developed upper and lower bounds on the number
of non-congruent homometric discrete point sets in arbitrary dimensions. Properties have also been
proven for the radon transform for a convex region C in the plane [Rann and Katsevich 1996; Helgason
1999]. This transform maps any oriented line to the length of its intersection with C. It completely spec-
ifies the region C, and it can be inverted fairly efficiently. The radon transform has found many uses in
X-ray tomography. Proving uniqueness properties for other continuous shape functions may have simi-
lar implications for reconstruction and manipulation of 3D models represented by shape distributions.

Finally, it would be interesting to investigate whether the proposed shape matching method is useful
in other application domains, such as mechanical CAD, medicine, or molecular biology.
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