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Abstract. Perfect, partial, and approximate symmetries are pervasive
in 3D surface meshes of real-world objects. However, current digital ge-
ometry processing algorithms generally ignore them, instead focusing on
local shape features and differential surface properties. This paper in-
vestigates how detection of large-scale symmetries can be used to guide
processing of 3D meshes. It investigates a framework for mesh process-
ing that includes steps for symmetrization (applying a warp to make
a surface more symmetric) and symmetric remeshing (approximating a
surface with a mesh having symmetric topology). These steps can be
used to enhance the symmetries of a mesh, to decompose a mesh into its
symmetric parts and asymmetric residuals, and to establish correspon-
dences between symmetric mesh features. Applications are demonstrated
for modeling, beautification, and simplification of nearly symmetric sur-
faces.
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1 Introduction

Symmetry is ubiquitous in our world. Almost all man-made objects are com-
posed exclusively of symmetric parts, and many organic structures are nearly
symmetric (e.g., bodies of animals, leaves of trees, etc.). It is almost impossi-
ble to find a real-world object that does not have at least one nearly perfect
symmetry and/or is not composed of symmetric parts. Moreover, symmetry is
an important cue for shape recognition [1], as humans readily notice departures
from perfect symmetry.

For decades, however, mesh reconstruction and processing algorithms in com-
puter graphics have largely ignored symmetries. Most algorithms operate as se-
quences of mesh processing operations based on local shape features and/or
differential surface properties. As a result, they have difficulty reproducing and
preserving global shape properties, such as symmetry.

Consider simplification, for example – when presented with an input mesh
for a nearly symmetric object (e.g., a face), a simplification algorithm should
produce a nearly symmetric mesh. However, to our knowledge, there is no current
algorithm that satisfies this basic requirement. Certainly, if the input is perfectly
symmetric, then the problem is trivial – simply process half of the mesh and then
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copy the result. However, if the underlying surface is symmetric but the mesh
topology is not, or if the underlying surface is only approximately symmetric,
then standard simplification algorithms fail to preserve symmetries present in
the underlying object (Figure 10c). The result is potential artifacts in physical
simulations, manufacturing processes, animations, and rendered images (e.g.,
asymmetric specular highlights).

Recently, researchers have introduced several methods for detecting and char-
acterizing the symmetries in 3D data. For example, Zabrodsky et al. [2] provided
a measure of approximate symmetry with respect to any transformation, and
Mitra et al. [3] and Podolak et al. [4] have described algorithms for extract-
ing the most significant approximate and partial symmetries of a 3D mesh.
While symmetry analysis methods like these have been used to guide high-level
geometric processing operations, such as registration, matching, segmentation,
reconstruction, reverse engineering, editing, and completion, they have not yet
been incorporated into low-level mesh processing algorithms.

The main goal of this paper is to investigate ways in which symmetry analysis
can guide the representation and processing of 3D surface meshes. To support
this goal, we make the following contributions. First, we describe an algorithm
for geometric symmetrization – i.e., deforming a surface to respect a given set of
symmetries while retaining its shape as best as possible. Second, we describe an
algorithm for topological symmetrization – i.e., remeshing a surface so that sym-
metric regions have consistent mesh topology. Third, we propose a “symmetry-
aware” mesh processing framework in which geometric and/or topological sym-
metrization algorithms provide high-level shape information (symmetric corre-
spondences and asymmetric residuals) that can guide mesh processing applica-
tions to produce more symmetric results for approximately symmetric inputs.
Finally, we demonstrate applications of this framework for surface beautification,
symmetry enhancement, attribute transfer, and simplification.

2 Background and Previous Work

Understanding the symmetries of shapes is a well studied problem with applica-
tions in many disciplines. Perfect symmetries are common in CAD models and
used to guide compression, editing, and instancing [5]. However, only considering
perfect symmetries is of limited use in geometric processing, in general. First, the
presence of noise, numerical round-off error, or small differences in tessellation
can cause models of objects that are in fact symmetric to lack perfect symme-
try. Second, many asymmetric objects are composed of connected parts with
different symmetries. Finally, most organic objects exhibit near, but imperfect,
symmetries (leaves of trees, human bodies, etc.), and understanding those types
of symmetry is important, too. Thus, it is useful to have methods to detect and
utilize partial and approximate symmetries.

Towards this end, Zabrodsky et al. [2] defined the symmetry distance of a
shape with respect to a transformation as the distance from the given shape to
the closest shape that is perfectly symmetric with respect to that transformation.
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They provide an algorithm to find the symmetry distance for a set of connected
points for any given reflective or rotational transformation. Mitra et al. [3] and
Podolak et al. [4] find a set of prominent symmetries by having points on a mesh
vote for symmetries in a process similar to a Hough transform.

Measures for partial and approximate symmetry of this type have been used
in a variety of computer vision applications. Perhaps the earliest example is
by [6], who used deformable models with symmetry-seeking forces to reconstruct
3D surfaces from 2D images. Zabrodsky et al. used a continuous measure of
symmetry for completing the outline of partially-occluded 2D contours [7], for
locating faces in an image, determining the orientation of a 3D shape [2], for
reconstructing 3D models from images, and for symmetrizing 3D surfaces [8].

More recently, symmetry analysis has received attention in computer graph-
ics. Kazhdan et al. [9] constructed a symmetry descriptor and used it for regis-
tration and matching. Podolak et al. [4] used a symmetry transform for surface
registration, shape matching, mesh segmentation, and viewpoint selection. Mi-
tra et al. [3] described a method to extract a discrete set of significant symme-
tries and used them for segmentation and editing. Thrun et al. [10] used local
symmetries and used them for completion. Gal et al. [11] developed local shape
descriptors to look for approximate symmetries in 3D surfaces and used them for
visualization and matching. Mills et al. [12] utilized approximate symmetries to
guide reverse engineering of CAD structures from range scans. Simari et al. [13]
decomposed meshes into a hierarchical tree of symmetric parts to be used for
compression and segmentation. Finally, Martinet et al. [5] has detected perfect
symmetries in parts of scenes and used them to build instancing hierarchies.

Perhaps closest to our work is the work of Mitra et al. [14], where a method
of symmetrizing the geometry of meshes is presented. Their technique of sym-
metrization is similar to the method we present in Section 4. However, whereas
their work focuses on symmetrizing geometry, we aim to develop a pipeline for
making mesh-processing algorithms symmetry-aware, of which symmetrizing ge-
ometry is one step.

3 Overview

The goal of our work is to provide tools for symmetry-aware processing of 3D
surface meshes. We propose a multi-step processing framework, in which approx-
imate and partial symmetries are detected, preserved, exploited, and sometimes
even enhanced as meshes are processed. To support this framework, we provide
the following tools, which typically will be used in the sequence of steps shown
in Figure 1:

1. Symmetry analysis: the mesh is analyzed to detect perfect, approximate,
and partial symmetries. The output of this step is a set of transformations
(e.g., planes of reflection), each with a list of vertices indicating the subset of
the surface mapped approximately onto itself by the transformation. For this
step, which is not a focus of this paper, we use methods previously described
in [4] and [3].
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Fig. 1. Symmetry-aware mesh processing framework.

2. Geometric symmetrization: the surface is warped to make it symmetric
with respect to a given set of transformations. The primary output of this
step is a “symmetrized” mesh having the same topology as the original,
but with geometry that is perfectly symmetric up to the resolution of its
tessellation. A secondary output is a set of asymmetric residuals storing the
vector difference between the original and symmetrized position of every
vertex, which can be used to compute an inverse to the symmetrizing warp.

3. Symmetric mapping: correspondences are established between vertices
and their images across every symmetry transformation. The output of this
step is a dense set of point pairs, where one point is associated with a vertex
and the other is associated with a face and its barycentric coordinates. These
point pairs provide a mapping between symmetric surface patches.

4. Symmetric remeshing: the surface is remeshed so that every vertex, edge,
and face has a one-to-one correspondence with another across every symme-
try. The output of this step is a new mesh with perfectly symmetric topology,
along with a list of topological correspondences.

5. Restoring deformation: the inverse of the symmetrizing warp is applied
to the symmetrically remeshed surface to restore the original geometry. The
output of this step is a mesh that is topologically symmetric, but geometri-
cally approximates the input mesh.

The motivating idea behind this framework to provide tools that can help
mesh processing algorithms to preserve large-scale symmetries present in 3D
objects. Our general strategy is to factor a 3D surface into a symmetric mesh
and its asymmetric residual and then to perform analysis on the symmetric
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mesh to gain insight into its symmetric structure. We transfer knowledge about
symmetric structure back onto the original geometry so that it can be preserved
and exploited as the surface is processed.

In the following sections, we investigate algorithms to support this symmetry-
aware mesh processing framework, focusing on the most challenging steps: geo-
metric symmetrization (Section 4) and symmetric remeshing (Section 5). There-
after, in Section 6, we describe potential applications and present prototype re-
sults. Finally, we conclude with a discussion of limitations and topics for future
work.

4 Geometric Symmetrization

Our first objective is to provide an algorithm that can take a given surface mesh
and output a new mesh with similar shape that is symmetric with respect to
a given set of transformations. More formally, given a mesh M and a set of
symmetry transformations, each having a possibly local region of support on the
mesh, our goal is to find the most shape-preserving warp W that produces a
new mesh M ′ with the same topology as M , but where every vertex of M ′ is
mapped onto corresponding points on the surface of M ′ by all of its symmetry
transformations.

This objective is similar to classical problems in non-rigid alignment for
morphing of 3D surfaces, medical imaging, surface reconstruction, and several
other fields. The challenge is finding both symmetric point correspondences and
the warp that aligns them simultaneously. Following traditional iterative ap-
proaches [15], we greedily minimize alignment error while allowing increasingly
non-rigid deformation [16–18]. At each iteration, we first propose correspon-
dences from every vertex in the mesh M to its closest compatible point on the
transformed surface for every symmetry. Then, given these correspondences, we
solve for new vertex positions that minimize a symmetrizing error function (Fig-
ure 2). These two steps are iterated until the mesh is fully symmetric (i.e., every
vertex transformed by all its symmetries produces a point directly on a face of
the mesh).

Our symmetrizing error function balances the primary goal of making the
surface more symmetric with the secondary goals of retaining its original shape
and position with three error terms:

E(M) = αEsym(M) + (1− α)(Eshape(M) + βEdisp(M))

The first two error terms are the important ones, as they balance the trade-
off between deviations from perfect symmetry and deformations of the surface.
The first term, Esym, measures the sum of squared distances between vertices
of the mesh and the closest point on the transformed surface. For the second
term, Eshape, we use the shape preservation function proposed by [18], which
minimizes a measure of warp distortion. Any deformation error function would
work, but this choice has the advantage of being quadratic in vertex positions.
This deformation error is not rotationally invariant, but the symmetrizations
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(a) (c)(b)

Fig. 2. Schematic of one iteration in our symmetrization process (in 2D). (a) Given a
curve (red) and a symmetry transformation (reflection across the dotted line), (b) we
find correspondences between vertices and the closest to point on the reflected curve
(green), and (c) solve for new vertex positions that minimize an error function based
on those correspondences.

performed in our experiments do not have large rotational components. The last
term, Edisp, measures overall displacement using the sum of squared distances
between current and original vertex positions. It is required to penalize global
translations because Eshape is translationally invariant and because the surface
is being warped onto itself (in contrast to traditional alignment problems where
either the source or target is fixed in space). We set the weight of this error term
very low relative to the others (β = 1/100), and so it has very little influence
on the output surface’s shape. Since all three terms of the error function are
quadratic in the positions of the vertices, we can solve for the minimal error at
each iteration with a least-squares solution to a linear system.

Our implementation contains several simple features that help provide stabil-
ity and speed as the optimization proceeds. First, it uses multiresolution surface
approximations to accelerate convergence and avoid local minima. Prior to the
optimization, the input mesh is decimated with Qslim [19] to several nested lev-
els of detail. Then, coarser levels are fully symmetrized and used to seed the
initial vertex placements for finer levels (new vertices added at each finer level
are positioned relative to the current ones using thin-plate splines). Within each
level, further stability is gained by slowly shifting emphasis of the error function
from shape preservation (α = 0) to full symmetrization (α = 1). Finally, for
each vertex, we use a k-d tree to help find the closest point on the transformed
surface, and only retain correspondences to a closest point whose transformed
normal does not point in the opposite direction. Overall, compute times on a
3Ghz processor range from 4 seconds for the 1,166 vertex model of the dragon
in Figure 8 to 10 minutes for a 240,153 vertex face scan.

For instance, consider Figure 3, which shows the result of symmetrizing a
bust of Max Plank with respect to reflection across a single vertical left-right
plane. Note that the original input mesh (Figure 3a) is quite asymmetric, as seen
by the misalignment of the surface (red) and its reflection (green) in the bottom
images of Figure 3a – i.e., significant shape features (eyes and ears) do not map
onto their symmetric counterparts when reflected across the plane. However,
we are able to find a non-rigid warp that aligns those features while producing
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a symmetric mesh with a small amount of shape distortion. The symmetrized
mesh, shown Figure 3b, is perfectly symmetric up to the resolution of the mesh,
as indicated by the high-frequency interleaving of the original surface (red) with
its reflection (green) in the bottom images of Figure 3b.

Fig. 3. Symmetrizing Max Planck. The model of a bust of Max Planck (a) asymetric,
as can be seen by overlaying the mesh (red) with its reflection (green) in the bottom
images. Our method symmetrizes its geometry (b), while retaining and aligning sharp
features like eyes, mouth, and ears.)

.

A more complicated example demonstrates symmetrization across partial,
approximate planes of symmetry in the Stanford Bunny (Figure 4). Using the
method of [4], the bunny was automatically segmented into two symmetric parts
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Fig. 4. Symmetrizing the bunny. The top row shows the original bunny, while the bot-
tom row shows the symmetrized result. The bunny contains partial symmetries with
respect to planes through the body and through the head. Our method symmetrizes
both parts of the bunny while performing a shape-preserving blend in between, pre-
serving features such as the eyes and feet. The right pair of images show the asymmetry
of the original model and the accurate alignment of symmetric parts in our result.

(the head and the body), each supporting a plane of partial symmetry. Of course,
both of these parts are highly asymmetric, as can be seen from top-right image
in Figure 4, where each part of the bunny (red) is shown along with its reflection
(green and blue) over its symmetry plane. Note how poorly the ears and feet align
with their reflections. However, our geometric symmetrization algorithm is able
to warp both parts into alignment with their reflections simultaneously while
retaining significant shape features (e.g., ears, feet) and blending symmetries
across the intermediate region of the neck. Note that the crease between the
feet is preserved although the symmetry plane does not run through it on the
original model, as the surface was warped to align with the plane.

The output of the process is not only a symmetrized mesh, but also a sym-
metric map, a set of point correspondences where every vertex is associated
with a point on the surface across every symmetry transformation. We store the
corresponding points in barycentric coordinates with respect to triangles of the
mesh so that they deform with the surface (e.g., when we apply the inverse of
the symmetrizing deformation to restore the original geometry). This is a key
point, since it allows us to transfer the symmetric map learned from the perfectly
symmetric surface back to the asymmetric one.
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5 Symmetric Remeshing

Our second objective is to develop an algorithm that can take a geometrically
symmetrized mesh with arbitrary topology and remesh it so that every vertex,
edge, and face has a direct correspondence with another with respect to every
symmetry transformation. Our motivation is to provide a topology that not only
reflects the symmetric structures of the object, but also can provides efficiency in
representation and manipulation due to topological redundancies (e.g., compres-
sion), cues for preservation of symmetries during topological modifications (e.g.,
simplification), and symmetric sampling to avoid assymetric artifacts in photo-
realistic renderings and physical simulations (e.g., boundary element methods).

This problem is a special case of compatible remeshing [20, 21]. Given the
symmetric map from every vertex to a point on the surface for every symmetry
transformation provided by the geometric symmetrization algorithm, we aim to
find the mesh with perfectly symmetric topology that has the least geometric
error and/or fewest extra vertices.

A strawman approach that may be appropriate for highly symmetric and/or
oversampled meshes is to partition the mesh into “asymmetric units” and then
copy the topology from one instance of others in correspondence and then stitch
at the boundaries. For a single planar reflection, this would entail cutting the
mesh along the plane, throwing away the mesh connectivity on one side (Mt), and
then copying the connectivity over from the other side (Ms). While this simple
method would provide symmetric topology with the same number of vertices as
the original mesh, it would produce an asymmetry in the quality of the geometric
approximation (Ms would have the quality of the original surface, but Mt would
have blurring where edges oriented appropriately for the geometry of Ms are not
appropriate for Mt), and it would produce artifacts where the topology of Ms

provides a poor approximation for Mt.
There are many methods in the literature to overcome this problem, most of

which introduce a large number of extra vertices to capture the geometric varia-
tions of both Ms and Mt. For example, one way is to create an overlay meta-mesh
that contains the original vertices of both Ms and Mt along with new vertices
at all edge-edge intersections [22, 23]. Another way is to map Ms and Mt to a
common base domain (e.g., a sphere [22], or a simplified triangle mesh [23, 24])
and then remesh with semi-regular connectivity until all geometric features are
resolved. Alternatively, it is possible to create a meta-mesh Mst by inserting
all the vertices of Ms into Mt, and vice-versa, and then iteratively swapping
edges until a compatible mesh topology is achieved [20]. These methods all pro-
duce compatible mesh topology and so could be used for symmetric remeshing.
However, the resulting mesh would usually be significantly over-sampled.

We provide a simple method to address the problem: compatibility-preserving
mesh decimation (or, in our case, symmetry-preserving mesh decimation). Our
general approach is to use any of the above methods to produce compatible
mesh topology with vertices from both Ms and Mt, and then to decimate the
resulting meta-mesh with a series of edge collapse operations that operate on
corresponding edges in lock-step. Specifically, we build clusters of edges whose
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(a) Symmetric geometry (c) After inserting vertices (d) Final symmetric mesh

(b) Point correspondences (d) After edge flips (e) Final symmetric mesh

Fig. 5. Symmetric remeshing. The input is shown in the left column (the symmetrized
bust of Max Planck, zoomed to the bridge of the nose); intermediate steps are shown
in the middle column, and the output is shown in the right column. The final mesh has
perfectly symmetric topology (as shown by colored face correspondences in (e)) and
still approximates the surface well with the original number of faces.

vertices are in symmetric correspondence and then follow the same basic ap-
proach as the original Qslim algorithm [19], however working on clusters rather
than individual edges. We load the clusters into a priority queue sorted by the
Quadric Error Measure (QEM) of the edge with highest error in each cluster,
and then we iteratively collapse all edges in the cluster with minimal error until
a desired number of triangles or a maximum error has been reached. Since all
edges in the same cluster are processed atomically, the method is guaranteed to
maintain topological symmetries as it decimates the mesh. Yet, it still provides
a good approximation of the original surface, as QEMs approximate deviation
from the original surface.

This method is similar in goal to the method of [21], which copies the mesh
topology of Ms onto Mt and then optimizes the positions and number of vertices
to match the geometry of both Ms and Mt with a combination of smoothing and
refinement operations. The difference is that we first produce an over-sampled
mesh with vertices from both Ms and Mt, and then “optimize” it to minimize
the QEM by decimation. Since our process is seeded directly with (a conserva-
tively large set of) compatible vertices and edges from both Ms and Mt, the
optimization starts from an initial configuration that encodes features from the
entire mesh. So, our challenge is mainly to decide which vertices and edges can be
removed, rather than discovering suitable places for new vertices from scratch.
As a result, it is easy to produce compatible mesh topologies for any number of
surface regions with any number of vertices.

We have experimented with this approach using an algorithm based on
the Connectivity Transformation technique of [20] to form an over-sampled
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mesh with symmetric topology prior to decimation. Given a geometrically sym-
metrized mesh and a set of vertex-point correspondences (Figure 5a-b), we first
produce a meta-mesh Mst with symmetric vertex correspondences by inserting
all the vertices of Ms into Mt, and vice-versa, splitting faces into three when
an inserted vertex maps to the interior of an existing face (Figure 5c). We then
swap edges in order of an error function that measures the differences in the
QEM for edge midpoints before and after the swap, plus a quadratically grow-
ing penalty for swaps of an edge multiple times, plus an infinite penalty for any
swap that would generate a topological fin in the mesh or break a greater num-
ber of symmetric correspondences than it creates. The process terminates when
all edges are found to be in symmetric correspondence, or when the minimal
error of any cluster exceeds some preset threshold. We have not implemented
the edge-crossing constraint and termination criterion of [20], as it only guaran-
tees convergence for meshes on a plane [25]. However, we find that our method
finds symmetric correspondences for all but few edges in practice (99.9% in all
of our examples). For the remaining edges, we simply copy those edges from one
asymmetric unit to the other(s). The net result is a mesh with fully symmetric
topology containing approximately twice as many vertices as the original (Fig-
ure 5d). We give that mesh as input to the symmetry-preserving version of Qslim
to produce the final result – a topologically symmetric mesh with a user-specified
number of faces or geometric error. Figure 5e-f shows the result for decimation
to the number of faces in the original mesh (98K). Compute times for the entire
symmetric remeshing process range between tens seconds for the dragon and
two hours for the armadillo on a 3GHz processor. Of course, this process must
be done only once per model.

It is difficult to make comparisons of our symmetric meshing method to
others, since our problem is somewhat different from previous ones. However,
to validate that our approach provides benefits over the simple strawman ap-
proach described earlier in the section (copy the topology of the right side over
to the left), we provide a comparison of symmetrically remeshed surfaces of a
mask along the left crease of the nose (Figure 6). Note how our method (mid-
dle) produces a mesh that retains sharp features of the original (left), whereas
the simpler approach (right) suffers from blurring due to poorly oriented edges.
Besides these differences in surface quality, our method has the additional ad-
vantage that it works without modification for partial and multiple symmetries
of any type of transformation, and produces symmetric mesh topology at any
user-selected face count.

6 Applications

The main theme of this paper is that awareness of symmetries can and should be
incorporated into mesh processing algorithms. Since objects with perfect and/or
approximate symmetries are prevalent in our world, and since symmetries are
often critical to an object’s function and/or a human’s perception of it, we believe
that algorithms processing 3D models should understand their symmetries and
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(a) Original (b) Symmetric (c) Copy topology
Mesh Remeshing from right to left

Fig. 6. A zoomed-in comparison the crease along left side of the nose on the surface
of the mask shown on the left. Note how our approach (b) does not produce blurring
when compared to the original (a), while the simple alternative (c) of copying topology
from one side to the other does.

preserve them. In this section, we investigate how this can be done for several
classes of applications.

Roughly speaking, applications can be divided into classes according to what
type of mesh data they process, and almost equivalently, what type of symme-
try information they can exploit: (1) Some applications are concerned mainly
with creating new geometry (e.g., surface scanning, interactive modeling, etc.).
For this class, geometric symmetrization provides a useful tool for coercing the
geometry of approximate input (e.g., scanned points, sketched surfaces, etc.) to
become more, less, or perfectly symmetric to match the intended structure of the
object being modeled. (2) Other applications are concerned with manipulating
attributes associated with local regions of a surface (e.g., texture mapping, sig-
nal processing, etc.). For them, symmetric mapping provides a way to blend and
transfer attributes between symmetric regions. (3) Still other applications are
concerned with the manipulating the topology of a mesh (e.g., remeshing). For
those applications, symmetric remeshing provides an automatic way to coerce
the mesh topology to respect the symmetric structure of an object and provides
correspondence information that can be used to preserve topological symmetries
as the mesh is processed further. Finally, of course, there are applications that
can exploit all three types of symmetry information simultaneously (e.g., beau-
tification, compression, etc.). In the following subsections, we show at least one
example from each of these classes.

6.1 Beautification of Meshes for Symmetric Objects

There are many application domains in which scans are acquired for symmet-
ric real-world objects. For example, in rapid prototyping applications, physical
mockups are often constructed for a proposed design (e.g., with clay) and then
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(a) Original mesh (b) Symmetrized mesh

Fig. 7. Symmetrizing a scanned screwdriver model. The input mesh is shown on the
left side, and the output mesh is on the right. Note that the output mesh is perfectly
symmetric, has less noise (e.g., on the tip and at the junction with the handle), and
retains sharp features (e.g., the ridge on the top of the handle).

scanned for computer simulation and processing. Likewise, in reverse engineering,
objects are scanned when the original design is not available. However, rarely are
the scanned models perfectly symmetric, due in part to scanner bias and noise,
and due in part to processing tools that introduce asymmetries as a surface mesh
is reconstructed. Since so many scanned objects are in fact symmetric, it seems
useful to have a tool that takes a scanned mesh as input and produces the most
similar symmetric mesh as output.

As an example, consider the scanned screwdriver downloaded from the Cy-
berware repository of Desktop 3D Scanner Samples (left side of Figure 7). In
this case, the physical object has two parts (handle and tip), each of which is
approximately symmetric with respect to two plane reflections (top-middle of
Figure 7). Yet, the scanned mesh contains significant asymmetries with respect
to all of these planes (e.g., artifacts at the junction of the tip and the handle).
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Motivated by the idea of “beautifying” this mesh, we extracted planes of
symmetry automatically with the Iterative Symmetric Points algorithm of [4],
augmented to ensure that pairs of planes for the same part were perpendicular,
and that all four planes aligned on a single axis (note that the planes for the
handle are rotated by 20 degrees with respect to those of the tip). Then, we ran
our geometric symmetrization algorithm on the entire mesh, with all four planes
of symmetry guiding the surface deformation.

The result is shown in the images on the right side of Figure 7. Looking
closely at the image in the middle right, it can be verified that the surface is
symmetric up to the resolution of the mesh (note the high-frequency interleaved
pattern of yellow, red, green, and blue overlaid surfaces). It can also be seen that
significant shape features are retained during symmetrization (e.g., the ridge in
the top of the handle), while noise is reduced (e.g., the tip shown in close-
up on the bottom right). In general, shape features that align across multiple
symmetries are retained, while those that do not are diminished. Overall, the
mesh on the right of Figure 7 has the principal symmetries of the physical object
and lower levels of noise, and thus is probably preferable for most simulation and
visualization applications.

6.2 Symmetry Enhancement

(a) Original (b) Symmetrized (c) Symmetrized
Part-way Completely

Fig. 8. Enhancing the symmetries of a sketched model under interactive control.

In some applications, it may not be desirable to symmetrize a surface com-
pletely, but rather to enhance or to diminish symmetries instead. As a concrete
example, imagine that a person has drawn the dragon shown in Figure 8a using
a sketching tool like Teddy [26], but wants to make it more symmetric (note that
the wings are quite misaligned with respect to the left-right symmetry plane).
While this type of operation is possible with a series of deformations and local
surface edits, it would be tedious with current modeling tools.
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Instead, we propose an interactive tool that allows a user to control the de-
gree of symmetrization applied to a surface. We provide a slider that the user can
manipulate to make a surface more or less symmetric with respect to a selected
transformation while the model is updated with real-time visual feedback. As
an example, Figure 8b-c shows screenshots after the user has interactively sym-
metrized the dragon part-way (middle) and completely (right). In this simple
case, the symmetrizing deformation could be computed in real-time. For more
complex models, symmetry enhancement can be performed in real-time following
symmetrization as a pre-process (see the video for examples). We believe that
such a tool would be a useful addition to the suite of commands for interactive
surface design.

6.3 Attribute Transfer

(a) Input eye color (b) Input hand color

(c) Transferred eye color (d) Transferred hand color

Fig. 9. Transferring surface attributes between symmetric parts.

There are many applications that require blending or transferring attributes
between semantically related surface regions – for example, texture transfer,
denoising, and morphing. The challenge is usually to establish correspondences
between semantically related parts. In the case of objects with approximate
symmetries, symmetric mapping provides a useful way to solve this problem.
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For example, consider the Armadillo model. Although the surface is “seman-
tically symmetric” (e.g., the arm on the left has a functional correspondence
with the one on the right), the surface is not symmetric geometrically (e.g., the
arms are in significantly different poses). In cases like this, our symmetrization
framework provides a natural way to establish correspondences between approx-
imately symmetric parts via symmetric mapping.

This mapping can be used to transfer and blend surface attributes. For ex-
ample, Figure 9 shows a demonstration of transferring per-vertex colors between
symmetric regions of the Armadillo model. In the top row, the user has drawn
colors on the eyes and hands on one side of the surface with an interactive paint-
ing interface. The system then automatically transfers the colors to the other
side (bottom row) via an automatically generated symmetric map.

In this example, the main benefit is to save the user the effort of painting de-
tails twice. However, in other examples, perhaps it is important that the surface
attributes are applied to both sides in exactly the same way, or that surface de-
tails are blended very precisely, which would be difficult without guidance from
a symmetric map.

6.4 Simplification

Simplification algorithms take a mesh and produce an approximation with fewer
polygons, usually to increase rendering speed, decrease storage, and/or provide
a base domain for parameterization. Generally, however, they do not preserve
large-scale symmetries (or other global shape features), in favor of minimizing
local geometric errors.

In this section, we investigate whether the symmetry-preserving mesh deci-
mation algorithm described in Section 5 can be used effectively for extreme sim-
plification of approximately symmetric surfaces. Following the general approach
outlined in Section 3, we establish symmetric topology for an asymmetric surface
by first symmetrizing it, remeshing with symmetric topology, and then warping
the new topology and correspondences back to the original geometry. We then
perform symmetry-preserving mesh decimation on the symmetric topology over
the asymmetric mesh.

Figure 10 shows the results of this method (first two columns) in comparison
to the original version of Qslim (last column). Note that the topology of the
mesh output by our algorithm is perfectly symmetric, even though the geometry
of the surface is not. Note also that the geometric approximation achieved with
symmetry-aware simplification is similar to the original (according to Metro [27],
it has a Hausdorff distance approximately 6% larger). Since the symmetric mesh
better reflects the semantic structure of the surface, we believe it may be prefer-
able as a base domain for parameterization, animation, simulation, and other
applications.
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(a) Symmetry-preserving QSlim

        (face correspondences)

(a) Symmetry-preserving QSlim

        (edges)

(a) Original QSlim

        (edges)

Fig. 10. Symmetry-preserving QSlim (a-b) produces a surface approximation compa-
rable to the original algorithm (c) of [19], but guaranteed to have symmetric topology,
even for an asymmetric surface (the first column (a) shows symmetric face correspon-
dences preserved during the decimation).

7 Conclusion

In summary, this paper has investigated methods for and applications of sym-
metrizing 3D surface meshes. The main idea is that symmetry-aware algorithms
can be used to preserve, exploit, and enhance structural symmetries of a surface,
even if the underlying geometry is only approximately symmetric. This idea is
important because the vast majority of objects in the world have some sort of
structural symmetries, and current mesh processing algorithms generally do not
preserve them.

The main contribution of this paper is the symmetry-aware mesh processing
framework, which includes algorithms for geometric symmetrization and sym-
metric remeshing. We provide demonstration of the framework for mesh beauti-
fication, symmetry enhancement, attribute transfer, and simplification.

The initial results seem promising, but our implementation has limitations,
which suggest immediate topics for future work. We have demonstrated our
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algorithms only for symmetries across planar reflections. Although our code can
handle symmetries for arbitrary affine transformations, we have not investigated
examples of this type in our study.

Considering steps forward, the most obvious next step is to investigate other
applications enabled by symmetry-aware processing. First candidates include
compression and denoising. In the former case, it is possible that factoring a
mesh into its symmetric part and its asymmetric residual could provide in-
creased compression ratios, since at least half of the symmetric part can be
discarded [13]. For denoising, the symmetric map could provide a way to blend
noise across symmetric surfaces, as in Smoothing by Example [28]. These are
just two examples – considering other applications that exploit symmetries will
be a fruitful topic for future work.

The main long-term direction suggested by this work is that digital geometry
processing algorithms can and should consider large-scale structural features as
well as local surface properties when processing a mesh. So, future work should
consider better ways to detect and encode large-scale shape features (such as
symmetry) and to preserve and exploit them during surface processing.
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