
A Beam Tracing Approach to Acoustic Modeling for
Interactive Virtual Environments

Thomas Funkhouser
�
, Ingrid Carlbom, Gary Elko,

Gopal Pingali, Mohan Sondhi, and Jim West
Bell Laboratories

Abstract

Virtual environment research has focused on interactive image gen-
eration and has largely ignored acoustic modeling for spatialization
of sound. Yet, realistic auditory cues can complement and enhance
visual cues to aid navigation, comprehension, and sense of presence
in virtual environments. A primary challenge in acoustic model-
ing is computation of reverberation paths from sound sources fast
enough for real-time auralization. We have developed a system that
uses precomputed spatial subdivision and “beam tree” data struc-
tures to enable real-time acoustic modeling and auralization in inter-
active virtual environments. The spatial subdivision is a partition of
3D space into convex polyhedral regions (cells) represented as a cell
adjacency graph. A beam tracing algorithm recursively traces pyra-
midal beams through the spatial subdivision to construct a beam tree
data structure representing the regions of space reachable by each
potential sequence of transmission and specular reflection events at
cell boundaries. From these precomputed data structures, we can
generate high-order specular reflection and transmission paths at
interactive rates to spatialize fixed sound sources in real-time as the
user moves through a virtual environment. Unlike previous acoustic
modeling work, our beam tracing method: 1) supports evaluation of
reverberation paths at interactive rates, 2) scales to compute high-
order reflections and large environments, and 3) extends naturally
to compute paths of diffraction and diffuse reflection efficiently. We
are using this system to develop interactive applications in which a
user experiences a virtual environment immersively via simultane-
ous auralization and visualization.

Key Words: Beam tracing, acoustic modeling, auralization,
spatialized sound, virtual environment systems, virtual reality.

1 Introduction

Interactive virtual environment systems combine graphics, acous-
tics, and haptics to simulate the experience of immersive exploration
of a three-dimensional virtual world by rendering the environment
as perceived from the viewpoint of an observer moving under real-
time control by the user. Most prior research in virtual environment
systems has focused on visualization (i.e., methods for rendering
more realistic images or for increasing image refresh rates), while
relatively little attention has been paid to auralization (i.e., rendering
spatialized sound based on acoustical modeling). Yet, it is clear that

�
Princeton University

we must pay more attention to producing realistic sound in order to
create a complete immersive experience in which aural cues com-
bine with visual cues to support more natural interaction within a
virtual environment. First, qualitative changes in sound reverbera-
tion, such as more absorption in a room with more lush carpets, can
enhance and reinforce visual comprehension of the environment.
Second, spatialized sound can be useful for providing audio cues
to aid navigation, communication, and sense of presence [14]. For
example, the sounds of objects requiring user attention can be spa-
tialized according to their positions in order to aid object location
and binaural selectivity of desired signals (e.g., “cocktail party” ef-
fect). The goal of this work is to augment a previous interactive
image generation system to support real-time auralization of sound
based on realistic acoustic modeling in large virtual environments.
We hope to use this system to support virtual environment appli-
cations such as distributed training, simulation, education, home
shopping, virtual meetings, and multiplayer games.

A primary challenge in acoustic modeling is computation of
reverberation paths from a sound source to a listener (receiver) [30].
As sound may travel from source to receiver via a multitude of
reflection, transmission, and diffraction paths, accurate simulation
is extremely compute intensive. For instance, consider the simple
example shown in Figure 1. In order to present an accurate model
of a sound source (labeled ‘S’) at a receiver location (labeled ‘R’),
we must account for an infinite number of possible reverberation
paths (some of which are shown). If we are able to model the
reverberation paths from a sound source to a receiver, we can render
a spatialized representation of the sound according to their delays,
attenuations, and source and receiver directivities.

S R

Figure 1: Example reverberation paths.

Since sound and light are both wave phenomena, acoustic mod-
eling is similar to global illumination in computer graphics. How-
ever, there are several significant differences. First, the wavelengths
of audible sound fall between 0.02 and 17 meters (20kHz to 20Hz),
more than five orders of magnitude longer than visible light. As a
result, though reflection of sound waves off large walls tends to be
primarily specular, significant diffraction does occur around edges
of objects like walls and tables. Small objects (like coffee mugs)
have significant effect on the sound field only at frequencies beyond
4 kHz, and can usually be excluded from models of acoustic en-
vironments, especially in the presence of other significant sources
of reflection and diffraction. Second, sound travels through air 106

times slower than light, causing significantly different arrival times
for sound propagating along different paths, and the resulting acous-
tic signal is perceived as a combination of direct and reflected sound

(reverberation). The time distribution of the reverberation paths
of the� sound in a typical room is much longer than the integration
period of the perception of sound by a human. Thus, it is important
to accurately compute the exact time/frequency distribution of the
reverberation. In contrast, the speed of light and the perception of
light is such that the eye integrates out the transient response of a
light source and only the energy steady-state response needs to be
calculated. Third, since sound is a coherent wave phenomenon, the
calculation of the reflected and scattered sound waves must incor-
porate the phase (complex amplitude) of the incident and reflected
wave(s), while for incoherent light, only the power must be summed.

Although acoustic modeling has been well-studied in the con-
text of non-interactive applications [34], such as concert hall design,
there has been relatively little prior research in real-time acoustic
modeling for virtual environment systems [15]. Currently available
auralization systems generally model only early specular reflections,
while late reverberations and diffractions are modeled with statisti-
cal approximations [1, 25, 40, 53]. Also, due to the computational
complexity of current systems, they generally consider only simple
geometric arrangements and low-order specular reflections. For in-
stance, the Acoustetron [17] computes only first- and second-order
specular reflections for box-shaped virtual environments. Video
games provide spatialized sound with ad hoc localization methods
(e.g., pan effects) rather than with realistic geometrical acoustic
modeling methods. The 1995 National Research Council Report on
Virtual Reality Scientific and Technological Challenges [15] states
that “current technology is still unable to provide interactive systems
with real-time rendering of acoustic environments with complex, re-
alistic room reflections.”

In this paper, we describe a beam tracing method that computes
high-order specular reflection and transmission paths from fixed
sources in large polygonal models fast enough to be used for au-
ralization in interactive virtual environment systems. The key idea
behind our method is to precompute and store spatial data struc-
tures that encode all possible transmission and specular reflection
paths from each audio source and then use these data structures to
compute reverberation paths to an arbitrarily moving observer view-
point for real-time auralization during an interactive user session.
Our algorithms for construction and query of these data structures
have the unique features that they scale well with increasing num-
bers of reflections and global geometric complexity, and they extend
naturally to model paths of diffraction and diffuse reflection. We
have incorporated these algorithms and data structures into a system
that supports real-time auralization and visualization of large virtual
environments.

2 Previous Work

There has been a large amount of work in acoustic modeling. Prior
methods can be classified into four types: 1) image source methods,
2) radiant exchange methods 3) path tracing, and 4) beam tracing.

2.1 Image Source Methods

Image source methods [2, 6] compute specular reflection paths by
considering virtual sources generated by mirroring the location of
the audio source,

�
, over each polygonal surface of the environment

(see Figure 2). For each virtual source,
���

, a specular reflection path
can be constructed by iterative intersection of a line segment from
the source position to the receiver position, � , with the reflecting
surface planes (such a path is shown for virtual source

���
in Fig-

ure 2). Specular reflection paths can be computed up to any order
by recursive generation of virtual sources.

The primary advantage of image source methods is their robust-
ness. They can guarantee that all specular paths up to a given order
or reverberation time will be found. The disadvantages of image
source methods are that they model only specular reflections, and

S

R

Sa Sb

Sc

Sd

a

b

cd

Figure 2: Image source method.

their expected computational complexity has exponential growth. In
general, 	�

����� virtual sources must be generated for � reflections
in environments with � surface planes. Moreover, in all but the sim-
plest environments (e.g., a box), complex validity/visibility checks
must be performed for each of the 	�

����� virtual sources since not
all of the virtual sources represent physically realizable specular
reflection paths [6]. For instance, a virtual source generated by
reflection over the non-reflective side of a surface is “invalid.” Like-
wise, a virtual source whose reflection is blocked by another surface
in the environment or intersects a point on a surface’s plane which
is outside the surface’s boundary (e.g.,

���
in Figure 2) is “invisi-

ble.” During recursive generation of virtual sources, descendents
of invalid virtual sources can be ignored. However, descendents of
invisible virtual sources must still be considered, as higher-order
reflections may generate visible virtual sources (consider mirroring� �

over surface �). Due to the computational demands of 	�

����� vis-
ibility checks, image source methods are practical only for acoustic
modeling of few reflections in simple environments [32].

2.2 Radiant Exchange Methods

Radiant exchange methods have been used extensively in computer
graphics to model diffuse reflection of radiosity between patches
[21]. Briefly, radiosity methods consider every patch a potential
emitter and reflector of radiosity. Conceptually, for every pair of
patches, � and � , a form factor is computed which measures the
fraction of the radiosity leaving patch � that arrives at patch � . This
approach yields a set of simultaneous equations which are solved to
obtain the radiosity for each patch.

Although this approach has been used with good results for
modeling diffuse indirect illumination in computer graphics, it is
not easily extensible to acoustics. In acoustics modeling, transport
equations must account for phase, specular reflection tends to dom-
inate diffuse reflection, and “extended form factor” computations
must consider paths of diffraction as well as specular reflection. Fur-
thermore, to meet error tolerances suitable for acoustic modeling,
patches must be substructured to a very fine element mesh (typi-
cally much less than the acoustic wavelength), the solution must be
computed for many frequencies, and the representation of the sound
leaving an element must be very data intensive, a complex func-
tion of phase, direction, and frequency usually requiring thousands
of bytes. As a result, direct extensions to prior radiosity methods
[36, 39, 52] do not seem practical for large environments.

2.3 Path Tracing Methods

Ray tracing methods [33, 61] find reverberation paths between a
source and receiver by generating rays emanating from the source
position and following them through the environment until an ap-
propriate set of rays has been found that reach a representation of
the receiver position (see Figure 3).

Monte Carlo path tracing methods consider randomly gener-
ated paths from the source to the receiver [28]. For instance, the
Metropolis Light Transport algorithm [54] generates a sequence of
light transport paths by randomly mutating a single current path by

S
R

Figure 3: Ray tracing method.

adding, deleting, or replacing vertices. Mutated paths are accepted
according to probabilities based on the estimated contribution they
make to the solution. As contributing paths are found, they are
logged and then mutated further to generate new paths in a Markov
chain. Mutation strategies and acceptance probabilities are chosen
to insure that the method is unbiased, stratified, and ergodic.

A primary advantage of these methods is their simplicity. They
depend only on ray-surface intersection calculations, which are rel-
atively easy to implement and have computational complexity that
grows sublinearly with the number of surfaces in the model. Another
advantage is generality. As each ray-surface intersection is found,
paths of specular reflection, diffuse reflection, diffraction, and re-
fraction can be sampled [10], thereby modeling arbitrary types of
indirect reverberation, even for models with curved surfaces.

The primary disadvantages of path tracing methods stem from
the fact that the continuous 5D space of rays is sampled by a dis-
crete set of paths, leading to aliasing and errors in predicted room
responses [35]. For instance, in ray tracing, the receiver position
and diffracting edges are often approximated by volumes of space
(in order to admit intersections with infinitely thin rays), which can
lead to false hits and paths counted multiple times [35]. Moreover,
important reverberation paths may be missed by all samples. In
order to minimize the likelihood of large errors, path tracing sys-
tems often generate a large number of samples, which requires a
large amount of computation. Another disadvantage of path tracing
is that the results are dependent on a particular receiver position,
and thus these methods are not directly applicable in virtual envi-
ronment applications where either the source or receiver is moving
continuously.

2.4 Beam Tracing Methods

Beam tracing methods [23] classify reflection paths from a source by
recursively tracing pyramidal beams (i.e., sets of rays) through the
environment. Briefly, a set of pyramidal beams are constructed that
completely cover the 2D space of directions from the source. For
each beam, polygons are considered for intersection in order from
front to back. As intersecting polygons are detected, the original
beam is clipped to remove the shadow region, a transmission beam
is constructed matching the shadow region, and a reflection beam is
constructed by mirroring the transmission beam over the polygon’s
plane (see Figure 4).

Original
 Beam

Reflection
 Beam

Transmission
 Beam

S’S

a
b c

Figure 4: Beam tracing method.

As compared to image source methods, the primary advantage
of beam tracing is that fewer virtual sources must be considered for
environments with arbitrary geometry. Since each beam represents
the region of space for which a corresponding virtual source (at the
apex of the beam) is visible, higher-order virtual sources must be

considered only for reflections of polygons intersecting the beam.
For instance, in Figure 5, consider the virtual source

���
, which

results from reflection of
�

over polygon � . The corresponding
reflection beam, � � , contains exactly the set of receiver points for
which

���
is valid and visible. Similarly, � � intersects exactly the

set of polygons (� and �) for which second-order reflections are
possible after specular reflection off polygon � . Other polygons
(� , � , � , and �) need not be considered for second order specular
reflections after � . Beam tracing allows the recursion tree of virtual
sources to be pruned significantly. On the other hand, the image
source method is more efficient for a box-shaped environment for
which a regular lattice of virtual sources can be constructed that are
guaranteed to be visible for all receiver locations [2].

Sa S

d

a

Ra
b

e

f
g

c

Figure 5: Beam tracing culls invisible virtual sources.

As compared to path tracing methods, the primary advantage
of beam tracing is that it takes advantage of spatial coherence, as
each beam-surface intersection represents an infinite number of ray-
surface intersections. Also, pyramidal beam tracing does not suffer
from sampling artifacts of ray tracing [35] or the overlap problems of
cone tracing [3, 55], since the entire 2D space of directions leaving
the source can be covered by beams exactly.

The primary disadvantage of beam tracing is that the geometric
operations required to trace a beam through a 3D model (i.e., inter-
section and clipping) are relatively complex, as each beam may be
reflected and/or obstructed by several surfaces. Another limitation
is that reflections off curved surfaces and refractions are difficult to
model.

Geometric beam tracing has been used in a variety of appli-
cations, including acoustic modeling [13, 38, 46, 57], illumination
[9, 19, 20, 22, 23, 59], and radio propagation [16]. The chal-
lenge is to perform geometric operations (i.e., intersection, clipping,
and mirroring) on beams efficiently as they are traced recursively
through a complex environment.

Some systems avoid the geometric complexity of beam tracing
by approximating each beam by its medial axis ray for intersection
and mirror operations [36], possibly splitting rays as they diverge
with distance [31, 42]. In this case, the beam representation is only
useful for modeling the distribution of rays/energy with distance
and for avoiding large tolerances in ray-receiver intersection calcu-
lations. If beams are not clipped or split when they intersect more
than one surface, significant reverberation paths can be missed.

Heckbert and Hanrahan [23] described an algorithm for illumi-
nation in which pyramidal beams represented by their 2D polygonal
cross-sections are traced recursively either forward from a viewpoint
or backward from a point light source. For each beam, all polygons
are processed in front to back order. For each polygon intersecting
the beam, the shadow region is “cut out” of the original beam using
a polygon clipping algorithm capable of handling concavities and
holes. The authors describe construction of an intermediate “light
beam tree” data structure that encodes the beam tracing recursion
and is used for later evaluation of light paths. Their implementation
does not scale well to large environments since its computational
complexity grows with 	�

� 2 � for � polygons.

Dadoun et al. [12, 13] described a beam tracing algorithm
for acoustic modeling in which a hierarchical scene representation
(HSR) is used to accelerate polygon sorting and intersection testing.
During a preprocessing phase, a binary space partition (BSP) tree

structure is constructed and augmented with storage for the convex
hull for

�
each subtree. Then, during beam tracing, the HSR is used to

accelerate queries to find an ordered set of polygons potentially in-
tersecting each beam. As in [23], beams are represented by their 2D
polygonal cross-sections and are updated using the Weiler-Atherton
clipping algorithm [60] at polygon intersections.

Fortune [16] described a beam tracing algorithm for indoor radio
propagation prediction in which a spatial data structure comprising
“layers” of 2D triangulations is used to accelerate polygon intersec-
tion testing. A method is proposed in which beams are partitioned
into convex regions by planes supporting the edges of occluding
polygons. However, Fortune expects that method to be too expen-
sive for use in indoor radio propagation (where attenuation due to
transmission is small) due to the exponential growth in the number
of beams. Instead, he has implemented a system in which beams
are traced directly from the source and along paths of reflection, but
are not clipped by occluding polygons. Instead, attenuation due to
occlusion is computed for each path, taking into account the attenua-
tion of each occluding polygon along the path. This implementation
trades-off more expensive computation during path generation for
less expensive computation during beam tracing.

Jones [27] and Teller [51] have described beam tracing algo-
rithms to compute a “potentially visible set” of polygons to render
from a particular viewpoint in a computer graphics scene. These
algorithms preprocess the scene into a spatial subdivision of cells
(convex polyhedra) and portals (transparent, boundaries between
cells). Polyhedral beams are traced through portals to determine
the region of space potentially visible from a view frustum in order
to produce a conservative and approximate solution to the hidden
surface problem.

In this paper, we describe beam tracing data structures and
algorithms for real-time acoustic modeling in interactive virtual
environment applications. Our method is most closely related to
work in [23] and [51]. As compared to previous acoustic modeling
methods, the unique features of our method are the ability to: 1)
generate specular reflection and transmission paths at interactive
rates, 2) scale to support large virtual environments, 3) scale to
compute high-order reflection and transmission paths, and 4) extend
to support efficient computation of diffraction and diffuse reflection
paths. We have included these algorithms and data structures in
an interactive virtual environment system that supports immersive
auralization and visualization in complex polygonal environments.

3 System Organization

Our virtual environment system takes as input: 1) a description of the
geometry and visual/acoustic surface properties of the environment
(i.e., sets of polygons), and 2) a set of anechoic audio source signals
at fixed locations. As a user moves through the virtual environment
interactively, the system generates images as seen from a simulated
observer viewpoint, along with a stereo audio signal spatialized
according to the computed reverberation paths from each audio
source to the observer location.

In order to support real-time auralization, we partition our sys-
tem into four distinct phases (see Figure 6), two of which are pre-
processing steps that execute off-line, while the last two execute
in real-time as a user interactively controls an observer viewpoint
moving through a virtual environment. First, during the spatial sub-
division phase, we precompute spatial relationships inherent in the
set of polygons describing the environment and represent them in a
cell adjacency graph data structure that supports efficient traversals
of space. Second, during the beam tracing phase, we recursively
follow beams of transmission and specular reflection through space
for each audio source. The output of the beam tracing phase is a
beam tree data structure that explicitly encodes the region of space
reachable by each sequence of reflection and transmission paths
from each source point. Third, during the path generation phase,

we compute reverberation paths from each source to the receiver
via lookup into the precomputed beam tree data structure as the
receiver (i.e., the observer viewpoint) is moved under interactive
user control. Finally, during the auralization phase, we spatialize
each source audio signal (in stereo) according to the lengths, atten-
uations, and directions of the computed reverberation paths. The
spatialized audio output is synchronized with real-time graphics
output to provide an immersive virtual environment experience.

Geometry,
Acoustic
Properties

 Spatial
Subdivision

 Cell
Adjacency
 Graph

 Beam
Tracing

Beam
 Tree

 Path
Generation

Reverberation
 Paths

 Receiver
Position and
 Direction

 Source
Position and
 Direction

Auralization

Spatialized Audio

 Source
 Audio

Figure 6: System organization.

3.1 Spatial Subdivision

Our system preprocesses the geometric properties of the environ-
ment and builds a spatial subdivision to accelerate beam tracing.
The goal of this phase is to precompute spatial relationships in-
herent in the set of polygons describing the environment and to
represent them in a data structure that supports efficient traversals
of space. The spatial subdivision is constructed by partitioning 3D
space into a set of convex polyhedral regions and building a graph
that explicitly represents the adjacencies between the regions of the
subdivision.

We build the spatial subdivision using a Binary Space Partition
(BSP) [18], a recursive binary split of 3D space into convex polyhe-
dral regions (cells) separated by planes. To construct the BSP, we
recursively split cells by candidate planes selected by the method
described in [41]. The binary splitting process continues until no
input polygon intersects the interior of any BSP cell. The result of
the BSP is a set of convex polyhedral cells whose convex, planar
boundaries contain all the input polygons.

An adjacency graph is constructed that explicitly represents
the neighbor relationships between cells of the spatial subdivision.
Each cell of the BSP is represented by a node in the graph, and two
nodes have a link between them for each planar, polygonal boundary
shared by the corresponding adjacent cells in the spatial subdivision.
Construction of the cell adjacency graph is integrated with the binary
space partitioning algorithm. If a leaf in the BSP is split into two by
a plane, we create new nodes in the graph corresponding to the new
cells in the BSP, and we update the links of the split leaf’s neighbors
to reflect the new adjacencies. We create a separate link between
two cells for each convex polygonal region that is entirely either
transparent or opaque along the cells’ shared boundary.

A simple 2D example model (on left) and its cell adjacency
graph (on right) are shown in Figure 7. Input “polygons” appear as
solid line segments labeled with lower-case letters (���!); transpar-
ent cell boundaries introduced by the BSP are shown as dashed line
segments labeled with lower-case letters (�"�$#); constructed cell
regions are labeled with upper-case letters (�%�'&); and, links are
drawn between adjacent cells sharing a convex “polygonal” bound-
ary.

b

q(

a d k

l

o

h

c
f

e

g

i

j
)

m n

p

(a) Input model.

A

B

C
D

E

c

b

q*

a d k

l

o

h

f

e

g+
i

m n

pEpC

j
,r

ts
u

(b) Cell adjacency graph.

Figure 7: Example spatial subdivision.

3.2 Beam Tracing

After the spatial subdivision has been constructed, we use it to accel-
erate traversals of space in our beam tracing algorithm. Beams are
traced through the cell adjacency graph via a recursive depth-first
traversal starting in the cell containing the source point. Adjacent
cells are visited recursively while a beam representing the region
of space reachable from the source by a sequence of cell bound-
ary reflection and transmission events is incrementally updated. As
the algorithm traverses a cell boundary into a new cell, the current
convex pyramidal beam is “clipped” to include only the region of
space passing through the convex polygonal boundary polygon. At
reflecting cell boundaries, the beam is mirrored across the plane
supporting the cell boundary in order to model specular reflections.
As an example, Figure 8 shows a sequence of beams (green polyhe-
dra) traced up to one reflection from a source (white point) through
the spatial subdivision (blue ‘X’s are cell boundaries) for a simple
set of input polygons (red surfaces).

Figure 8: A beam clipped and reflected at cell boundaries.

Throughout the traversal, the algorithm maintains a current cell
(a reference to a cell in the spatial subdivision) and a current beam
(an infinite convex pyramidal beam whose apex is the source point).
Initially, the current cell is set to be the cell containing the source
point and the current beam is set to cover all of space. During each
step of the depth-first traversal, the algorithm continues recursively
for each boundary polygon, - , of the current cell, . , that intersects
the current beam, � . If - does not coincide with an opaque input
surface, the algorithm follows a transmission path, recursing to
the cell adjacent to . across - with a transmission beam, �0/ ,
constructed as the intersection of � with a pyramidal beam whose
apex is the source point and whose sides pass through the edges
of - . Likewise, if - coincides with a reflecting input surface,
the algorithm follows a specular reflection path, recursing in cell. with a specular reflection beam, � � , constructed by mirroring
the transmission beam over the plane supporting - . The depth-first
traversal along any path terminates when the length of a path exceeds
a user-specified threshold or when the cumulative absorption due to
transmission and reflection exceeds a preset threshold. The traversal
may also be terminated when the total number of reflections or
transmissions exceeds a third threshold.

Figure 9 contains an illustration of the beam tracing algorithm
execution for specular reflections through the simple 2D example

model shown in Figure 7. The depth-first traversal starts in the
cell (labeled ‘D’) containing the source point (labeled ‘S’) with a
beam containing the entire cell (shown as dark green). Beams are
created and traced for each of the six boundary polygons of cell ‘D’
(1 , 2 , 3 , 4 , � , and #). For example, transmission through the cell
boundary labeled ‘ # ’ results in a beam (labeled 5�6) that is trimmed
as it enters cell ‘E.’ 5�6 intersects only the polygon labeled ‘ 7 ,’ which
spawnsa reflection beam (labeled 5�68�09). That beam intersects only
the polygon labeled ‘: ,’ which spawns a reflection beam (labeled5�6;�<9=�?>). Execution continues recursively for each beam until the
length of every path exceeds a user-specified threshold or when the
absorption along every path becomes too large.

A

B

C
D

E

S

o
p@

u
s Tu

TuRoTuRoRp
t

Figure 9: Beam tracing through cell adjacency graph.

While tracing beams through the spatial subdivision, our algo-
rithm constructs a beam tree data structure [23] to be used for rapid
determination of reverberation paths from the source point later dur-
ing the path generation phase. The beam tree corresponds directly to
the recursion tree generated during the depth-first traversal through
the cell adjacency graph. It is similar to the “stab tree” data struc-
ture used by Teller to encode visibility relationships for occlusion
culling [51]. Each node of the beam tree stores: 1) a reference to the
cell being traversed, 2) the cell boundary most recently traversed
(if there is one), and 3) the convex beam representing the region
of space reachable by the sequence of reflection and transmission
events along the current path of the depth-first traversal. To further
accelerate reverberation path generation, each node of the beam tree
also stores the cumulative attenuation due to reflective and trans-
missive absorption, and each cell of the spatial subdivision stores a
list of “back-pointers” to its beam tree nodes. Figure 10 shows a
partial beam tree corresponding to the traversal shown in Figure 9.

D

EDD D DD
k j m nu l

E
o

E
pA

C
t

B C CC
si gB f

q c

B B

Figure 10: Beam tree.

3.3 Path Generation

During an interactive session in which the user navigates a simulated
observer (receiver) through the virtual environment, reverberation
paths from a particular source point,

�
, to the moving receiver

point, � , can be generated quickly via lookup in the beam tree data
structure. First, the cell containing the receiver point is found by
logarithmic-time search of the BSP. Then, each beam tree node,5 , associated with that cell is checked to see whether the beam
stored with 5 contains the receiver point. If it does, a viable ray
path from the source point to the receiver point has been found,
and the ancestors of 5 in the beam tree explicitly encode the set of
reflections and transmissions through the boundaries of the spatial
subdivision that a ray must traverse from the source to the receiver
along this path (more generally, to any point inside the beam stored
with 5).

The attenuation, length, and directional vectors for the corre-
sponding reverberation path can be derived quickly from the data
stored with the beam tree node, 5 . Specifically, the attenuation due
to reflection and transmission can be retrieved from 5 directly. The
length of the reverberation path and the directional vectors at the
source and receiver points can be easily computed as the source’s
reflected image for this path is stored explicitly in 5 as the apex
of its pyramidal beam. The actual ray path from the source point
to the receiver point can be generated by iterative intersection with
the reflecting cell boundaries stored with the ancestors of 5 . For
example, Figure 11 shows the specular reflection path to a particular
receiver point (labeled ‘R’) for the example shown in Figure 9.

A

B

C
D

E

S

pC

u

t
sR

Ip

Ioo

So

Sop

Figure 11: Reverberation path to receiver point (‘R’) computed via
lookup in beam tree for source point (‘S’).

3.4 Auralization

Once a set of reverberation paths from a source to the receiver has
been computed, the source-receiver impulse response is generated
by adding one pulse corresponding to each distinct path from the
source to the receiver. The delay associated with each pulse is given
by D�EF. , where D is the length of the corresponding reverberation
path, and . is the speed of sound. Since the pulse is attenuated
by every reflection and dispersion, the amplitude of each pulse
is given by �GEHD , where � is the product of all the frequency-
independent reflectivity and transmission coefficients for each of
the reflecting and transmitting surfaces along the corresponding
reverberation path.

At the receiver, the binaural impulse responses (response of
the left and right ears) are different due to the directivity of each
ear. These binaural impulse responses are generated by multiply-
ing each pulse of the impulse response by the cardioid directivity
function (1 E 2
 1 I cos
KJL��� , where J is the angle of arrival of the
pulse with respect to the normal vector pointing out of the ear) cor-
responding to each ear. This rough approximation to actual head
scattering and diffraction is similar to the standard two-point stereo
microphone technique used in high fidelity audio recording. Fi-
nally, the (anechoic) input audio signal is auralized by convolving it

with the binaural impulse responses to produce a stereo spatialized
audio signal. In the future, we intend to incorporate source direc-
tivity, frequency-dependent absorption [34], and angle-dependent
absorption [11, 43] into our acoustic models.

A separate, concurrently executing process is spawned to per-
form convolution of the computed binaural impulse responses with
the input audio signal. In order to support real-time auralization,
transfer of the impulse responses from the path generation process
to the convolution process utilizes double buffers synchronized by
a semaphore. Each new pair of impulse responses is loaded by the
path generation process into a “back buffer” as the convolution pro-
cess continues to access the current impulse responses stored in the
“front buffer.” A semaphore is used to synchronize the processes as
the front and back buffer are switched.

4 Results

The 3D data structures and algorithms described in the preceding
sections have been implemented in C++ and run on Silicon Graphics
and PC/Windows computers.

To test whether the algorithms scale well as the complexity of the
3D environment and the number of specular reflections increase, we
executed a series of experiments with our system computing spatial
subdivisions, beam trees, and specular reflection paths for various
architectural models of different complexities. Our test models
ranged from a simple box to a complex building, Soda Hall, the
computer science building at UC Berkeley (an image and description
of each test model appears in Figure 12). The experiments were run
on a Silicon Graphics Octane workstation with 640MB of memory
and used one 195MHz R10000 processor.

(a) Box: 1 cube.
(6 polygons)

(c) Suite: 9 rooms in office space.
(184 polygons)

(e) Floor: M 50 rooms of Soda Hall.
(1,772 polygons)

(b) Rooms: 2 rooms connected by door.
(20 polygons)

(d) Maze: 16 rooms connected by hallways.
(602 polygons)

(f) Building: M 250 rooms of Soda Hall.
(10,057 polygons)

Figure 12: Test models (source locations are gray dots).

4.1 Spatial Subdivision Results

We first constructed the spatial subdivision data structure (cell ad-
jacency graph) for each test model. Statistics from this phase of
the experiment are shown in Table 1. Column 2 lists the number
of input polygons in each model, while Columns 3 and 4 contain

the numbers of cells and links, respectively, generated by the spatial
subdiN vision algorithm. Column 5 contains the wall-clock time (in
seconds) for the algorithm to execute, while Column 6 shows the
storage requirements (in MBs) for the resulting spatial subdivision.

Model # # # Time Storage
Name Polys Cells Links (sec) (MB)

Box 6 7 18 0.0 0.004
Rooms 20 12 43 0.1 0.029
Suite 184 98 581 3.0 0.352
Maze 602 172 1,187 4.9 0.803
Floor 1,772 814 5,533 22.7 3.310
Bldg 10,057 4,512 31,681 186.3 18.694

Table 1: Spatial subdivision statistics.

Empirically, we find that the numbers of cells and links created
by our spatial subdivision algorithm grow linearly with the number
of input polygons for typical architectural models (see Figure 13),
rather than quadratically as is possible for worst case geometric ar-
rangements. The reason for linear growth can be seen intuitively
in the two images inlaid in Figure 13, which compare spatial sub-
divisions for the Maze test model (on the left) and a 2x2 grid of
Maze test models (on the right). The 2x2 grid of Mazes has ex-
actly four times as many polygons and approximately four times as
many cells. The storage requirements of the spatial subdivision data
structure also grow linearly as they are dominated by the vertices of
link polygons.

0 11K1K 2K 6K3K 4K 5K 7K 8K 9K 10K

C

el
ls

 in
 S

pa
tia

l S
ub

di
vi

si
on

Polygons in Environment

5K

4K

3K

2K

1K

Maze

2x2 Grid of Mazes

Figure 13: Plot of subdivision size vs. polygonal complexity.

The time required to construct the spatial subdivisions grows
super-linearly, dominated by the code that selects and orders split-
ting planes during BSP construction (see [41]). It is important to
note that the spatial subdivision phase must be executed only once
off-line for each geometric model, as its results are stored in a file,
allowing rapid reconstruction in subsequent beam tracing execu-
tions.

4.2 Beam Tracing Results

We experimented with our beam tracing algorithm for sixteen source
locations in each test model. The source locations were chosen to
represent typical audio source positions (e.g., in offices, in common
areas, etc.) – they are shown as gray dots in Figure 12 (experiments
with the Building test used the same source locations as are shown
in the Floor model). For each source location, we traced beams (i.e.,
constructed a beam tree) five times, each time with a different limit
on the maximum number of specular reflections (e.g., up to 0, 1, 2,
4, or 8 reflections). Other termination criteria based on attenuation
or path length were disabled, and transmission was ignored, in order

to isolate the impact of input model size and maximum number of
specular reflections on computational complexity.

Table 2 contains statistics gathered during the beam tracing
experiment – each row represents an execution with a particular test
model and maximum number of reflections, averaged over all 16
source locations. Columns 2 and 3 show the number of polygons
describing each test model and the maximum number of specular
reflections allowed in each test, respectively. Column 4 contains the
average number of beams traced by our algorithm (i.e., the average
number of nodes in the resulting beam trees), and Column 5 shows
the average wall-clock time (in milliseconds) for the beam tracing
algorithm to execute.

Beam Tracing Path Generation
Model # # # Time # Time
Name Polys Rfl Beams (ms) Paths (ms)

Box 6 0 1 0 1.0 0.0
1 7 1 7.0 0.1
2 37 3 25.0 0.3
4 473 42 129.0 6.0
8 10,036 825 833.0 228.2

Rooms 20 0 3 0 1.0 0.0
1 31 3 7.0 0.1
2 177 16 25.1 0.3
4 1,939 178 127.9 5.2
8 33,877 3,024 794.4 180.3

Suite 184 0 7 1 1.0 0.0
1 90 9 6.8 0.1
2 576 59 25.3 0.4
4 7,217 722 120.2 6.5
8 132,920 13,070 672.5 188.9

Maze 602 0 11 1 0.4 0.0
1 167 16 2.3 0.0
2 1,162 107 8.6 0.1
4 13,874 1,272 36.2 2.0
8 236,891 21,519 183.1 46.7

Floor 1,772 0 23 4 1.0 0.0
1 289 39 6.1 0.1
2 1,713 213 21.5 0.4
4 18,239 2,097 93.7 5.3
8 294,635 32,061 467.0 124.5

Bldg 10,057 0 28 5 1.0 0.0
1 347 49 6.3 0.1
2 2,135 293 22.7 0.4
4 23,264 2,830 101.8 6.8
8 411,640 48,650 529.8 169.5

Table 2: Beam tracing and path generation statistics.

Scale with Increasing Polygonal Complexity

We readily see from the results in Column 4 that the number of beams
traced by our algorithm (i.e., the number of nodes in the beam tree)
does not grow at an exponential rate with the number of polygons
in these environments (as it does using the image source method).
Each beam traced by our algorithm pre-classifies the regions of
space according to whether the corresponding virtual source (i.e.,
the apex of the beam) is visible to a receiver. Rather than generating	�

��� virtual sources (beams) at each step of the recursion as in the
image source method, we directly find only the potentially visible
virtual sources via beam-polygon intersection and cell adjacency
graph traversal. We use the current beam and the current cell of the
spatial subdivision to find the small set of polygon reflections that
admit visible higher-order virtual sources.

The benefit of this approach is particularly important for large
environments in which the boundary of each convex cell is sim-
ple, and yet the entire environment is very complex. As an ex-
ample, consider computation of up to 8 specular reflections in the
Building test model (the last row of Table 2). The image source
method must consider approximately 1,851,082,741 virtual sources
(O 8

��P 0
 10 Q 057 E 2 � �), assuming half of the 10,057 polygons are
front-facing to each virtual source. Our beam tracing method con-

siders only 411,640 virtual sources, a difference of four orders of
magnitude.R In most cases, it would be impractical to build and store
the recursion tree without such effective pruning.

In “densely-occluded” environments,in which all but a littlepart
of the environment is occluded from any source point (e.g., most
buildings, cities, etc.), the number of beams traced by our algorithm
does not even grow linearly with the total number of polygons in
the environment (see Figure 14). In these environments, the number
of boundaries on each cell is nearly constant, and a nearly constant
number of cells are reached by each beam, leading to near-constant
expected-case complexity of our beam tracing algorithm with in-
creasing global environment complexity. As an example, the two
images inlaid in Figure 14 show that the number of beams (green)
traced in the Maze test model (left) does not increase significantly
if the model is increased to be a 2x2 grid of Maze models (right).
The beam tracing algorithm is impacted only by local complexity,
and not by global complexity.

0 11K1K 2K 6K3K 4K 5K 7K 8K 9K 10K

100K

200K

300K

400K

B

ea
m

s
T

ra
ce

d
(u

p
to

 8
 r

ef
le

ct
io

ns
)

Polygons in Environment

Maze

2x2 Grid of Mazes
n8

Figure 14: Plot of beam tree size vs. polygonal complexity.

Scale with Increasing Reflections

We see that the number of beams traced by our algorithm grows
exponentially, but far slower than 	�

� � � , as we increase the max-
imum number of reflections. Figure 15 shows a logscale plot of
the average number of beams traced in the Building model with
increasing numbers of specular reflections. The beam tree growth is
less than 	�

� � � because each beam narrows as it is clipped by the
cell boundaries it has traversed, and thus it tends to intersect fewer
cell boundaries (see the example beam inlaid in Figure 15). In the
limit, each beam becomes so narrow that it intersects only one or
two cell boundaries, on average, leading to a beam tree with a small
branching factor (rather than a branching factor of 	�

��� , as in the
image source method).

0

L
og

 (

B
ea

m
s

T
ra

ce
d

in
 B

ui
ld

in
g

M
od

el
)

Maximum Number of Reflections
1 2 3 4 5 6 7 8

10

100

1000

10,000

100,000

1,000,000

nr

Beams intersect
fewer polygons

after more reflections

Figure 15: Plot of beam tree size with increasing reflections.

Tree Total Interior Leaf Branching
Depth Nodes Nodes Nodes Factor

0 1 1 0 16.0000
1 16 16 0 6.5000
2 104 104 0 4.2981
3 447 446 1 2.9193
4 1,302 1,296 6 2.3920
5 3,100 3,092 8 2.0715

6-10 84,788 72,469 12,319 1.2920
11-15 154,790 114,664 40,126 1.2685

>15 96,434 61,079 35,355 1.1789

Table 3: Example beam tree branching statistics.

As an example, consider Table 3 which shows the average
branching factor for nodes at each depth of the beam tree con-
structed for up to 8 specular reflections in the Building model from
one source location. The average branching factor (Column 5) gen-
erally decreases with tree depth and is generally bounded by a small
constant in lower levels of the tree.

On the other hand, if a beam is trimmed by many cell bound-
aries and becomes too narrow, the advantages of beam tracing over
ray tracing are diminished. This observation suggests a possible
future hybrid approach in which medial rays are used to approxi-
mate intersections for beams whose cross-sectional area falls below
a threshold.

4.3 Path Generation Results

In order to verify that specular reflection paths can be computed from
fixed sources at interactive rates as the receiver moves, we conducted
experiments to quantify the complexity of generating specular re-
flection paths to different receiver locations from precomputed beam
trees. For each beam tree constructed in the previous experiment,we
logged statistics during generation of specular reverberation paths
to 16 different receiver locations. Receivers were chosen randomly
within a two foot sphere around the source to represent a typical au-
dio scenario in which the source and receiver are in close proximity
within the same “room.” We believe this represents a worst-case
scenario as fewer paths would likely be found to more remote and
more occluded receiver locations.

Columns 6 and 7 of Table 2 contain statistics gathered during
path generation for each combination of model and termination cri-
terion averaged over all 256 source-receiver pairs (i.e., 16 receivers
for each of the 16 sources). Column 6 contains the average num-
ber of reverberation paths generated, while Column 7 shows the
average wall-clock time (in milliseconds) for execution of the path
generation algorithm. Figure 16 shows a plot of the wall-clock time
required to generate up to eighth-order specular reflection paths for
each test model.

0 11K1K 2K 6K3K 4K 5K 7K 8K 9K 10K

0.05

0.10

0.15

0.20

Pa
th

 G
en

er
at

io
n

T
im

e
(i

n
se

co
nd

s)
(u

p
to

 8
 r

ef
le

ct
io

ns
)

Polygons in Environment

Building:
10,057 input polygons
8 specular reflections
6 updates per second

Figure 16: Path compute time vs. polygonal complexity.

We find that the number of specular reflection paths between
a sourceS and receiver in close proximity of one another is nearly
constant across all of our test models. Also, the time required by
our path generation algorithm is generally not dependent on the
number of polygons in the environment (see Figure 16), nor is it
dependent on the total number of nodes in the precomputed beam
tree. This result is due to the fact that our path generation algorithm
considers only nodes of the beam tree with beams residing inside
the cell containing the receiver location. Therefore, the computation
time required by the algorithm is not dependent on the complexity
of the whole environment, but instead on the number of beams that
traverse the receiver’s cell.

Overall, we find that our algorithm supports generation of spec-
ular reflection paths between a fixed source and any (arbitrarily
moving) receiver at interactive rates in complex environments. For
instance, we are able to compute up to 8th order specular reflection
paths in the Building environment with more than 10,000 polygons
at a rate of approximately 6 times per second (i.e., the rightmost
point in the plot of Figure 16).

4.4 Auralization Results

We have integrated the acoustic modeling method described in this
paper into an interactive system for audio/visual exploration of vir-
tual environments (e.g., using VRML). The system allows a user to
move through a virtual environment while images and spatialized
audio are rendered in real-time according to the user’s simulated
viewpoint. Figure 17 shows one application we have developed,
called VirtualWorks, in which a user may interact with objects (e.g.,
click on them with the mouse) in the virtual environment to invoke
behaviors that present information in various media, including text,
image, video, and spatialized audio. For instance, if the user clicks
on the workstation sitting on the desk, the application invokes a
video which is displayed on the screen of that workstation. We
are using this system to experiment with 3D user interfaces for
presentation of multimedia data and multi-user interaction.

We ran experiments with this application using a Silicon Graph-
ics Octane workstation with 640MB of memory and two 195MHz
R10000 processors. One processor was used for image generation
and acoustic modeling (i.e., reverberation path generation), while
the second processor was dedicated solely to auralization (i.e., con-
volution of the computed stereo impulse responses with audio sig-
nals).

Due to the differences between graphics and acoustics described
in Section 1, the geometry and surface characteristics of the virtual
environment were input and represented in two separate forms,
one for graphics and another for acoustics. The graphical model
(shown in Figure 17) was represented as a scene graph containing
80,372 polygons, most of which describe the furniture and other
small, detailed, visually-important objects in the environment. The
acoustical model contained only 184 polygons, which described
the ceilings, walls, cubicles, floors, and other large, acoustically-
important features of the environment (it was identical to the Suite
test model shown in Figure 12c).

We gathered statistics during sample executions of this ap-
plication. Figures 17b-c show an observer viewpoint path (red)
along which the application was able to render between eight and
twelve images per second, while simultaneously auralizing four au-
dio sources (labeled 1-4) in stereo according to fourth-order specular
reflection paths updated during each frame. While walking along
this path, it was possible to notice subtle acoustic effects due to
reflections and occlusions. In particular, near the viewpoint labeled
‘A’ in Figure 17b, audio source ‘2’ became very reverberant due to
reflections (cyan lines) in the long room. Likewise, audio source ‘3’
suddenly became much louder and then softer as the observer passed
by an open doorway near the viewpoint labeled ‘B’ in Figure 17c.

Throughout our experiments, the auralization process was the
bottleneck. Our C++ convolution code running on a R10000 pro-

cessor could execute fast enough to output 8 KHz stereo audio for a
set of impulse responses cumulatively containing around 500 non-
zero elements. We are planning to integrate DSP-based hardware
[37] with our system to implement real-time convolution in the near
future.

5 Discussion

5.1 Geometric Limitations

Our method is not practical for all virtual environments. First, the
geometric input must comprise only planar polygons. Each acoustic
reflector is assumed to be locally reacting and to have dimensions
far exceeding the wavelength of audible sound (since initially we
are assuming that specular reflections are the dominant components
of reverberation).

Second, the efficiency of our method is greatly impacted by
the complexity and quality of the constructed spatial subdivision.
For best results, the polygons should be connected (e.g., without
small cracks between them) and arranged such that a large part of
the model is occluded from any position in space (e.g., like most
buildings or cities). Specifically,our method would not perform well
for geometric models with high local geometric complexity (e.g.,
a forest of trees). In these cases, beams traced through boundaries
of cells enclosing free space would quickly become fragmented
into many smaller beams, leading to disadvantageous growth of the
beam tree. For this reason, our method is not as well suited for
global illumination as it is for acoustic modeling, in which small
objects can be ignored and large surfaces can be modeled with little
geometric surface detail due to the longer wavelengths of audible
sound.

Third, the major occluding and reflecting surfaces of the virtual
environment must be static during interactive path generation and
auralization. If any acoustically significant polygon moves, the
spatial subdivision and every beam tree must be recomputed.

The class of geometric models for which our method does work
well includes most architectural and urban environments. In these
models, acoustically significant surfaces are generally planar, large,
and stationary, and the acoustical effects of any sound source are
limited to a local region of the environment.

5.2 Diffraction and Diffuse Reflection

Our current 3D implementation traces beams only along paths of
specular reflection and transmission, and it does not model other
scattering effects. Of course, paths of diffraction and diffuse re-
flection are also important for accurate acoustic modeling [34, 26].
Fortunately, our beam tracing algorithm and beam tree represen-
tation can be generalized to model these effects. For instance,
new beams can be traced that enclose the region of space reached
by diffracting and diffuse reflection paths, and new nodes can be
added to the beam tree representing diffractions and diffuse reflec-
tion events at cell boundaries. For these more complex scattering
phenomena, the geometry of the beams is most useful for comput-
ing candidate reverberation paths, while the amplitude of the signal
along any of the these paths can be evaluated for a known receiver
during path generation. We have already included these extensions
in a 2D beam tracing implementation, and we are currently working
on a similar 3D implementation.

First, consider diffraction. According to the Geometrical The-
ory of Diffraction [29], an acoustic field that is incident on a dis-
continuity along an edge has a diffracted wave that propagates into
the shadow region. The diffracted wave can be modeled in geo-
metric terms by considering the edge to be a source of new waves
emanating from the edge. Higher order reflections and diffractions
occur as diffracted waves impinge upon other surfaces and edge
discontinuities. By using edge-based adjacency information in our

(a)

13

2

4

A

(b)

13

2

4

B

(c)

Figure 17: VirtualWorks application. User’s view is shown in (a), while a bird’s eye view of fourth-order reverberation paths (color coded
lines) from four sources (numbered circles) to Viewpoints ‘A’ and ‘B’ (black circles) are shown in (b) and (c), respectively.

spatial subdivision data structure, we can quickly perform the geo-
metric operations required to construct and trace beams along paths
of diffraction. For a given beam, we can find edges causing diffrac-
tion, as they are the ones: 1) intersected by the beam, and 2) shared
by cell boundaries with different acoustic properties (e.g., one is
transparent and another is opaque). For each such edge, we can
determine the region of space reached by diffraction at that edge
by tracing a beam whose “source” coincides with the portion of
the edge intersected by the impinging beam, and whose extent is
bounded by the solid wedge of opaque surfaces sharing the edge.
For densely-occluded environments, each such diffraction beam can
be computed and traced in expected-case constant time.

Second, consider diffuse reflection. We may model complex
reflections and diffractions from some highly faceted surfaces as
diffuse reflections from planar surfaces emanating equally in all
directions. To compute the region of space reached by such a reflec-
tion using our approach, we can construct a beam whose “source”
is the convex polygonal region of the surface intersected by an im-
pinging beam and whose initial extent encloses the entire halfspace
in front of the surface. We can trace the beam through the cell
adjacency graph to find the region of space reached from any point
on the reflecting part of the surface (i.e., the anti-penumbra [50]).

We have implemented these methods so far in 2D using a pla-
nar winged-edge representation [5] for the spatial subdivision and
a bow-tie representation [49] for the beams. Unfortunately, tracing
3D “beams” of diffraction and diffuse reflection is more compli-
cated. First, the source of each diffraction beam is no longer a
point, but a finite edge, and the source of each diffuse reflection
beam is generally a convex polygon. Second, as we trace such
beams through the spatial subdivision, splitting and trimming them
as they passes through multiple convex polygonal cell boundaries,
their bounding surfaces can become quadric surfaces (i.e., reguli)
[50]. Finally, evaluation of the amplitude of the signal along a
“path” of diffraction or diffuse reflection requires integration over
(possibly multiple) edges and polygons. We are currently extending
our 3D data structures and algorithms to model these effects. Ini-
tially, we are planning to trace polyhedral beams that conservatively
over-estimate the region covered by an exact, more complex, repre-
sentation of the scattering patterns. Then, as each reverberation path
to a particular receiver is considered, we will check whether it lies
within the exact scattering region, or whether it should be discarded
because it lies in the over-estimating region of the polyhedral beam.

5.3 Visualization

In order to aid understanding and debugging of our acoustic model-
ing method, we have found it extremely valuable to use interactive
visualization. So far, we have concentrated on visualization of our
data structures and algorithms. Our system provides menu and key-
board commands that may be used to toggle display of the: 1) input
polygons (red), 2) source point (white), 3) receiver point (purple),
4) boundaries of the spatial subdivision (gray), 5) pyramidal beams

(green), 6) image sources (cyan), and 7) reverberation paths (yel-
low). The system also supports visualization of acoustic metrics
(e.g., power, clarity, etc.) computed for a set of receiver locations
on a regular planar grid displayed with a textured polygon. Example
visualizations are shown in Figures 18-20.

S

Beams

Power
Levels
(Gray)

S
R

Reflection
 Paths

Figure 18: Eighth-order specular reflection beams (left) and pre-
dicted power levels (right) in Maze model.

Of course, many commercial [7, 8, 40] and research systems
[38, 47] provide elaborate tools for visualizing computed acoustic
metrics. The critical difference in our system is that it supports
continuous interactive updates of reverberation paths and debugging
information as a user moves the receiver point with the mouse. For
instance, Figures 18 and 20 show eighth-order specular reflection
paths (yellow lines) from a single audio source (white points) to a
receiver location (purple points) which can be updated more than
six times per second as the receiver location is moved arbitrarily.
The user may select any reverberation path for further inspection
by clicking on it and then independently toggle display of reflecting
cell boundaries, transmitting cell boundaries, and the associated set
of pyramidal beams for the selected path.

Source

Receiver

Beams

Figure 19: Beams (green) containing all eighth-order specular re-
flection paths from a source to a receiver in City model.

Separate pop-up windows provide real-time display of other
useful visual debugging and acoustic modeling information. For
instance, one popup window shows a diagram of the beam tree

data structure. Each beam tree node is dynamically colored in
the diagramT according to whether the receiver point is inside its
associated beam (white) or cell (green). Another popup window
shows a plot of the impulse response representing the reverberation
paths from source to receiver (see Figure 20). A third popup window
shows values of various acoustic metrics, including power, clarity,
reverberation time, and frequency response. All of the information
displayed is updated in real-time as the user moves the receiver
interactively with the mouse.

time

a
m
p
l
i
t
u
d
e

Source

Receiver

Reflection
 Paths

 Impulse
Response

Figure 20: Impulse response (inset) derived from eighth-order spec-
ular reflection paths (yellow) in Floor model.

6 Future Work

6.1 System Extensions

Our system could be extended in many ways. For instance, the beam
tracing algorithm is well-suited for parallelization, with much of the
previous work in parallel ray tracing directly applicable [4]. Also,
the geometric regions covered by each node of the beam tree could
be stored in a single hierarchical spatial structure (e.g., a BSP), al-
lowing logarithmic search during path generation, rather than linear
search of the beams inside a single cell. HRFT (Head-Related Trans-
fer Functions) directional filtering, angle-dependent and frequency-
dependent acoustic properties of absorption, and source directivity
should be included in our acoustical models. Of course, we could
also use beam trees to allow a user to manipulate the acoustic prop-
erties of individual surfaces of the environment interactively with
real-time feedback, like parameterized ray tracing [44].

6.2 Moving Sources

In order to support acoustic modeling in real-time, our current ap-
proach is to fix the position of each sound source and to precompute
and store potential reverberation paths from that position to all
points in space (i.e., the beam tree) so that reverberation paths to a
specific receiver can be generated quickly. This method achieves
interactive performance by trading real-time processing for storage
and precomputation time. Yet, it requires that each sound source
be stationary, which is not adequate to support all virtual environ-
ment applications (e.g., multi-user chat). In order to extend our
method to support real-time acoustic modeling for virtual environ-
ments with moving sound sources, one approach is to precompute
and store beam trees for a finite number of source locations (e.g.,
on a grid), and then derive the impulse response for any arbitrary
source location via interpolation.

A second approach is to rework our beam tracing algorithm
(i.e., the second phase, which currently executes as a preprocessing
step) to execute in real-time at interactive rates. Although real-time
beam tracing requires improvement of one or two orders of magni-
tude (beam tracing times for our test models ranged from 0.8 to 49
seconds for eigth-order specular reflections), we are optimistic that

this is possible. In contrast to our current beam tracing precomputa-
tion, which must consider potential receivers at any point in space, a
real-time beam tracing algorithm must compute reverberationpaths
only to a specific set of known receiver positions (e.g., the locations
of other avatars in a multi-user chat). Therefore, we can implement
a far more efficient beam tracing algorithm by employing aggressive
path pruning methods and importance heuristics [45] to trace only
beams that represent (psychoacoustically) significant reverberation
paths between some source-receiver pair. Bi-directional beam trac-
ing (computing kth-order reflections by combining beams traced up
to 2UE 2 reflections from both the source and the receiver positions
[23, 24]) should also improve performance. We plan to experiment
with these techniques and to incorporate moving sound sources into
our system in the near future.

6.3 Simulation Verification

Verification of our simulation results by comparison to measured
data is an important topic for further discussion. Unlike sound
rendering systems for animation in virtual environments [48, 53],
we aim to simulate room impulse responses accurately enough to
be used also for architectural and concert hall design applications.

Although we do not present verification results in this paper
due to space limitations, it is useful to note that our current sys-
tem computes (more efficiently) the same specular reflection paths
as the source image method, for which verification results have
been published [56]. We are currently making impulse response
measurements for verification of our simulations in the Varechoic
Chamber, a specially constructed acoustics facility that allows one
to vary the reverberation time by more than a factor of 10 by adjust-
ing the acoustic reflection coefficient of 384 individually computer
controllable acoustic panels [58].

6.4 Psychoacoustics Experiments

Perhaps the most interesting direction of future work is to investigate
the possible applications of interactive acoustic modeling. What can
we do with interactive manipulation of acoustic model parameters
that would be difficult to do otherwise?

As a first application, we hope to build a system that uses our
interactive acoustic simulations to investigate the psychoacoustic
effects of varying different acoustic modeling parameters. Our
system will allow a user to interactively change various acoustics
parameters with real-time auralization and visualization feedback.
With this interactive simulation system, it may be possible to ad-
dress psychoacoustic questions, such as “how many reflections are
psychoacoustically important to model?,” or “which surface reflec-
tion model provides a psychoacoustically better approximation?"
Moreover, we hope to investigate the interaction of visual and aural
cues on spatial perception. We believe that the answers to such
questions are of critical importance to future designers of 3D virtual
environment systems.

7 Conclusion

We have described a system that uses beam tracing data structures
and algorithms to compute high-order specular reflection and trans-
mission paths from static sources to a moving receiver at interactive
rates for real-time auralization in large virtual environments.

As compared to previous acoustic modeling approaches, our
beam tracing method takes unique advantage of precomputation
and convexity. Precomputation is used twice, once to encode in the
spatial subdivision data structure a depth-ordered sequence of (cell
boundary) polygons to be considered during any traversal of space,
and once to encode in the beam tree data structure the region of
space reachable from a static source by sequences of specular re-
flections and transmissions at cell boundaries. We use the convexity

of the beams, cell regions, and cell boundary polygons to enable ef-
ficientR and robust computation of beam-polygon and beam-receiver
intersections. As a result, our method is uniquely able to: 1) sup-
port evaluation of reverberation paths at interactive rates, 2) scale to
compute high-order reflections in large environments, and 3) extend
to compute paths of diffraction and diffuse reflection.

Our virtual environment system integrates real-time auraliza-
tion with visualization of large virtual environments. Based on
our initial experiences with this system, we believe that accurately
spatialized audio is a very important cue for experiencing and nav-
igating virtual environments. We are continuing this research in
order to further investigate the perceptual interaction of visual and
acoustics effects and to better realize the opportunities possible with
interactive acoustic modeling.

Acknowledgements

The authors thank Arun C. Surendran and Michael Gatlin for their
valuable discussions and contributions to the project. We are also
grateful to Bob Kubli who helped record audio for the accompanying
video tape.

References
[1] Ahnert, Wolfgang. EARS Auralization Software. J. Audio Eng. Soc., 41, 11,

November, 1993, 894-904.
[2] Allen, J.B., Berkley, D.A. Image Method for Efficiently Simulating Small-Room

Acoustics, J. Acoust. Soc. Am., 65, 4, April, 1979, 943–951.
[3] Amanatides, J. Ray Tracing with Cones. Computer Graphics (SIGGRAPH 84).

18, 3, 129-135.
[4] Arvo, J. and D. Kirk. A Survey of Ray Tracing Acceleration Techniques. in

An Introduction to Ray Tracing, Andrew Glassner editor, Academic Press, San
Diego, CA, 1989.

[5] Baumgart, Bruce G. Winged Edge Polyhedron Representation. Ph.D. Thesis,
Computer Science Department, Stanford University, 1972.

[6] Borish, Jeffrey. Extension of the Image Model to Arbitrary Polyhedra. J. Acoust.
Soc. Am., 75, 6, June, 1984, 1827-1836.

[7] Bose Modeler, Bose Corporation, Framingham, MA. http://www.bose.com.
[8] CATT-Acoustic, CATT, Gothenburg, Sweden, http://www.netg.se/ catt.
[9] Chuang, J.H. and S.A. Cheng. Computing caustic effects by backward beam

tracing. The Visual Computer, 11, 3, 1995, 156–166.
[10] Cook, Robert, L., Thomas Porter, and Loren Carpenter. Distributed Ray Tracing.

Computer Graphics (SIGGRAPH 84). 18, 3, 137-146.
[11] D’Antonio, Peter, and John Konnert. The Directional Scattering Coefficient:

Experimental Determination. J, Audio Eng. Soc., 40, 12, December, 1992, 997-
1017.

[12] Dadoun, N., D.G. Kirkpatrick, and J.P. Walsh. Hierarchical Approaches to
Hidden Surface Intersection Testing. Graphics Interface ‘82, Toronto, Canada,
May, 1982, 49-56.

[13] Dadoun, N., D.G. Kirkpatrick, and J.P. Walsh. The Geometry of Beam Tracing.
Proceedings of the Symposium on Computational Geometry, Baltimore, June,
1985, 55-71.

[14] Durlach, N.I., R.W. Pew, W.A. Aviles, P.A. DiZio, and D.L. Zeltzer. Virtual
Environment Technology for Training (VETT). Report No. 7661, Bolt, Beranek,
and Newmann, Cambridge, MA, 1992.

[15] Durlach, N.I, and A.S. Mavor, editors, Virtual Reality Scientific and Technolog-
ical Challenges, National Research Council Report, National Academy Press,
Washington, D.C., 1995.

[16] Fortune, Steve. Algorithms for Prediction of Indoor Radio Propagation. Techni-
cal Memorandum, Document #11274-960117-03TM, Bell Laboratories, 1996.
A partial version of this paper appears in Applied Computational Geometry,
Towards Geometric Engineering, proceedings of the FCRC ‘96 Workshop in
conjunction with WACG ‘96, Philadelphia, PA, May, 1996, 157-166.

[17] Foster, S.H., E.M. Wenzel, and R.M. Taylor. Real-time Synthesis of Complex
Acoustic Environments. Proceedings of the IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, New Paltz, NY, 1991.

[18] Fuchs, H. Kedem, Z., and Naylor, B. On Visible Surface Generation by a Priori
Tree Structures. Computer Graphics (Proc. SIGGRAPH ’80), 124-133.

[19] Fujomoto, Akira. Turbo Beam Tracing - A Physically Accurate Lighting Simu-
lation Environment. Knowledge Based Image Computing Systems, May, 1988,
1-5.

[20] Ghazanfarpour, G. and J. Marc Hasenfratz. A Beam Tracing with Precise An-
tialiasing for Polyhedral Scenes. Computer & Graphics, 22, 1, 1998.

[21] Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, and Bennett
Battaile. Modeling the Interaction of Light Between Diffuse Surfaces. Computer
Graphics (Proc. SIGGRAPH ’84), 18, 3, July, 1984, 213-222.

[22] Haines, Eric A. Beams O’ Light: Confessions of a Hacker. Frontiers in Render-
ing Course Notes, SIGGRAPH ’91, 1991.

[23] Heckbert, Paul, and Pat Hanrahan. Beam Tracing Polygonal Objects. Computer
Graphics (SIGGRAPH 84), 18, 3, 119-127.

[24] Heckbert, Paul. Adaptive Radiosity Textures for Bidirectional Ray Tracing.
Computer Graphics (SIGGRAPH 90), 24, 4, 145-154.

[25] Heinz, R. Binaural Room Simulation Based on an Image Source Model with
Addition of Statistical Methods to Include the Diffuse Sound Scattering of Walls
and to Predict the Reverberant Tail J. Applied Acoustics, 38, 2-4, 1993, 145-160.

[26] Hodgson, M. Evidence of Diffuse Surface Reflections in Rooms. J. Acoust. Soc.
Am., 89, 1991, 765-771.

[27] Jones, C.B. A New Approach to the ‘Hidden Line’ Problem. The Computer
Journal, 14, 3 (August 1971), 232-237.

[28] Kajiya, James T. The Rendering Equation. Computer Graphics (SIGGRAPH
86), 143-150.

[29] Keller, Joseph B. Geometrical Theory of Diffraction. Journal of the Optical
Society of America, 52, 2, February, 1962, 116-130.

[30] Kleiner, Mendel, Bengt-Inge Dalenback, and Peter Svensson. Auralization – An
Overview. J. Audio Eng. Soc., 41, 11, November, 1993, 861-875.

[31] Kreuzgruber, P., P. Unterberger, and R. Gahleitner. A Ray Splitting Model for
Indoor Radio Propagation Associated with Complex Geometries. Proceedings
of the 1993 43rd IEEE Vehicular Technology Conference, 1993, 227-230.

[32] Kristiansen, U.R., A. Krokstad, and T. Follestad. Extending the Image Method
to Higher-Order Reflections. J. Applied Acoustics, 38, 2-4, 1993, 195-206.

[33] Krockstadt, U.R. Calculating the Acoustical Room Response by the Use of a
Ray Tracing Technique, J. Sound and Vibrations, 8, 18, 1968.

[34] Kuttruff, Heinrich Room Acoustics, 3rd Edition, Elsevier Science, London,
England, 1991.

[35] Lehnert, Hilmar. Systematic Errors of the Ray-Tracing Algorithm. J. Applied
Acoustics, 38, 2-4, 1993, 207-221.

[36] Lewers, T. A Combined Beam Tracing and Radiant Exchange Computer Model
of Room Acoustics. J. Applied Acoustics, 38, 2-4, 1993, 161-178.

[37] McGrath, David, and Andrew Reilly. Convolution Processing for Realistic Re-
verberation. The 98th Convention of the Audio Engineering Society, February,
1995.

[38] Monks, Michael, Byong Mok Oh, and Julie Dorsey. Acoustic Simulation and
Visualization using a New Unified Beam Tracing and Image Source Approach.
Meeting of the Audio Engineering Society, November, 1996.

[39] Moore, G.R. An Approach to the Analysis of Sound in Auditoria. Ph.D. Thesis,
Cambridge, UK, 1984.

[40] Naylor, G.M. ODEON - Another Hybrid Room Acoustical Model. J. Applied
Acoustics, 38, 2-4, 1993, 131-144.

[41] Naylor, B.F. Constructing Good Partitioning Trees. Graphics Interface ‘93,
Toronto, CA, May, 1993.

[42] Rajkumar, A., B.F. Naylor, and L. Rogers. Predicting RF Coverage in Large
Environments using Ray-Beam Tracing and Partitioning Tree Represented Ge-
ometry. Wireless Networks, 1995.

[43] Rindel, J.H. Modelling the Angle-Dependent Pressure Reflection Factor. J.
Applied Acoustics, 38, 2-4, 1993, 223-234.

[44] Sequin, Carlo, and Eliot Smyrl. Parameterized Ray Tracing. Computer Graphics
(SIGGRAPH 89), 23, 3, 307-314.

[45] Smits, Brian, James R. Arvo, and David H. Salesin. An Importance-Driven
Radiosity Algorithm. Computer Graphics (SIGGRAPH 92), 26, 2, 273-282.

[46] Stephenson, U., and U. Kristiansen. Pyramidal Beam Tracing and Time De-
pendent Radiosity. Fifteenth International Congress on Acoustics, Tapir, June,
1995, 657-660.

[47] Stettner, Adam, and Donald P. Greenberg. Computer Graphics Visualization for
Acoustic Simulation. Computer Graphics (SIGGRAPH 89), 23, 3, 195-206.

[48] Takala, Tapio, and James Hahn. Sound Rendering. Computer Graphics (SIG-
GRAPH 92), 26, 2, 211-220.

[49] Teller, Seth J., and Carlo H. Séquin, Visibility Preprocessing for Interactive
Walkthroughs. Computer Graphics (SIGGRAPH 91), 25, 4, 61-69.

[50] Teller, Seth J. Computing the Antiumbra Cast by an Area Light Source. Com-
puter Graphics (Proc. SIGGRAPH ’92), 26, 2 (August 1992), 139-148.

[51] Teller, Seth J. Visibility Computations in Densely Occluded Polyhedral En-
vironments. Ph.D. thesis, Computer Science Division (EECS), University of
California, Berkeley, 1992. Also available as UC Berkeley technical report
UCB/CSD-92-708.

[52] Tsingos, Nicolas, and Jean-Dominique Gascuel. A General Model for Simula-
tion of Room Acoustics Based On Hierarchical Radiosity. Technical Sketches,
SIGGRAPH 97 Visual Proceedings, 1997.

[53] Tsingos, Nicolas, and Jean-Dominique Gascuel. Soundtracks for Computer Ani-
mation: Sound Rendering in Dynamic Environments with Occlusions. Graphics
Interface ‘97, Kelowna, May 21-23, 1997, 9-16.

[54] Veach, Eric, and Leonidas J. Guibas. Metropolis Light Transport. Computer
Graphics (SIGGRAPH 97), 65-76.

[55] Vian, J.P. and D. van Maercke. Calculation of the Room Response Using a Ray
Tracing Method. Proceedings of the ICA Symposium on Acoustics and Theater
Planning for the Performing Arts, Vancouver, CA, 1986, 74-78.

[56] Vorlander, M. International Round Robin on Room Acoustical Computer Simu-
lations. Proceedings of the 15th International Congressof Acoustics,Trondheim,
Norway, June, 1995.

[57] Walsh, John P., and Norm Dadoun. What Are We Waiting for? The Development
of Godot, II. presented at the 103rd Meeting of the Acoustical Society of America,
Chicago, April, 1982.

[58] Ward, William C., Gary, W. Elko, Robert A. Kubli, and W. Craig McDougald.
The New Varechoic chamber at AT&T BellLabs. Proceeding of Wallace Clement
Sabine Centennial Symposium, Acoustical Society of America, New York, June,
1994, 343-346.

[59] Watt, Mark. Light-Water Interaction Using Backward Beam Tracing. Computer
Graphics (SIGGRAPH 90), 24, 377-385.

[60] Weiler, K. and P. Atherton. Hidden Surface Removal Using Polygon Area Sort-
ing. Computer Graphics (SIGGRAPH 77), 11, 2, 214-222.

[61] Whitted, Turner. An Improved Illumination Model for Shaded Display. Com-
munications of the ACM, 23, 6, June, 1980, 343-349.

