Coarse-Grained Parallelism for Hierarchical Radiosity
Using Group Iterative Methods

Thomas A. Funkhouser
Bell Laboratories *

Abstract

This paper describes algorithms that allow multiple hierar-
chical radiosity solvers to work on the same radiosity solution
in parallel. We have developed a system based on a group it-
erative approach that repeatedly: 1) partitions patches into
groups, 2) distributes a copy of each group to a slave proces-
sor which updates radiosities for all patches in that group,
and 3) merges the updates back into a master solution. The
primary advantage of this approach is that separate instan-
tiations of a hierarchical radiosity solver can gather radios-
ity to patches in separate groups in parallel with very little
contention or communication overhead. This feature, along
with automatic partitioning and dynamic load balancing al-
gorithms, enables our implemented system to achieve sig-
nificant speedups running on moderate numbers of worksta-
tions connected by a local area network. This system has
been used to compute the radiosity solution for a very large
model representing a five floor building with furniture.

CR Categories and Subject Descriptors:

D.1.3 [Programming Techniques]: Concurrent Program-
ming - Distributed Programming; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - Radiosity.

1 Introduction

An important application of computer graphics is light-
ing simulation for architectural design. Although radiosity
methods are often used for simulating illumination of build-
ing interiors, current radiosity algorithms generally are not
fast enough or robust enough to handle large architectural
models complete with furniture due to their large compu-
tational and memory requirements. A plausible approach
for accelerating such a large computation is to partition the
problem among multiple concurrent processors each of which
solves a separate subcomputation. This approach is partic-
ularly attractive using a network of loosely connected work-
stations since this type of “parallel computing resource” is
common today in many industrial and research laboratories.

In this paper, we describe a new approach to executing
large radiosity computations in parallel. The key innovation
is a group iterative algorithm that partitions the patches into
groups, and iteratively solves radiosities for patches in each

*Murray Hill, NJ 07974, funk@research.att.com

group separately on different processors in parallel, while
dynamically merging updated radiosities into a single solu-
tion. The primary advantage of this approach is that differ-
ent group subcomputations update separate subsets of the
form factors and radiosities, and therefore they can execute
hierarchical radiosity solvers concurrently with little or no
contention. This feature, along with dynamic load balanc-
ing algorithms, enables our implemented system to achieve
significant speedups with moderate numbers of workstations
distributed on a local area network. In our implementation,
no single process accesses the entire scene database, and thus
we are able to compute accurate radiosity solutions for very
large models.

The paper is organized as follows. The next section re-
views the radiosity method and describes previous work on
parallel radiosity systems. Section 3 describes the classical
group iterative method and discusses how it can be applied
to radiosity problems. An overview of our system organi-
zation appears in Section 4, while detailed descriptions of
the partitioning and load balancing algorithms are included
in Section 5. Section 6 contains results of experiments with
our system. Finally, Section 7 contains a brief summary and
conclusion.

2 Previous work

Radiosity methods [14] simulate diffuse global illumination
by computing the amount of light arriving at each patch
by emission or diffuse reflection from other patches. If each
patch is composed of elements (i.e., substructured [5]), the
method must solve the following linear system of equations:

B; :Ei+piZB]Fij (1)

J=1

where B; is the radiosity of element 2, E; is the emission of
element 1, p; is the diffuse reflectivity of element 2, F;; is the
fraction of the energy leaving element 1 that arrives element
7, and n is the number of elements in the scene.

The primary challenges in implementing the radiosity
method are efficient computation and storage of the form
factors. For each form factor, Fi;, a visibility calculation
must be performed to determine a visibility percentage for el-
ements 7 and 5. This calculation must consider other patches
in the scene as potential blockers, and thus accounts for the
majority of the computation time in most radiosity systems.

There has been considerable prior work on parallel imple-
mentations of the radiosity method. Most of this work has
been applied to the progressive radiosity algorithm [6] which
has O(n2) computational complexity when solved to full con-
vergence. Implementations for this algorithm have been de-
scribed for MIMD computers [2, 3, 16, 19], SIMD computers
[8], transputers [9], shared memory multi-processors [1, 7],
and networks of workstations [4, 20]. Recently, a few papers



have appeared describing work on parallelizing the Monte
Carlo Radiosity algorithm [10, 30]. Most current implemen-
tations require a complete description of the scene’s geome-
try to be resident in memory on all processors, thus limiting
the size of models for which they can be applied.

There has been relatively little work on parallel imple-
mentations of the hierarchical radiosity method, which is
surprising at first glance since its asymptotic complexity is
O(n) [17]. Singh [23] implemented a parallel hierarchical
radiosity solver for a shared memory multiprocessor system
in which each processor was initially assigned a queue of
element-element interactions to process. When a processor
subdivided an element, it added new interactions for the el-
ement’s children to the head of its own queue. Load balanc-
ing was achieved by task stealing — idle processors removed
and processed interactions from the tail of other processors’
queues. Due its communication intensive nature, this ap-
proach is not practical for a network of distributed worksta-
tions.

Zareski [31] implemented a parallel version of the hierar-
chical radiosity algorithm on a network of workstations using
a master-slave architecture in which each slave performed
patch-ray intersection calculations for a separate subset of
patches in the scene. For each element-element interaction,
the master process constructed a set of rays and distributed
them to every slave for parallel calculation of intersections
with each slave’s subset of the patches. After the slaves re-
turned their hits for each ray, the master computed form fac-
tors and updated radiosities. Speedup with this fine-grained
approach was thwarted by both master processing bottle-
necks and the overhead of inter-process communication, re-
sulting in longer execution times with more processors.

There are several aspects of the hierarchical radiosity al-
gorithm that make parallelization difficult. First, since two
patches can interact at any level of their hierarchies, subcom-
putation times are highly variable making load balancing dif-
ficult. Second, since both shooter and receiver patches can
be subdivided dynamically, reader/writer locks must be used
to enforce concurrency control during updates, and deadlock
avoidance/resolution must be considered. The computation
required to manage concurrency control and deadlock dur-
ing access to the element radiosity and mesh hierarchies can
significantly reduce speedup results.

In summary, none of the previous parallel systems is fast
or robust enough to compute an accurate radiosity solution
for a very large building model because they suffer from at
least one of the following shortcomings: 1) greater than O(n)
computational complexity, 2) replication of the entire model
for each processor, 3) inaccuracies due to energy transfer
or form factor approximations (e.g., hemi-cube artifacts), 4)
limited speedup due to contention during access to shared
data, and 5) communication overhead for process control.

In order to scale to very large models, a radiosity system
must use an efficient matrix solution method, such as hierar-
chical radiosity. The algorithm must be partitioned into sep-
arate concurrent subcomputations that each access a small
subset of the model. In order to scale to many processors, the
separate subcomputations must read/write separate regions
or copies of the model to avoid slowdowns due to contention.
Finally, the granularity of parallelism must be coarse enough
to allow execution with minimal overhead for communication
between participating processors. The design and implemen-
tation of a parallel radiosity system meeting these criteria is
the topic of this paper.

3 Group Iterative Methods

The radiosity method must solve a linear system of equations
represented by the row-diagonally dominant interaction ma-
trix shown in Figure 1. Group iterative methods partition
the B; variables into groups, and rather than just relaxing
one variable at a time, they relax an entire group during a
single step [13, 29]. Gauss-Seidel group iteration relaxes each
group using current estimates for Bj;s from other groups,
while Jacobi group iteration uses Bjs from other groups up-
dated at the end of the previous complete iteration through
all groups.

—P1F1n B, By
—p2F2n B Ba

1—p1F11 —r1F12
—p2F21 1— paFay

—pPnFni —pnFpn2 1—pnFnn Br Ep

Figure 1: The radiosity matrix equation.

Application of Jacobi group iteration in the radiosity do-
main can be interpreted as partitioning elements into groups,
and then iteratively “gathering” radiosity to elements using
current radiosities from elements in the same group and ra-
diosities from the end of the previous complete iteration for
elements in other groups. Elements within the same group
bounce energy back and forth to convergence during each it-
eration, while elements in different groups exchange energy
only once per iteration (see Figure 2).

LIGHT |
SOURCE

Figure 2: One relaxation step for group “ABC”.

There are several advantages to the group iterative ap-
proach for large radiosity problems, particularly with re-
gards to parallel processing. First, each group “gathering”
step updates radiosities only for the elements in its group,
which is advantageous for concurrency control when com-
pared to “shooting” algorithms that update radiosities for
all elements in each step [3]. Second, with Jacobi methods,
updates to the radiosity values of elements in each group
depend only upon radiosity values copied at the end of the
previous iteration, and do not require access to current ra-
diosity values for elements in all groups. This property al-
lows multiple radiosity solvers to execute concurrently on
different groups, with each solver updating a separate copy
of the radiosity values without readers/writers contention.
It then becomes practical to use efficient, yet complicated,
radiosity algorithms, such as Hierarchical Radiosity [17], to
solve each group subproblem. Finally, group methods ex-
hibit better cache coherence than element-by-element meth-
ods [13] since links between patches in the same group can
be reused several times as the group is solved to convergence.
This feature is particularly important for radiosity problems
whose form factor matrices do not fit in memory all at once.

In this paper, we describe the design and implementa-
tion of a radiosity system based on group iterative tech-
niques that uses multiple concurrent hierarchical radiosity
solvers. For each iteration, the system automatically parti-
tions the patches describing a scene into groups and executes



hierarchical radiosity solvers to compute converged radios-
ity solutions for separate groups on separate processors us-
ing separate versions of the model in parallel. Throughout
the computation, updated versions of the element radiosi-
ties are copied into a master scene database for later use
by other processors. Since hierarchical substructuring and
form factor calculations are performed for different groups in
parallel on the separate processors accessing separate copies
of the model, we can accelerate overall computation times
due to parallelism with little or no contention. Since coor-
dination of processes is performed at a coarse-grained level
(groups), relatively little communication is required between
processes. As a result, significant speedups are possible for
moderate numbers of processors. Furthermore, since each
processor must store only the working set for computations
for one group at a time, the approach scales to support very
large models.

4 System Organization

Our system is organized in a Master-Slave configuration with
one master and P slaves running concurrently on separate
processors. The slaves are used to execute radiosity compu-
tations, while the master performs dynamic load balancing
and data distribution. All processes maintain independent
(partial) copies of the scene database, and slaves communi-
cate with the master only via TCP messages. This organiza-
tion allows distribution across loosely-coupled workstations
without shared memory, or even shared disks.

4.1 Flow of Control

The flow of control between the master and slave processes is
shown in Figure 3. The master iteratively relaxes groups un-
til convergence. For each “master iteration,” the master par-
titions patches of the scene database into groups, and then
dynamically distributes the groups to slaves one at a time
for group relaxation computations. These automatic parti-
tioning and scheduling algorithms are the focus of this paper,
and are described in detail in the following section. This sec-
tion describes the organization of the system in which these
algorithms execute.

The master starts by spawning P slave processes (usually
on remote computers) and opens a T'CP socket connection
to each of them. It uses the select UNIX system call to
detect messages from multiple slaves. Whenever a slave, S;,
indicates it is ready, the master selects a group, G, from
a list of candidate groups waiting to be processed during
the current master iteration. Next, it downloads to S; all
patches potentially visible to any patch in group G (i.e., the
“working set” for G). After the downloads have completed,
the master sends slave S; a message indicating that it can
begin its radiosity computations for group G. While S; re-
laxes group G to convergence, the master continues servicing
other slaves. After slave S; finishes its computation, it sends
updated radiosity values back to the master for use in the
current or future iterations.

Each slave runs asynchronously on a separate processor
under the guidance of the master process as shown on the
right side of Figure 3. When a slave receives a download
message from the master, it updates its local copy of the
patches it receives, waits for a compute message from the
master, and then invokes a hierarchical radiosity solver to
gather radiosity to all patches in group G until convergence.

The radiosity solver is based on the hierarchical (wavelet)
radiosity system described in [15, 17, 27]. Although its de-

[ Ty ———
: Start I Ir St;xrt ':
I : I - |
| Yes I Wait for message I
1 Convergence? Done= | from Mmester I
I | I
1 : 1 ¥ 1
I — | : Receive Bsfor all :
1 Partition elements | elementsvisibleto

: into N groups I : elementsin group G :
I ¥ I I I
| Wait for message I 1 I
I fromany dave S 1 | onvergence |
1 I 1 of group G2 1
| Y kT-C-P- ! |
| Select group G :Messages : I
1 for daveS 1 I Perform complete HR :
: [ I I gather to update all I
| Download Upload 1 I B;s ingroup G. I
1 group G group G 1 | 1
I tosaveS | fromslaveS | I I
1 | 1 1
| | | Send updated B;s |
| More Yes | 1 in group G 1
I Groups? 1 | back to master |
1 | 1 1
1 | 1 1
1 I

Figure 3: Master-slave flow of execution.

tails are not the focus of this paper, it is important to note
that it stores its evolving solution in a disk-resident database
and loads into memory only the data required for the current
subcomputation. It manages a fixed size, memory-resident,
LRU cache to store the most recently used elements and links
(form factors) in hopes that they will be used again before
they are discarded. As computation of the form factors is
the most costly component of the system execution, effec-
tive management of this cache is critical to avoiding costly
recomputation or re-loading from disk. This feature of the
slave solver is advantageous for the group iterative approach.
Since gathers are performed multiple times to the elements
of the same group in succession, the group algorithms ex-
hibit far greater cache coherency, and in our case, we are
often able to re-use links computed for two elements mul-
tiple times before they are discarded from the cache. In
contrast, effective cache management would be very difficult
with classical gather algorithms that make successive sweeps
over all patches in the entire database.

After the radiosity computation for group G has been
completed, the slave writes into its local cache updated ver-
sions of all patches in G, including the refined hierarchical
element meshes and radiosities for each patch, and sends
to the master an upload message containing a packed rep-
resentation of these patches. This updated version of G is
merged into the master scene database and can potentially
be downloaded to other slaves for later computations.

Note that communication between master and slave oc-
curs only three times for each group iteration: 1) to down-
load patches to the slave at the beginning of an iteration, 2)
to invoke a radiosity computation, and 3) to upload patches
from the slave at the end of an iteration. This coarse-grained
approach to parallelism is important. Other efforts to paral-
lelize the radiosity method with a master-slave organization
have found master processing to be a bottleneck, and com-
munication overhead has diminished speedup results signif-
icantly using relatively few slave processors. Our strategy
is to design a system in which a master coordinates execu-
tion of the slaves, but at a very coarse granularity, with very
infrequent communication.



4.2 Data Distribution

The scene description is initially available only to the mas-
ter. It is stored in a database containing patches represented
by quad-trees of elements with diffuse reflectivity, radiosity,
and emission attributes. The patches are stored in the scene
database arranged in clusters specified by the modeler at
scene creation time. The scene database also contains pre-
computed cluster-to-cluster visibility information. The clus-
ter visibility calculation is performed off-line using the algo-
rithms described in [26] and generates a list for each cluster
indicating which other clusters are potentially visible to it —
i.e., not occluded by a wall, ceiling, or floor. Although clus-
tering and visibility techniques are an important research
area, and essential to the efficient execution of our radiosity
system, these topics are not addressed in this paper. See
[21, 22, 24, 26] for further information.

Since only the master has access to the complete scene
database, it must download portions of the database (i.e.,
potential working sets) to slaves during execution. We de-
fine the potential working set for a group G to be all the
patches, including their element meshes and radiosities, that
are visible to any patch in G. This definition of the work-
ing set is a conservative over-estimate of the set of data the
slave may need access to during radiosity gather operations
for any group. Since patches in occluded clusters cannot ex-
change energy directly, we can use the precomputed cluster-
to-cluster visibility information of the scene database to com-
pute the potential working set efficiently.

During execution, the master keeps an index of which
clusters have already been downloaded to each slave. It
traverses the cluster-to-cluster visibility lists for all clusters
containing patches in group G, checking whether the poten-
tially visible cluster, C, is already up-to-date on the slave,
S;. If not, it reads from the disk-resident scene database all
the data describing patches in C, including the hierarchical
mesh of elements with radiosities. It packs this data into
a buffer and performs a write to the TCP socket for slave
S;. Finally, it marks slave S; up-to-date for cluster C in
its index, and continues checking for other potentially visi-
ble clusters to download. Note that all patches of a cluster
are required to be in the same group, making this down-
load processing somewhat more efficient. After all clusters
in the working set of G are up-to-date on slave S;, the mas-
ter sends a short message indicating which clusters belong to
group G, and directing it to gather radiosity to all patches
in those clusters to convergence.

After the slave has updated the radiosities for all patches
in group G to convergence, it sends an upload message to the
master with complete updates for every cluster C in group
(. The master writes these updates back to a new version
of cluster C in its disk-resident database. It then marks
clusters in G out-of-date for all slaves except S;, causing
them to be freshly downloaded for subsequent gather oper-
ations for clusters visible to G. With this concurrent “copy-
update-replace methodology,” our system does not truly ex-
ecute either the Jacobi group or Gauss-Seidel group iterative
method, as it is indeterminate whether the old or updated
copies of a group’s variables will be used during each group
relaxation step. Proof of convergence with this optimization
is shown in the following section.

The data distribution features of our system are impor-
tant for scaling to support computations with very large
models. The master stores only the scene database header
information in main memory (generally less than 20MB),
while the clusters, patches, and elements reside on disk.
Each slave receives and stores only the subset of the scene

database required for its computation, avoiding full replica-
tion of the entire database on any processor as is required
by most other parallel radiosity systems.

4.3 Convergence Proof

Proof of convergence of our parallel group iterative method
can be shown by comparison to the standard sequential
group Jacobi method, which is known to converge [29]. Con-
sider splitting the matrix A (asin Az =b)into A = D—-L-U
where D has blocks along the diagonal, L has the opposites
of element below D, and U has opposites of elements above
D. For the radiosity equation, A is monotone (i.e., it has
non-negative elements along the diagonal and non-positive
elements elsewhere), D is monotone, L > 0, and U > 0.

The standard group Jacobi method iterates according to
the following equation:

Try1 = ljzr + D_lb
where [; = D7 (L 4+ U)

whereas our modified group method iterates using some vari-
ables updated in the current iteration and some updated in
the previous iteration:

Trp1 = Tz + (D — L)™'
where Ing = (D — LY)™' (L5 + U),
L=LF4+L51F¥>0 and LE >0

We can show that our modified group method converges
if the error is reduced during each iteration. Since

llzper — 2]

~ p(Im)
llzk — x|
where % is a suitable vector norm, and p(Ias) is the

spectral radius of Iy, convergence is guaranteed if p(far) <
p(I15) < 1. We prove p(Inm) < p(I) using corollary 5.6 on
page 125 of Young [29]:

“Let A be a monotone matrix and let A = @1 —
Ry and A = Q2 — R be two regular splittings of
A. If Ry < Ry, then p(leRg) < p(Ql_lRl).”

A regular splitting of A is one in which A = Q — R where
Q™' > 0and R > 0. For the standard group Jacobi iteration
method, let A = Q1 — R; where Q1 = D and Ry = L 4+ U.
Note that Ql_1 > 0 since D is monotone and R; > 0 since
L >0and U > 0. For our modified group iteration method,
let A =Q; — Ry where Q2 = D — L¥ and R, = L5 4+ U.
Note that Q;l > 0 since D — L% is monotone. Also note
that Ry > 0 since L5 > 0 and U > 0, and R, < R; since
L> L%

Applying corollary 5.6 and convergence of the standard
group Jacobi method, we see that p(far) < 1 and the modi-
fied group iterative method must converge:

p(In) = p(Q3 ' R2) < p(QT ' R1) = p(Is) < 1

5 Parallel Programming

A general strategy for parallel programming is to decompose
a computation into a set of independent subcomputations,
and then to distribute the subcomputations for execution in
parallel on available processors. The important issues are
to find an appropriate decomposition (i.e., partition patches
into groups), and to schedule execution of the subcompu-
tations effectively (i.e., load balancing). These issues are
addressed in detail in this section.



5.1 Group Partitioning
Goals and Strategies

Based on intuition derived from experimentation with our
system, we have developed the following set of guidelines
that constrain our automatic partitioning algorithms: 1) the
number of groups, NV, should be bounded from below so that
there are guaranteed to be enough groups to schedule effec-
tively on P slave processors (e.g., N > 8P); 2) each group
should be large enough that the time required to distribute
its computation to a slave is not more than it would have
been to perform it locally on the master; and 3) each group
should be small enough that the links for radiosity updates
to all elements in the group fit in a slave’s memory-resident
cache so that they may be re-used over and over again with-
out recomputation as the group is solved to convergence.
We combine these constraints with the goals of maximizing
intra-group form factors while minimizing inter-group form
factors to form the basis of our partitioning algorithms.

For practical purposes, we consider only partitionings in
which all patches of a cluster are assigned to the same group.
This restriction simplifies the partitioning algorithms, and
aids execution of the data distribution algorithms during ex-
ecution of our radiosity system, as described in the previous
section.

Conceptually, we address the cluster partitioning prob-
lem as a computation on a form factor graph in which each
node in the graph represents a cluster, and each edge repre-
sents an estimate of the form factor between its nodes’ clus-
ters (a simple form factor graph is shown in Figure 4). With
this formulation, we state the cluster partitioning problem
as follows: assign nodes of the form factor graph to groups
such that the cumulative weight of edges between nodes in
the same group divided by the cumulative weight of all edges
is maximal.

Unfortunately, this problem is equivalent to the Graph
Bisection Problem [12], which is known to be NP-complete.
However, we have developed two automatic algorithms that
find approximate and useful solutions in polynomial time.
The first algorithm, called the Merge Algorithm, starts by
assigning each cluster to a separate group and then iter-
atively merges groups. Conversely, the second algorithm,
called the Split Algorithm, starts by assigning all clusters to
the same group and then recursively splits groups. Either
algorithm can be used to construct groups, or the algorithms
can be applied successively to iteratively refine groups.

Cluster Geometry Form Factor Graph

Figure 4: Simple scene (left) with its form factor graph
(right). Edge thickness represents form factor magnitude.

Merge Algorithm

The Merge Algorithm operates on an augmented version of
the form factor graph in which nodes represent groups rather
than clusters. In this augmented graph, the edge between

two nodes representing groups A and B has weight equal
to the sum of the form factors between all combinations of
clusters in groups A and B. Initially, a graph is created with
one node for each cluster. For the purposes of constructing
this graph, an edge weight is set to zero (or the edge is not
created at all) if two clusters are known to be occluded from
one another (as determined by a lookup in the precomputed
cluster-to-cluster visibility information stored in the scene
database). Otherwise, the form factor, Fag, from one clus-
ter A to another cluster B is estimated as the solid angle
subtended by a disk representing cluster B [28]:

Fap=r"/(d" +1%) (2)

where d 1s the distance between A and B, and r is the radius
of a sphere bounding B. This approximation is an over-
estimate that does not consider individual patch orientations
and assumes that A is entirely visible to B.

Once the form factor graph has been constructed, the
Merge Algorithm iteratively merges groups (nodes of the
graph) until no further combinations are possible within
the following constraints: 1) the number of groups is
greater than a user specified minimum, MinGroups, and
2) the estimated number of links for any group with
more than one cluster is below a user specified maximum,
MaxLinks. By default, MazLinks is arbitrarily set to be
1.25« Total Links/MinGroups, where TotalLinksis the sum
of the link estimates for all groups.

The key challenge for implementation of the Merge Al-
gorithm is selecting two appropriate groups to merge during
each step of the algorithm. We take a greedy approach.
The pair of groups, A and B, is chosen whose merger causes
the greatest increase in the ratio of intra-group edge weights
divided by the total of all edge weights. If the merger of
these groups meets all constraints, they are combined into
one. During the merge operation, edges from A and B to
other nodes are replaced by ones to the new merged node.
The weight of this new edge is the sum of the weights of the
edges it replaces (see Figure 5). The algorithm repeatedly
merges groups until it can no longer find any pair of groups
to merge legally, or the solution cannot be improved. In
the worst case, when all clusters are visible to one another,
the algorithm is bounded by O(NZ?logN). However, in sit-
uations such as building interiors, where visibility sets are
usually of constant size, the average execution time for the
merge algorithm is O(NlogN).

Figure 5: Merge operation for nodes ‘D’ and ‘E’.

Split Algorithm

The Split Algorithm uses a strategy that is the converse of
the Merge Algorithm. It starts with all clusters assigned to a
single group and then recursively splits groups until further
splits do not improve the solution. This algorithm can be
interpreted as a recursive binary partitioning of the form
factor graph.



During each step of the algorithm, our goal is to choose
an appropriate partition of one group into two new ones
that meet all size constraints and have minimal inter-group
form factors. We use geometric split heuristics originally
developed for construction of spatial subdivisions for use in
visibility determination (e.g., BSP trees [18]). Specifically,
we partition the model along planes aligned with “major
occluding” polygons of the model (see [25] for details). As
the model is split recursively by these planes, clusters are
assigned to groups depending on whether their centroid lies
above or below the splitting plane (see Figure 6). This pro-
cess is applied recursively until no groups can be split within
minimum group size constraints, or until no further “major
occluder” polygons can be found. The algorithm runs in
O(NlogN). 1If split planes are chosen appropriately (i.e.,
such that the cumulative form factors between clusters on
separate sides of the plane are small), it generates a parti-
tioning with little exchange of energy between groups during
a radiosity simulation.

Figure 6: Split operation creating groups ‘A’ and ‘B’.

Figure 7 shows two sets of 16 groups constructed us-
ing the Merge and Split algorithms, respectively, for a one
floor building model comprising 1667 clusters. (clusters are
shaded based upon which group they were assigned). Us-
ing the Merge algorithm, groups tend to be formed from
clusters that are visible to each other (e.g., offices across
hallways), whereas groups tend to be formed from clusters
that are nearby each other using the Split algorithm (e.g.,
neighboring offices).

Split Algorithm

Merge Algorithm

Figure 7: Groups formed by the merge and split algorithms.

5.2 Scheduling

Load balancing is a primary concern in any parallel system.
Our goal is to schedule group radiosity subcomputations on
slaves in a manner that maximizes the rate of convergence
to an overall solution. Unfortunately, this Multi- Processor
Scheduling Problem is NP-Complete since each subcompu-
tation is non-preemptable, task execution times are highly
variable, and workstations may have different performance
capabilities [11]. In this section, we describe our approxima-
tion algorithms for scheduling and load balancing.

First-Fit Decreasing Algorithm

A common scheduling strategy for minimizing the total com-
pletion time for a set of tasks run on multiple processors is
to select tasks in order of their expected execution times,
largest to smallest. This strategy is called the First Fit De-
creasing (FFD) algorithm [11]. The idea is to schedule the
large tasks first so that there is less chance that their execu-
tion times will extend beyond the last execution time of any
other task.

We have applied this principal in our radiosity system.
The difficult challenge is to predict in advance how long a
radiosity computation for a group will take. We estimate
the relative compute time for a transfer of radiosity from
one cluster A to another cluster B by Fap. This estimate
is based on the observation that slave compute times are
dictated by the number link evaluations (ray-patch inter-
sections), which is determined by the errors in computed
element-element form factor estimates, which in turn are
roughly correlated to form-factors. In order to estimate
the computation time for gathers to a group of clusters, G,
we sum estimated computation times for all cluster pairs in
which at least one of the two clusters is in GG, and the clus-
ters are known to be at least partially visible to one another
via the form factor graph.

To execute the FFD algorithm, the master sorts groups
according to computation time estimates as they are con-
structed. Then, groups are simply assigned in FFD order as
slaves become available during execution.

Working Set Algorithm

The general principal of minimizing total completion time
for a set of independent subcomputations is not enough
to guarantee a fast convergence rate for our radiosity sys-
tem. We must also consider factors affecting data download
performance, duplicate calculation, and energy distribution.
These issues are particularly important because each slave
maintains a local cache of data containing element radiosi-
ties and links previously computed. The history of which
groups a slave has previously processed affects the download
time and the energy distribution rate for the current com-
putation. These issues are likely even more important for a
system utilizing bi-directional links (our system creates uni-
directional links) in which case re-use of inter-group links
could be a significant scheduling consideration.

We have developed a dynamic scheduling algorithm that
considers data download factors when scheduling group com-
putations on slaves. The Working Set (WS) algorithm uses a
heuristic that is designed to assign groups to slaves for which
their working set has already been downloaded. Each time
a slave S; becomes available, it considers groups remaining
to be processed during this iteration. For each candidate
group, G, it computes the percentage of the clusters visible
to any cluster in G that are already resident on S;. It then
subtracts from this value the percentage of clusters visible
to G that are not resident on S;, but are resident on some
other slave. This latter factor helps to keep the visibility sets
of groups assigned to different slaves separated. The differ-
ence between these two percentages forms the heuristic that
the Working Set algorithm uses to choose the best group for
each slave dynamically as the system executes.

Combined Scheduling Algorithm
The methodologies of the FFD and WS algorithms can be

combined. We generally use a combined scheduling algo-



rithm (FFD-WS) that dynamically chooses a group as each
slave becomes available according to the WS heuristic sub-
ject to the constraint that every group must be scheduled
within “delta” slots of its position in FFD order. This algo-
rithm is equivalent to the FFD algorithm if delta = 1, and it
is equivalent to the WS algorithm if delta = co. Otherwise,
if 1 < delta < N, we hope to realize the advantages of both
the FFD and WS approaches.

6 Results and Discussion

In order to test the effectiveness of the group iterative ap-
proach for solving large radiosity problems in parallel, we
executed a series of experiments with our system using differ-
ent group partitioning and load balancing algorithms. Dur-
ing these experiments, we used up to eight Silicon Graphics
slave workstations, each with a 150MHz R4400 processor
and at least 80MB of available memory, 32MB of which was
available for caching links. The workstations were spread
over two separate local area networks and did not share disk
files. Unless stated otherwise, the Merge Algorithm was used
to construct 256 groups, and the FFD-WS algorithm was
used with delta = 16 for dynamic load balancing. In all ex-
periments except the one described in Section 6.1, the master
process performed two complete iterations in which a slave
gathered to every patch in each group twice with a moder-
ately fine error tolerance. During the initial slave iteration,
patches gathered radiosity only from the lights.

Our test model in every experiment was the computa-
tion of a radiosity solution for one unfurnished floor of the
Soda Hall building model. This test model contained 6,418
patches in 1,667 clusters, 242 of which contained only emis-
sive patches. The total area of all surfaces was 10,425,645
square inches. Although this test model was not particularly
complex, it was useful for experimentation. With a larger
model, it would have been impractical for us to investigate
algorithmic trade-offs by performing many executions of the
radiosity solver with different parameters.

6.1 Group Iteration Results

We first compared the performance of the group iterative
method to traditional iterative methods (independent of par-
allel processing) by computing the radiosity solution for our
test model using a single processor both with and without
grouping of patches. During the first test, patches were
not grouped, and 4 traditional Gauss-Seidel iterations were
made over all patches. During the second test, patches
were partitioned into 256 groups by the Merge algorithm.
Then, three Gauss-Seidel group iterations were made over
all groups, during which every patch in a group gathered
radiosity twice (groups were not solved to full convergence
during each step). During the test without grouping, every
patch gathered radiosity from every other patch four times.
In contrast, during the test with grouping, patches gathered
radiosity six times from patches within the same group, but
only three times from patches in other groups. Plots of trans-
fer rates measured during these tests are shown in Figure 8.
Circles on the plots indicate the end of a compete sweep
through all variables in each test.

Even without parallel processing, the group iterative
method out-performed the traditional approach during this
experiment. The performance difference was mostly due to
the fact that the group method more effectively made use
of links and patches cached in memory by the solver. As
described in Section 4, the solver maintained LRU memory

N
o

g
2
)
g
e Group Iteration ——
s Ungrouped lteration -
S
ol
0 Elapsed Time (m) 300

Figure 8: Transfer rates for grouped/ungrouped iteration.

resident caches of links and patches. Patches that did not fit
in the cache had to be flushed to disk, while links that did
not fit in the cache were discarded and later recomputed.
During this experiment, although the total amount of stor-
age required for links exceeded the cache limit (32MB), the
maximum working set for any group did not. As a result,
since the group method cycled over patches in each group
multiple times in succession, it was often able to re-use pre-
viously computed links (45% of the time). In contrast, the
traditional method executed a worst-case access pattern for
the LRU cache, making complete sweeps through all patches
in succession, and thus was not able to re-use any links.

6.2 Partitioning Results

We next studied the effects of different group partitioning
algorithms by executing a sequence of tests with 8 slaves
using the following methods to partition clusters into 256
groups:

o Merge: Groups were constructed using the Merge
Algorithm with MinGroups = 256.
e Split: Groups were constructed using the Split Algo-

rithm partitioning on floors, ceilings, and walls of the
building model with MazGroups = 256.

e Region: Clusters were assigned to groups based on
the (x,y) coordinates of their centroids in a 16x16 grid.

¢ Random: Clusters were assigned to groups randomly.

Figure 9 contains plots of transfer rates measured dur-
ing these tests. The system converged fastest using par-
titions generated automatically with the Merge and Split
Algorithms. This is due to the fact that these algorithms
combined clusters into the same group based on estimated
form factor and proximity relationships. During every test,
each patch gathered radiosity a total of four times — two it-
erations in a slave for each of two master iterations. This

18

Total Power (MW)

6

0 Elapsed Time (m) 30

Figure 9: Transfer rates for different partitioning algorithms.



means that energy was distributed with four reflections be-
tween clusters in the same group, while only two reflections
occurred between clusters in different groups. As expected,
the performance of the group iterative approach was better
using partitions with larger intra-group form factors.

6.3 Granularity Results

We studied the effects of group granularity by measuring sys-
tem performance using 8 slaves for tests with groups of dif-
ferent sizes. Using the Merge Algorithm, we executed tests
with the clusters partitioned into 32, 128, 256, and 1,425
groups. The test with 1425 groups represents construction
of a separate group for each cluster containing at least one
reflective patch.

Plots of transfer rates measured in each test appear in
Figure 10. We found that the advantage of the group itera-
tive method is reduced if groups are very small since there
is little opportunity to re-use links computed for intra-group
radiosity transfers. On the other hand, if we used just a
few large groups, the data required for all intra-group links
exceeded a slave’s cache capacity for some groups, reducing
the effectiveness of the cache. Also, it was more difficult
to schedule a relatively few, large subcomputations across
available slave processors in order to achieve the best pos-
sible completion times. During our experiments, tests per-
formed best with 256 groups that roughly corresponded to
the small, convex regions of the model. This result depends
on a variety of factors, including the size of link caches in
slaves and the variability of group sizes.

18

Total Power (MW)

6 - L
0 Elapsed Time (m) 30

Figure 10: Transfer rates for different group granularities.

6.4 Scheduling Results

We investigated load balancing and scheduling effects by exe-
cuting a series of tests using 8 slaves with different scheduling
algorithms:

e FFD: Groups were assigned to slaves in FFD order.

o WS: Groups were assigned to available slaves dynam-
ically to minimize the WS heuristic.

¢ FFD-WS: Groups were assigned to slaves dynami-
cally using the FFD-WS algorithm with delta = 16.

From statistics measured during these tests, we found
that the scheduling factors impacting convergence rates most
were: 1) master-slave download times, and 2) slave idle times
(particularly at the end of each iteration). As expected, the
master spent the least amount of time downloading data
to slaves during tests using the WS algorithm (98 seconds).
The advantages of the WS approach can be seen in Figure
11, in which all 256 groups are shaded according to which

of the 8 slaves they were assigned during tests using the
FFD and WS algorithms. The coherence of the working sets
assigned to slaves using the WS algorithm allows the system
to minimize data downloads and maximize energy transfers.

WS Algorithm

FFD Algorithm

Figure 11: Visualization with groups shaded by slave.

Unfortunately, the test using the WS algorithm also
spent the most amount of time waiting for the last slave to
finish at the end of each iteration (547 seconds). In partic-
ular, one very large group computation was postponed until
the very end of the second iteration, causing the master and
seven of the slaves to sit idling while the eighth slave fin-
ished its computation for that group. In contrast, the FFD
algorithm spent a small amount of time waiting for the last
slave at the end of each iteration (13 seconds), but it spent
the most time downloading data to slaves (248 seconds).

The trade-offs between scheduling to minimize down-
loads and scheduling to minimize time waiting for the last
slave can be seen in Figure 12, which shows a vertical elapsed
time-line for each of the 8 slaves during tests with the FFD,
WS, and FFD-WS algorithms. Every distinct vertical bar
segment represents radiosity computation for one group on
one slave. Using the FFD algorithm, the execution time pre-
dictor does fairly well, and longer tasks are generally sched-
uled earlier in each iteration (the first of the two master itera-
tions ends approximately 1/3rd of the way up the time-line).
However, because the master spends more time downloading
data to slaves (synchronously), there are more frequent and
longer periods during which a slave is waiting for the master
(blank spaces between vertical bars). Using the WS algo-
rithm, although download times are far less (intra-bar gaps
are smaller), the computation for one very large group was
scheduled near the end of iteration 2 (on Slave 2) causing
the master and all other slaves to wait for it to complete.
The combined FFD-WS algorithm seemed to achieve a good
combination of download times (191 seconds) and wait times
(8 seconds), and thus converged most rapidly.

30 1t 1H ]

Elapsed Time (m)

FFD Slaves WS Slaves FFD-WS Slaves

Figure 12: Slave compute time (solid) vs. wait time (blank).



6.5 Speedup Results

Finally, we executed an experiment to determine how much
speedup is possible with our system via parallel processing.
During this experiment, we solved the one floor test model
four times using 1, 2, 4, and 8 slaves, respectively. A plot of
speedup for increasing numbers of slave processes is shown
in Figure 13.

9

Speedup
R N W~ 01 O N

4 5 6 7 8
Number of Slaves

=
N
w

Figure 13: Transfer rate speedup for 1, 2, 4, and 8 slaves.

For up to 8 slave processors, the system maintains a 65-
75% speedup. The speedup is less than 100% due to the syn-
chronous master-slave communication model of our system.
Although the group iterative approach provides a relatively
coarse granularity of parallelism, the master communicates
with slaves synchronously in our current implementation —
i.e., it can only talk to one slave at a time. As a result,
if two slaves finish a subcomputation and become ready for
further processing at the same time, one must wait while the
master exchanges data with the other. The impact of this
effect is determined by the likelihood that a slave will fin-
ish a subcomputation while the master is processing data for
another slave. Although this likelihood grows with the num-
ber of slaves, it i1s also affected by the relationship of time
required for master processing of downloads/uploads versus
the time required for slave processing of a group radiosity
subcomputation. For solutions in which the slave radiosity
subcomputations are longer relative to the data distribution
times, speedup results are better.

The speedup bottleneck resulting from our current syn-
chronous communication model with a centralized master
can be mitigated somewhat by enhancing the master to use
asynchronous I/O protocols or by switching to communica-
tion protocols in which slaves transfer data among them-
selves under master coordination. Based on our preliminary
results, we are optimistic that the group iterative approach
provides coarse enough granularity that our master-slave
system can scale to large numbers of slave processors with
the addition of enhanced communication methods. Unfor-
tunately, we have not yet implemented these improvements,
and do not currently have access to enough workstations to
determine the absolute limits of our current system.

The speedup experiments point out an interesting trade-
off of our parallel group iterative approach. On one hand,
when more slaves compute concurrently, we are able to eval-
uate more element interactions in less time. On the other
hand, since updated radiosity values are distributed from
the master to a slave workstations only after they have been
uploaded from other slaves, Gauss-Seidel group iteration is
achieved only during tests with one slave. In contrast, if
all groups were scheduled simultaneously on different slaves,
the system would perform a true Jacobi group iteration. As
more slaves are added to the system, the system more closely

resembles Jacobi iteration since more and more computa-
tions are performed with copies of radiosity values last up-
dated at the end of the previous iteration. Further research
is required to investigate the impact of this effect.

6.6 Practical Results

As a final test, we computed a radiosity solution for a very
large model using the system described in this paper. The
model represents five floors of a large building with approx-
imately 250 rooms containing furniture. It was constructed
with 14,234 clusters comprising 280,836 patches, 8,542 of
which were emitters and served as the only light sources.
The total area of all surfaces was 75,946,664 square inches.
Three complete iterations were made through all patches
using an average of 4.96 slave processors in 168 hours. The
entire computation generated 7,649,958 mesh elements and
evaluated 374,845,618 element-to-element links.

During this execution, the master spent 0.8% of its time
constructing and scheduling groups, 4.4% downloading data
to slaves, 2.6% uploading results from slaves, and 89.0%
waiting for slaves. The slaves spent 0.1% of its time down-
loading data from the master, 0.1% uploading results to the
master, 79.1% updating radiosities, and 5.0% waiting for the
master. Although it was not practical for us to solve this
model using a single processor for comparison, we estimate
the speedup due to parallelism as the time spent performing
radiosity computations in slaves divided by the elapsed time,
which was 3.9 in this case, or 79% of linear speedup.

Figure 14 shows renderings of this large radiosity solu-
tion from various viewpoints captured during an interactive
walkthrough. Outlines around mesh elements are included
in the bottom-right image for detailed inspection. Note the
adaptive refinement of elements in areas of partial visibility
(e.g., on the floor near the legs of tables and chairs) due to
hierarchical radiosity meshing. To the author’s knowledge,
this model is the most complex for which a radiosity solution
has ever been computed.

7 Conclusion

This paper describes a system for computing radiosity so-
lutions for very large polygonal models using multiple con-
current processes. A master process automatically parti-
tions the input model into groups of patches and dynam-
ically schedules slave processes which execute independent
hierarchical radiosity solvers to update the radiosities of
patches in separate groups. During experiments with this
system, uniprocessor group methods out-performed tradi-
tional methods due to improved cache coherence, while
multi-processor group methods achieved further speedups of
65-75% using up to 8 slave workstations.

We have found that the implementation and analysis of a
distributed approach to the radiosity problem requires care-
ful consideration of group partitioning, data distribution,
and load balancing issues. Coarse-grained parallel execution
using multiple separate copies of a shared database allows
multiple processors to execute concurrently with little con-
tention or synchronization overhead. However, since updates
to the shared database are executed with coarse granular-
ity, many of the subcomputations may be performed using
out-of-date database values, potentially reducing the conver-
gence rate.

The conflicting goals between computing in parallel ver-
sus computing with the most up-to-date data results in an



Figure 14: Images captured during an interactive walk through one large radiosity solution.

interesting trade-off whose resolution is affected by a multi-
tude of factors, including the size of workstation memories,
the size of working sets, the speed of the network, and so
on. We believe that examining issues in parallel execution
for large computations distributed over a network is an in-
teresting research area that will become more and more im-
portant as networked computing resources become more and
more prevalent.

Acknowledgements

The author thanks Roland Freund and Wim Sweldens for de-
veloping the convergence proof appearing in this paper. I am
also grateful to Pat Hanrahan, Peter Schroder, and Stephen
Gortler for their helpful insights and discussion, and to Seth
Teller and Celeste Fowler for their efforts building the orig-
inal radiosity system at Princeton. Finally, special thanks
to Carlo Séquin and the UC Berkeley Building Walkthrough
Group for building the model of Soda Hall and for getting
me started on this research project.

References

[1] Baum, D., and Winget, J. Real Time Radiosity Through Parallel Pro-
cessing and Hardware Acceleration. Computer Graphics (1990 Sym-
posium on Interactive 3D Graphics), 24, 2, 67-75.

[2] Bouatouch, K., and Priol, T. Data Management Scheme for Parallel
Radiosity. Computer-Aided Design, 26, 12, December, 1994, 876-883.

[3] Chalmers, A, and Paddon, D. Parallel Processing of Progressive Re-
finement Radiosity Methods. Second Eurographics Workshop on Ren-
dering, Barcelona, Spain, May, 1991.

[4] Chen, S.E. A Progressive Radiosity Method and its Implementation
in a Distributed Processing Environment. Master's Thesis, Cornell
University, 1989.

[5] Cohen, M., Greenberg, D., Immel, D., and Brock, P. An Efficient
Radiosity Approach for Realistic Image Synthesis. IEEE Computer
Graphics and Applications, 6, 3 (March, 1986), 25-35.

[6] Cohen, M., Chen, S., Wallace, J., and Greenberg, D. A Progressive
Refinement Approach to Fast Radiosity Image Generation. Computer
Graphics (Proc. SIGGRAPH ’88), 22, 4, 75-84.

[7] Drettakis, G., Fiume, E., and Fournier, A. Tightly-Coupled Multi-
Processing for a Global Illumination Algorithm. EUROGRAPHICS
’90, Montreux, Switzerland, 1990.

[8] Drucker, S., and Schroder, P. Fast Radiosity Using a Data Parallel
Architecture. Third Eurographics Workshop on Rendering, 1992.

[9] Feda, M., and Purgathofer, W. Progressive Refinement Radiosity on
a Transputer Network. Second Eurographics Workshop on Rendering,
1991, 139-148.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Feda, M., and Purgathofer, W. Progressive Ray Refinement for Monte
Carlo Radiosity. Fourth Eurographics Workshop on Rendering, 1993,
15-25.

Garey, M., and Johnson, D. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

Guattery, S., and Miller, G. On the Performance of Spectral Graph
Partitioning Methods. 1995 ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 1995.

Golub, G., and Van Loan, C. Matrix Computations. John Hopkins
University Press, Baltimore, MD, 2nd Edition, 1989.

Goral, C., Torrance, K., Greenberg, D., and Battaile, B. Modeling
the Interaction of Light Between Diffuse Surfaces. Computer Graphics
(Proc. SIGGRAPH '84), 18, 3, 213-222.

Gortler, S., Schroder, P., Cohen, M., and Hanrahan, P. Wavelet Ra-
diosity. Computer Graphics (Proc. SIGGRAPH '93), 221-230.
Guitton, P., Roman, J., and Subrenat, G. Implementation Results and
Analysis of a Parallel Progressive Radiosity. In 1995 Parallel Render-
ing Symposium, Atlanta, Georgia, October, 1995, 31-37.

Hanrahan, P., and Salzman, D. A Rapid Hierarchical Radiosity Algo-
rithm. Computer Graphics (Proc. SIGGRAPH '91), 25, 4, 197-206.
Naylor, B. Constructing Good Partitioning Trees. Graphics Interface
‘93. Toronto, CA, May, 1993, 181-191.

Paddon, D., and Chalmers, A. Parallel Processing of the Radiosity
Method. Computer-Aided Design, 26, 12, December, 1994, 917-927.
Recker, R., George, D., and Greenberg, D. Acceleration Techniques
for Progressive Refinement Radiosity. Computer Graphics (1990 Sym-
posium on Interactive 3D Graphics), 24, 2, 59-66.

Rushmeier, H., Patterson, C., and Veerasamy, A. Geometric Simplifi-
cation for Indirect Illumination Calculations. Graphics Interface 93,
May, 1993, 227-236.

Sillion, F. A Unified Hierarchical Algorithm for Global Illumination
with Scattering Volumes and Object Clusters. IEEE Transactions on
Visualization and Computer Graphics, I, 3, September, 1995.

Singh, J.P., Gupta, A. and Levoy, M. Parallel Visualization Algo-
rithms: Performance and Architectural Implications. IEEE Com-
puter, 27, 7 (July 1994), 45-55.

Smits, B., Arvo, J., and Greenberg, D. A Clustering Algorithm for
Radiosity in Complex Environments. Computer Graphics (Proc. SIG-
GRAPH ’94), 435-442.

Teller, S., Visibility Computations in Densely Occluded Polyhedral
Environments. Ph.D. thesis, Computer Science Division (EECS), Uni-
versity of California, Berkeley, 1992. Also available as UC Berkeley
technical report UCB/CSD-92-708.

Teller, S., and Hanrahan, P. Global Visibility Algorithms for Illumi-
nation Computations. Computer Graphics (Proc. SIGGRAPH '93),
239-246.

Teller, S., Fowler, C., Funkhouser, T., and Hanrahan, P. Partition-
ing and Ordering Large Radiosity Computations. Computer Graphics
(Proc. SIGGRAPH '94), 443-450.

Wallace, J., Elmquist, K., Haines, E. A Ray Tracing Algorithm for
Progressive Radiosity. Computer Graphics (Proc. SIGGRAPH '89),
23, 3, 315-324.

Young, D.M. Iterative Solution of Large Linear Systems. Computer
Science and Applied Mathematics. Academic Press, New York, 1971.
Zareski, D., Wade, B., Hubbard, P. and Shirley, P. Efficient Parallel
Global Illumination using Density Estimation. 1995 Parallel Render-
ing Symposium. Atlanta, Georgia, October, 1995, 47-54.

Zareski, D. Parallel Decomposition of View-Independent Global Illu-
mination Algorithms. Master’s thesis, Cornell University, 1996.



