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Abstract

We describea systemthatcomputegadiosity solutionsfor polyg-
onal environmentanuchlarger than can be storedin main mem-
ory. Thesolutionis storedin andretrievedfrom a databasasthe
computationproceeds Our systemis basedon two ideas:theuse
of visibility oraclesto find sourceandblockersurfacegotentially
visible to a receiving surface;and the use of hierarchicaltech-
niguesto representnteractionsbetweenlarge surfacesfficiently,
andto representhe computedradiosity solution compactly. Vis-
ibility information allows the environmentto be partitioned into
subsetsgachcontainingall the information necessaryo transfer
light to a clusterof receivingpolygons. Sincethe largestsubset
neededor anyparticularclusteris muchsmallerthanthetotal size
of the environmentthesesubsetcomputationscan be performed
in muchlessmemorythan canclassicalor hierarchicalradiosity.
Thecomputatioris thenorderedfor furtherefficiency. Carefulor-
deringof enegy transferaminimizesthe numberof databaseeads
andwrites. We reportresultsfrom large solutionsof unfurnished
and furnishedbuildings, and show that our implementation’sob-
servedrunning time scalesnearly linearly with both local and
global model complexity.
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1 Introduction

An importantapplicationof computergraphicsis the modelingof
lighting in buildings. In fact, suchinterior lighting simulations
arethe major applicationof the radiosity method. Unfortunately,
radiosityalgorithmsstill arenot fastandrobustenoughto handle
standardbuilding databases.Evidenceof this is that previous
radiosityimagestypically showa solutionfor only a singleroom
of modestgeometriccomplexity. Furthermore;‘tricks” are often
usedto hide artifactsandto copewith eventhislow level of model
complexity. In this paperwe describeradiosity computationson
very large databases.

Therearethreebasicmeasuresf the complexityof a radiosity
solution: the input complexity, the output complexity, and the
intermediatecomplexity.
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e The input complexityis relatedto the numberof geometric
primitives, textures,and light sourcesresent.

e The outputcomplexityis relatedto the numberandtype of
elementsequiredto representhe computedradiosity solu-
tion. Note thatthe outputcomplexityis much, muchgreater
than the input complexity, as it includesthe input model
plus a representatiorof the radiosity on all surfaces. The
radiosity function may be very complex due to shadowing
and lighting variations,and much recentresearchhas con-
cernedits compact,accuraterepresentation. The optimal
outputcomplexityis that which representshe radiosity so-
lution to within a specifiederror with a minimal amountof
information.

e Theintermediatecomplexityis relatedto the size of the data
structureneededo performthe radiosity computation.The
major componentof the intermediatecomplexity are the
form factor matrix and any data structuresusedto accel-
eratevisibility computations.Sincethe form factor matrix
may grow quadraticallyin the outputcomplexity,andsince
acceleratedisibility queriesmay involve sophisticatedlata
structuresthe intermediatecomplexity may be evengreater
thanthe outputcomplexity,andis, in fact, usually the lim-
iting factorin performinglarge radiosity simulations.When
storageis unlimited, the optimal intermediatecomplexity is
that associatedwvith the most rapidly conveging iterative

scheme.

Model Surfaces| Patches| Elements| Time
Theater[1] ~5K ~80K ~1M 192H
Mill [5] ~30K ~50K 195H
Cathedral[28] ~10K ~75K 1H

Table 1: Previouscomplexradiosity solutions.

Severalcomplexradiosity computationshave beenreportedin
the literature(Table 1). Perhapghe mostcomplexis the Candle-
stick Theaterreportedin Baumetal [1]. This simulationgener-
atedover a million elementsperformed1600iterationsof a pro-
gressivaefinementlgorithm(shootingfrom a singlesource) and
took approximately8 daysto compute. Other reportedcomplex
radiosity simulationseachgeneratedessthan 100,000elements.
Our goalis to rendercompletebuildingsat onesquareinch effec-
tive resolution,obviously a very resource-intensiveomputation.
For example, considerthe model of the University of Califor-
nia, BerkeleyComputerScienceBuilding. The furnishedbuilding
modelcontainsmorethan8,000light sourcesand1.4 million sur-
facesand requiresapproximately350 megabytef storage[9].
We estimatethat 10 to 100 million elementsmay be requiredto
represent high-fidelity radiosity solution throughoutthe model.

Intermediatememory demandsoften determinethe limits on
the size of the model usedin a radiosity system. The interme-
diate memory usagedependson the representatiorof the form
factor matrix. Two generalapproachedave emeged for cop-
ing with the size of the form factor matrix: hierarchicalradiosity



Figure 1: A locally dense,
u L globally sparseinteraction
. block matrix.

and visibility subspacesHierarchicalradiosity (andits relative,
waveletradiosity) efficiently approximateform factor matricesin

situationswherea setof large surfacesaremutually visible. Tech-
niguesare only recentlyemeging for handlinglarge numbersof

small, mutually visible surfacesfor exampleby clustering. The
problemof efficiently computingcluster-clusteinteractionss not
addressedn this paper. However,our visibility subspacemeth-
ods do exploit the fact that in many environments particularly
building interiors, only a small percentagef the environmentis

visible from any particularsurface.A globalvisibility precompu-
tation constructsthis potentially visible setfor eachsurface,and
the subspacenethodsmaintainthe setthroughouthierarchicalre-

finement.

Figure 1 depictsa sparseblock-structuredform factor matrix.
Eachdiagonalblock represents densdnteractionwithin a cluster
of surfaces,e.qg., the polygons comprisinga room. Each off-
diagonalblock representshe couplingbetweertheseclusterse.g.
the roomsvisible from a given room. Thuseachblock is locally
dense but the matrix is globally sparse.

In this paperwe describeour systemto computeradiosity so-
lutions in suchenvironments.The environmentis assumedo be
very large and henceis storedin a databaseas the computation
proceeds. The ensuingradiosity computationis partitioned into
subsets.Eachsubsetcontainsthe information neededo perform
a transferof light to a cluster of polygons. Thesesubsetcom-
putationsare ordered to performthe light transfersefficiently by
reducingthe numberof databaseeadsandwrites. We reportthe
results of simulationsrun for modelsof varying density (local
complexity) and overall size (global complexity).

This systemis built upon previously describedhierarchical
radiosity methods, global and local visibility algorithms, and
databaseind walkthroughimplementations.

2 Prior Work

The problem of increasingthe speedand accuracyof radiosity
solutionshasbeenaddressedn many fronts.

e Vishility. One of the mostexpensiveoperationsin global
illumination is visibility computation. For a given surface,
the setof surfacegthatilluminate (or areilluminated by) it
must be efficiently identified. Clearly this requiresglobal
knowledgeof the model.

Classicalradiosity algorithmsuseda “hemicube” algorithm
to approximateeachsurface’soccludedview of the model
as an environmentmap onto facesof a cube centeredon
a surfacepoint [6]. The projection operationinvolved the
whole modelandrespectediepth,producingdiscretizedsur-
face fragmentsvisible to the samplepoint. This and other
point-samplingechniquege.g.,[4]) may not detectrelevant
light sourcesand/orblockers,however.

Shaftculling recastglobal visibility into a collectionof vis-
ibility subspace®y generatinga commonshaftvolume for
eachinteractingpair, andtreatingasblockersonly thoseob-

jects (potentially) intersectingthe shaft [14, 18]. Finally,

preprocessingndincrementalmaintenanceéechniquesised
a coherentglobal passthroughthe modelto generatdnitial

blocker lists, then maintainedthe lists incrementallyunder
link subdivision[25]. Thesetechniquesin contrastto those
basedon point-sampling.are conservativan the sensethat
they neverwrongly excludea blocker or light sourcefrom

an interaction.

e Solution Methods. Classicalradiosity algorithmsgenerate
a row-diagonallydominantinteractionmatrix [6]. The ra-
diosity matrix equationis then solvedby repeatedlyupdat-
ing the matrix entriesusinga numericalsolutiontechnique,
typically Gauss-Seideteration. Severalproposedmprove-
mentsaddresghe orderin which the matrix entriesare up-
dated. Progressiveradiosity techniqueschoosesourcesin
brightnessorderandshoottheir enegy into the environment
[5]- This mayinvolve considerablédookkeepingsinceeach
shootupdatesmany brightnessesand the relative priorities
of queuedshooteramay changeconsiderably Parallelimple-
mentationof progressivaefinementhavebeenreported|2,
19]. “Super-shoogather’techniquegsepeatedlyover)shoot
from andgatherto a small numberof surfacesjgnoringany
interactionsnot involving the shooterd7, 12].

e Hierarchical Approaches and Clustering. Matrix-based
solutionsconsiderthe matrix at a singlegranularity, namely
the correspondenceetweeneachmatrix entry and pair of
surfacesn the environment.The hierarchicalradiosityalgo-
rithm appliedtechniquesievelopedor the n-body problem,
incorporatinga global error boundandallowing surfaceso
exchangeenegy whenevethey coulddo sowithin the spec-
ified error[15]. Thus,whereversuficiently far-apartor dim
surfacesinteract, hierarchicalmethodsessentiallycompact
a block of the form-factor matrix into a scalar. Recursive
applicationof this idea yielded a radiosity algorithm with
running time that grows linearly with the numberof out-
put elements. The hierarchicalradiosity algorithm did not
addresghe “clustering” problemof efficiently handlingin-
teractionamongsurfacesomposedf manysmallsurfaces;
sometechniqueshavebeenrecentlyproposedo do so [20,
22,29].

e Meshing and Finite Element Methods. Finally, meshing
and finite-elementtechniqueshave been employedto im-
provethe accuracyof radiosity solutions. Classicaland hi-
erarchicalsolution algorithmsrepresentedadiosity as con-
stantover eachsurface. Galerkin-basednethodsusefinite
elementtechniqueso representadiositiesmore generally,
as weightedsumsof smoothly varying basisfunctionsde-
fined over eachsurface[16, 17, 27, 30]. The resultingso-
lutions have better smoothnessand convegence behavior
thanthoseof classicalradiosity. Recently,the waveletra-
diosity method[13, 21] combinedhierarchicakradiositywith
Galerkintechniques.

3 Basic ldeas

Our systemis basedon two ideas: partitioningand ordering.

Partitioning decomposethe databasénto subsets Eachsub-
setcontainsthe informationneededto gatherall the enegy des-
tinedfor a clusterof receivers.We assumehatthe largestsubset,
including the sourcesyeceivers,and visibility andinteractionin-
formation,requiresfewerresourceshanwould berequiredfor the
whole model. Performingenegy transferdfor a partition amounts
to a single block iteration of an iterative solution of the radios-
ity systemof equations. Partitioning is implementedby finding
thoseclustersof sourcepolygonsvisible to a clusterof receiving



polygons. Only light originating from the sourcesmay directly
illuminate the receivers.Furthermorepnly polygonsvisibleto the
receiversmay block light transfersfrom the sourices. Therefore,
the visibility and light transfercomputationsmay use the same
database.

The goal of partitioningis to reducethe solver’s working set
to a manageablesize. Receiverclustersmay have denseinterac-
tionsin a local region, but should have sparseinteractionswith
the remainderof the environment. Our implementationinherits
clusteringinformation (andthuslocal density)from the modeling
hierarchy,and achievegylobal sparsenesBy partitioning accord-
ing to visibility.

Ordering is schedulingradiosity subcomputationsthe enegy
transfers-to achieverapid convegence.An exampleof anorder-
ing algorithmis the progressiveadiosity algorithm,in which the
sourcewith the largestunshotradiosity is selectedto “shoot” its
enegy into the environment.In our system,the order mustalso
be chosersothatthe memory“footprint” changesslowly; thatis,
the working set neededfor the next transfershould differ little
from that of the currenttransfer. Successfubrdering strategies
reducethe read and write traffic of the working setfrom andto
externalstoragewhile maintainingrapid convegenceproperties.

In this paperwe analyzeseveralmethodsfor orderingthe en-
ey transfers:randomorder;modeldefinitionorder;sourceorder;
andspatialcell order. We also briefly discussoptimal orderings.

4 System Architecture

Our systemis designedo solvethe following problem: in prac-

tice, hierarchicalradiosity is limited either by its intermediate
complexity (i.e., the numberof links) or by its outputcomplexity

(the descriptionof the radiosity solution), or both. We address
both limitations by constructingsmall but completeworking sets
(Figure?2) for the hierarchicalalgorithm,theninvoking a radiosity

solverandstoringawaythe result— animproved,typically larger,

answer-in a spatialdatabas¢hatcangrow incrementallyandar-

bitrarily large. This partitioning of hierarchicalradiosityis shown

in §5 to preserveits correctnessind convegenceproperties.

Figure2: A working setof sourcecluster(white outline), receiver
cluster(yellow outline), and blocker polygons(greenoutline) for
a solverinvocation. The braid and links are not shown.

The typessurface patch elementand link are familiar to ra-
diosity practitioners. The typesblocker, shaft andtube arisein
recentrelatedwork on shaft-cullingand visibility subspace§l4,
18, 25]. The novel typesdescribedhereare clustersand braids,
definedanalogouslyto surfacesandlinks in existing hierarchical
radiosity systems.

e A tube is alist of blockersfor a pair of geometricentities
p and ¢, and a shaft volume, the convexhull of (p U q).
For any tube T', varieTY(T') lazily computesone of IN-
VISIBLE, VISIBLE, Of PARTIAL, When p and ¢ are totally

mutually invisible, visible, or only partially visible, respec-
tively. Tubescan also subdividethemselvesand reclassify
their child tubes’vARIETIES whenoneof p or ¢ subdivides.
Only entitiesthat impinge uponthe shaftmay be blockers.

e A braid is alist of links betweentwo clusters.A link is a
directededgeto a patchp from a patchg, associatingvith p
andq aform factorestimateandothercouplinginformation.
Every link containsa tube. Given the tube T' describing
the shaft and blockersof clustersR and .S, the braid over
this cluster-clusteiinteractionis simply the setof all links
betweenpatchesn clustersR and .S, anda referenceto 7.

e A cluster is alist of surfacesand a boundingvolume. Note
thata clustermay braid with itself if containsany patchesp
andq suchthat VARIETY (p, q) # INVISIBLE.

The systemhassix principal computationamodules.Five exist
in previouswork, and have beenadoptedhere with only slight
changes. The remaining component.the radiosity scheduler is
the main novelty of our system. We describeeach module in
top-downfashion(Figure 3).

Database  [€!? 1 —p|  Radiosity
—l |_ Solver
@ Radiosity i
Scheduler

DISK

1 Working set
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? ?
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z-} A directs B A reads from B

Figure 3: Systemblock diagram.

e Theradiosity scheduler is the conceptuatenterof the sys-
tem. It mediatesbetweenthe databaseand the radiosity
solver, selectinga clusterfor refinementand transferoper-
ations (ordering), extractinga small portion of the model
from the databasgpartitioning), manipulatingthe solver’s
working set, invoking the solver, extractingthe modified,
refinedclusters,andreturningthemto the database.

e The database containsa persistent(disk) representatiorof
all clustersand a hierarchicalspatialsubdivisioncomprised
of convex cells and portals that connectcells [26]. The
databasesupportsthe operationsof reading dirtying, and
releasingclusters[9, 11]. Releaseof dirty dataresultin
deferredwrites to persistenistorage.

e Theglobal visibility oracle, given a receivercluster,iden-
tifies thoseclusterspotentially visible to the receiver,i.e.,
thoseclustersthat may illuminate the receiver,or block en-
ey transfersto it [23, 25]. A cluster may be visible to
itself.

e The hierarchical wavelet radiosity solver generatesigh-
quality radiosity solutions using wavelet basesof general
orderand Gaussiamuadraturg13, 15, 21].

e Thelocal visibility oracle supportsoperationgor allocating
and subdividingtubes,and acceleratingooint-to-pointvisi-
bility queriesfor quadraturg25]. The globaloraclesupplies
theinitial blockerlist for eachtube.

e Thevisualization moduleemploysthe Silicon GraphicdRIS
GL™ to facilitate interaction,inspection,and animationof



geometricdatastructuresandalgorithms[24]. It hasproven
indispensableo developinga working system.

5 Partitioning

We wish to partition a hugeradiositycomputatiorinto a sequence
of smallgathersto individual receivers gachof which canfit into
a smallamountof memory. Whatinformationmustbemaintained
in orderto scheduleand perform eachgathercorrectly? Clearly
thereceiverandsourceclusterinvolved mustbe memoryresident,
as must their braid (links) and blocker polygons(cf. Figure 2).
We compilethis workingsetfor eachtransfer,andsupplyit to the
radiosity solver.

Our system constructs partitioning information from three
sources. First, the modeling instantiationhierarchyyields clus-
ters of polygonsthat separatelycomprisethe structuralelements,
furnishings, light fixtures, etc., of the model. Second,a spa-
tial subdivisiongroupsclustersinto cellsby proximity, separating
them along major sourcesof occlusion. Third, a visibility com-
putationidentifiesall clusterpairsthat may exchangeenegy [11,
23, 26].

Thefinal tool is a flexible databasdérom which individual por-
tions of the model may be extracted modified andreplaced/11].
We adaptedthe databaseo supportthe new datatypesrequired
for radiosity.

5.1 The Algorithm

Our algorithm: extractseachreceiverandits visible setfrom the
spatialdatabaselinks them; refinesand gathersacrossthe links;
and returnsthe modified clustersto the database.A hierarchi-
cal waveletradiosity solver performsthe refinementand gather
operations. Our algorithm loops over receiverclustersR in the
databaseintil convegence executingthe following actions:

1. ReadR

2. Install R into working set

3. For eachsourceclusterS visible to R
(a) ReadsS blockersB(R, S)
(b) Install S, blockersB(R, S) into working set
(c) T =TubgR, S,B(R,S))
(d) Install( links in Braid(R, S,T) ) into working set
(e) Invoke solver Gathe( eachpatchof R )
(f) Discard newly refined links from working set
(g) DeleteTubeT
(h) RemoveS, blockers B(R, S) from working set
(i) SetDirtyS)
() ReleaséS) andblockersB(R, S)

. Invoke solver PushPul( eachpatchof R )

. Extract R) from working set

. SetDirty(R)

. ReleaséR)

~No oA

Thefunction Braid(R, S, T') in line 3—d simply generatesop-
level links betweenvisible patch pairs from R and S, using
blockerinformationfrom the tubeT". Refinedlinks arediscarded
(line 3—f), since A) they cannotbe reuseduntil the next full
databasdteration, and B) they are so humerousthat, at ~250
bytes/link,they do not fit in a 32-bit (4Gb) addresspace.

5.2 Iteration Methods, Correctness, and Convergence

Hierarchicalradiosity performsJacobiiteration. Thatis, only af-
ter a completeupdateof all patch’sgatherslots are any patch’s
shootslots updated(by Pushand Pull [15]). Jacobiiterationis
clearly an untenablestrategyfor extremelylarge models,sinceit
would necessitateeadingand writing every patchtwice per up-
date. Moreover,hierarchicalradiosity is often memory-boundn

practice,.e., limited by the numberandcomputationatomplexity
of its activesetof links, or by the sizeof the solutionin progress.
Our partitioningschemeeliminatesJacobiiterationaltogetherand
entirely removesthe memorylimitations on hierarchicalradiosity
for environmentof sufficiently limited visibility.

The correctnes®f the partitionedsolveris easilyshown. Dur-
ing anygatherto a clusterR, theonly patchesxcludedassources
arenvISIBLE from R, andthereforecannotaffect the computed
solutionon R.

The convegenceof the partitionedsolver follows from a nu-
mericalagument. The schedulesolvesthe radiositymatrix equa-
tion as doestraditional hierarchicalradiosity, but for one differ-
ence: eachreceiverseesa combinationof old and updatedshoot
slotson otherclusters ratherthanseeinguniformly old slots. The
scheduleis thereforeperformingGauss-Seiddterationof thelin-
earsystem ratherthanJacobiiterationasin hierarchicakadiosity.
Since both methodsconvege for row-diagonallydominantsys-
tems of radiosity equations[6], convegenceof the partitioning
algorithmis assured.

5.3 Partitioning Results

We studiedthe performanceof our systemfor modelsof varying
complexity. In onetest,we increasedocal complexityusingmod-
els Office OfficeLow, and Office High which representhe same
office without furniture,with coarselymodeledfurniture,andwith
very detailedfurniture. Thesethree modelscontainroughly one
hundred,fifteen hundred,and thirty-five hundredinput patches,
respectively. In a secondtest, we increasedglobal complexity
using the unfurnishedmodels Office Floor, and Building which
representan office, one entire floor of a building, andfinally an
entire five floor building (including an atrium and many offices,
open areas,stairwells, and classrooms). Thesemodels contain
roughly one hundred,seventhousand,and forty thousandinput
patchesrespectively.

Gather

Figure 4: Working setsize while solving the Building model.

We measuredheinput, intermediateandoutputcomplexity,as
well asworking setmemoryrequirementsfor solutionsof these
test models. Statisticsfor three completeiterations (gathersto
all clusters)of the radiosity solverare shownin Tables2 and 3.
The minimum allowableelementareawas one squarench for all
runs. All times are wall-clock measurementsising a 16 u-sec
timer, on a lightly loadedSGI CrimsonReality Enginewith a 50
MHz R4000CPU, 256Mb memory,and8Gblocal disk. Figure4
chartsthe size of the solverworking setduring onefull iteration
of the mostcomplexmodel, Building.

Severaltrendscan be gleanedfrom the measurementsFirst,
thevisibility andhierarchicafradiositytechniqgueszompactedarge
numbersof potential elementsand interactionsto manageable
sizes. Second,partitioning techniquessuccessfullypoundedthe
working setsizeat a few tensof megabytesevenfor modelsde-
mandingseveralgigabytesof intermediatesolution data. Third,
intermediateand output complexity and running time appearto
vary nearly linearly with input complexity. Thus, partitioning



Input Intermediate Output Observed

Working Set (Mb) # Links # Elements ElapsedTime (s)

Model Clusters/ Patched Lights || WS Total WS Total / Patch || WS Total | /Patch || Total | / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445] 3,142 247 180 14
Office Low 70 1,418 21 11.1 239.9 38,593 960,432 677 7,081 ] 36,377 25.7 7,111 5.0
Office High 70 3,466 21 14.1 414.4 48,784 | 1,678,105 484 8,975 | 42,400 | 12.2 13,051 3.8

Table 2: Input, intermediate,and output complexities,and observedsolution times, for modelsof increasinglocal complexity. The
tabulatedquantitiesare dividedinto: WS (the largestworking setprocessedby the solver); Total (the total dataprocessedhroughoutthe
run); and Per Patch (the total amountdivided by the numberof input patches).The intermediateworking set WS was definedas the
size of the links (including tubes,shafts,andkernel coeficients), elementgincluding waveletcoeficients), and blocker polygons.

Input Intermediate Output Observed
Working Set(Mb) # Links # Elements ElapsedTime (s)
Model Clusters/ Patched Lights || WS Total WS Total / Patch || WS Total / Patch Total / Patch
Office 36 127 18 1.3 9.5 3,914 36,186 285 1,445 3,142 247 180 14
Floor 1,761 7,054 788 3.7 ] 1,116.1 12,532 | 4,307,705] 611 2,686 250,933 35.6 56,712 8.0
Building 9,625 39,979 7,826 145 6,063.0 52,454 | 23,528,943 589 7,104 | 1,265,843 31.7 491,040 122

Table 3: Input, intermediate and outputcomplexities,and observedsolutiontimes, for modelsof increasingglobal complexity.

successfullyexploited the global sparsityof the interactionma-
trix to achieveradiosity solutionsfor very large models, while
maintainingquite small working sets.

6 Ordering

Partitioning aloneis not sufficient to producea practical system
for large radiosity solutions. The partitionedtransfersmust be
ordered so as to minimize expensivereadsand writes of partial
solutiondatafrom andto the database.

To be effective,anorderingalgorithmmustschedulesuccessive
gathersso asto minimize disk accesseswhile maintainingrapid
convegenceproperties. Much work has focusedon the effects
of ordering on convegenceratesfor the radiosity computation
[5, 7, 12]; herewe concentrateon the effect of orderingon disk
accesses.

A good ordering algorithm maintainsa high degreeof coher-
enceamongthe working setsof successivecluster interactions.
Unfortunately, finding an optimal ordering is intractable. The
problemis computationallyequivalentto finding a solutionto the
travelingsalesmaiproblem. As a practicalsimplification,we have
considerednly orderingsin which all gathersto a single cluster
are performedsuccessivelyi.e., completegathers).Theseorder-
ings are particularly efficient and easyto implementbecauseall
sourcesandblockersfor a completegatherto a single clusterare
containedin the gatherer’svisible set. Our implementatiorreads
the entiresetof clustersvisible from the gatheretinto the memory
residentcachebeforeperformingany transfersto the gatherer.

We experimentedvith severalorderingalgorithms:
e Random order gathersto clustersin randomorder.

e Model order gathersto clustersin the orderin which they
were instantiatedby the modeler. In most cases,this is
not a randomorder since modelsare often constructedby
successiveaddition of related parts. For instance,in the
Berkeley ComputerSciencebuilding model, walls, ceilings
andfloors wereinstantiatedirst (groupedroughly by room),
followed by patchegepresentingight fixturesandfurniture.

e Source order gathersto that clusterwhich hasmost often
actedasa source(ties are brokenby proximity to the most
recentgatherer).This strategyis basedon the intuition that
the working set of a clusterthat hasbeenvisible to many

previousreceiverss likely to havea large overlapwith the
currentworking set.

e Cédl order scheduleglustersby traversingcells of thewall-
aligned BSP-tree[8] spatial subdivision[23, 26]. Consec-
utive cells are chosenby selectingthe neighborcell whose
interveningboundaryhasthe largesttransparengirea. This
approachexploitsthe visibility coherencef clustersdueto
proximity andlocal intervisibility.

Figure5 illustratesthe effect that orderingcanhaveon the co-
herenceof the working setduring an actualradiositycomputation
involving almost2,000clusters. The figure depictsmatriceswith
adot at position (z, ) if clustersC; andC; were potentially vis-
ible to eachother. Otherwise,no interactionbetweenC; and C);
waspossible andthe space(i, j) is left blank. Four permutations
of the underlyinginteractionmatrix were generatedby number-
ing clusteringaccordingto the orderin which theywere gathered
to. Thus, the position of a clusteralong the axesof the matrix
dependsn the gatherorder. Figure5 depictsthe permutedma-
trix resultingfrom gathersin A) randomorder, B) model order,
C) sourceorderandD) cell order,respectively.

In the caseof randomand model orders,the interactionsare
spreaduniformly over the matrix. No block structureis evident,
indicating that objects with similar visibility characteristicsare
gatheredto at very different times. When gatheringin source
orderthematrix appearsnuchmoreblock structuredespeciallyin
theearlyiterations.However,asgatheringproceedshe coherence
appearso degradeasevidencedy thefactthatthe block structure
disappearsn the upperright. The bestorderingstrategyappears
to be cell order,yielding a matrix in naturalblock diagonalform,
aswould be expectedin a building model. Note the horizontal
andvertical stripes;thesecorrespondo clustersin long corridors
with manyinteractions.

6.1 Ordering Results

We studiedthe effects of ordering algorithmson cacheperfor-
manceby restricting the memory residentcachesize to 32Mb
while solvinga one-floorbuilding model. In eachtest,everyclus-
ter gatheredexactly once. We logged statisticsregardingcluster
reads,writes, cachehit ratio, and /O time during the third com-
plete iteration of the radiosity computation(Table 4). All runs
were executecbn a 100 MHz R4000SGI Indigo? with 160Mb of
fastmemoryand 1Gb of local disk.



A) Random B) Model

C) Source D) Cell

Figure 5: Matricesdepictingpermutation®f the cluster-clusteinteractionmatrix. A dotat position(z, j) denotegotentialintervisibility
of C; andC;. Clusterpositionalongaxescorrespondso gatherorderduringa completeradiosityiterationin A) randomorder,B) model

order, C) sourceorder,andD) cell order.

Clusters| Mb Cache 1/0 Total
Order Read Read || Hit Ratio | Time(s) || Time(s)
Random || 77,916 | 4,374 35.4% 23,330 || 49,111
Model 44,163 | 2,376 63.4% 12,806 || 43,685
Source 30,798 | 1,708 74.4% 8,912 || 33,815
Cell 11,312 617 90.6% 3,180 || 26,454

Table 4: 1/O statisticsfor variousorderingalgorithms.

Thereare significant differencesin the I/O overheadincurred
by eachorderingalgorithm. Figure6 showsthepercentagef total
executiontime spenton I/O (transfersbetweerthe disk andmem-
ory residentcache)for differentgatherorders. Randomorderhad
a 35.4% cachehit ratio, spending23,330secondg47.5% of the
total executiontime) on morethan4.3GB of 1/0 betweerthe disk
andmemoryresidentcache.In contrast,cell orderingachieveda
90.6%hit ratio, spendingonly 3,180second®n I/O (12.0%o0f the
executiontime). We concludethatthe orderin which clustersare
processedangreatlyaffect performanceduring radiosity compu-
tationson very large models.We arecurrentlyinvestigatingother
possibleordering algorithms, including ones derived from pro-
gressiveradiosity [5], nearestneighbors,and minimum spanning
trees[3]. We expectthat the bestorderingalgorithmswill take
into accountboth cachecoherenceand convegencebehavior.
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Gather Order

Figure 6: Time distributionsfor variousgatherorders.

7 Results

Using a Silicon GraphicsCrimsonworkstationwith a single 50

MHz processoand256 megabyte®f mainmemory,we computed
threecompleteiterationsof a radiosity solution on the entire un-

furnishedBerkeleyComputerScienceBuilding modelto oneinch

resolution. The input modelhad 9,625clusterscomprisinga total

of 39,979polygons. Of thesepolygons,7,826were emissiveand

servedaslight sources.

To give anideaof scale thetotal areaof all polygonsin theun-
furnishedbuilding modelis 64,517,972quareinches. Therefore,

without the use of visibility-based partitioning and hierarchical

techniguesthe numbersof elementsandlinks potentiallycreated

duringtheradiositycomputatiorat oneinch resolutionareapprox-

imately 6.4 x 10" and4.2 x 10'®, respectively- unmanageably
high.

Statisticsregardinghetime andspacecomplexityof theradios-
ity solutionfor the entire unfurnishedbuilding model are shown
in Table5. To our knowledge this is the mostcomplexmodelfor
which a radiosity solutionhasbeencomputed.The entireradios-
ity computationtook 136.4hoursand createdl,265,843elements
and 23,528,943links — 2.0% and 0.00000056%of the potential
numbersat one inch resolution, respectively. The partitioning
techniguesyielding a maximumworking set size of 14.5MB, or
0.24% of the 6.1GB of total intermediateand output data. Cell
orderingyielded a total I/O time of 14.2 hours,or 10.4%of the
total executiontime.

# # # Max Solver | 1/O Total
Iter Elements Links WS Time | Time | Time
0 39,979 - - - - -
1 295,039 | 2,649,521 2.0 3.3 0.2 5.1
2 884,905 | 15,860,111| 11.2 40.6 3.2 47.0
3 1,265,843 | 23,528,943| 14.5 69.9 | 10.8 84.3
Total || 1,265,843 | 23,528,943 14.5 1138 | 142 | 136.4

Table 5: Complexity of radiosity solution for the unfurnished
building model (timesarein hours).

The five color plateson the next pageshow imagesof a ra-
diosity solutionfor onefurnishedfloor of the BerkeleyComputer
ScienceBuilding model, after two completeiterations. The solu-
tion contains734,665elementsandtook 48.5 hoursto compute.
Platel showsan overheadview of the furnishedfloor. Platesl|
andlll show interior views of a typical furnishedoffice, shaded
andwith anoverlaid quadtreamesh respectively.The globaland
local complexitiesof the radiosity solution are readily apparent
from theseviews. PlateslV andV showa typical work areaand
hallway view, respectively.

The radiosity solutionsgenerateddy this systemare usedas
input for thereal-timewalkthroughprogram(the color plateswere
generatedusing screen-capturefrom this program). The same
visibility informationand computationsisedto determinesource
andreceiverinteractionsareusedto maintainan interactiveframe
ratein thewalkthrough.Thehierarchicalquadtreeyepresentation
of radiosity on eachpolygonis particularly useful, asit allows
easily selectabldevels of detail [10] for eachpolygon.



Platelll: Office, meshed.

PlatelV: Workroom,gouraudshaded. PlateV: Hallway, gouraudshaded.




8 Summary and Discussion

This paperpresentech systemthat exploits visibility and coher-
ence information to computeradiosity solutions for very large
geometric databasesusing existing high-quality global illumi-

nation algorithms. Physically-basedighting simulationis more
challengingthan standardrenderingalgorithmsin that the output
complexityis very high, andthe intermediatecomplexityandcal-
culation costsare evenhigher. However,in the future thereare
likely to be manyapplicationsrequiringdisplay of complex,real-
istic virtual environmentssuchasthe building usedin this study.
To achievesuchcomplexityrequiresadvancest both the theoret-
ical andthe practicallevel. Thetheoreticaladvancesliscussedn

this paperare the visibility and hierarchicalradiosity algorithms.
The practicaladvancesncludethe useof systemtechniquesuch
asdatabasesschedulingand caching.

Specifically,we haveimplementeda systemcapableof com-
putingradiositysolutionsfrom large modelsresidingin a database
storedon a disk. We show how partitioning the model leadsto
small working sets,allowing us to procesdatabasesuchlarger
thenthosewe could handlewithout partitioning. Poorpartitioning
of the databasecan causeit to be read and written many times.
We showhow cleverorderingcansignificantlyreducedisk traffic.
The combinationof thesetwo techniquesallow usto handlevery
large geometricmodels.

Given our experiencewith the systemto date, the follow-
ing researchdirectionsseempromising. First, the tradeofs be-
tweengatheringand shootingalgorithmsin hierarchicalradiosity
shouldbe investigated as preliminary resultsindicate that shoot-
ing convegesmore rapidly in somesituations. Second,interac-
tions amongobjectscomprisedof many small polygonsmustbe
handledmore efficiently, perhapsby incorporatingthe notion of
levelsof detail into the radiosity solutionmethod. Third, the vis-
ibility calculationsusedto determinesoft shadowsare still very
expensive,and shouldbe improved. Finally, the refinementor-
acle employedby the hierarchicalradiosity algorithm is far too
conservative Ratherthanrelying solely on estimateof form fac-
tor and transporterror, it shouldincorporatea term basedupon
representatiorrror over eachreceiversurface.
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