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Abstract
This paper introduces a framework for defining a shape-aware distance measure between any two points in the
interior of a surface mesh. Our framework is based on embedding the surface mesh into a high-dimensional space
in a way that best preserves boundary distances between vertices of the mesh, performing a mapping of the mesh
volume into this high-dimensional space using barycentric coordinates, and defining the interior distance between
any two points simply as their Euclidean distance in the embedding space. We investigate the theoretical properties
of the interior distance in relation to properties of the chosen boundary distances and barycentric coordinates, and
we investigate empirical properties of the interior distance using diffusion distance as the prescribed boundary
distance and mean value coordinates. We prove theoretically that the interior distance is a metric, smooth, interpo-
lating the boundary distances, and reproducing Euclidean distances, and we show empirically that it is insensitive
to boundary noise and deformation and quick to compute. In case the barycentric coordinates are non-negative
we also show a maximum principle exists. Finally, we use it to define a new geometric property, barycentroid of
shape, and show that it captures the notion of semantic center of the shape.

Keywords: distance measurement, shape analysis

1. Introduction

Measuring intrinsic distances on and inside surface meshes
is a fundamental problem in geometric processing, with ap-
plications in path planning, shape matching, surface editing,
mesh segmentation, and other geometric analysis problems.
Desirable properties of such a distance are that it is a metric,
fast to compute, smooth, and insensitive to deformations.

While several methods with these properties have been
proposed for distances on surface meshes (e.g., geodesic dis-
tance [SSK∗05], diffusion distance [CLL∗05], etc.), meth-
ods for measuring distances between points inside the vol-
ume bound by a surface mesh are limited. Direct extension
of the surface-based methods are computationally expensive
(e.g., computing the shortest path within a 3D polyhedron
is NP-hard [CR87], and computing diffusion distances on a
3D lattice is expensive), and thus people have generally re-
sorted to Euclidean distances between points in object interi-
ors, which of course are not intrinsic for deformable shapes.

The goal of our work is to provide an efficient method for
computing distances between points in the interior of a sur-
face mesh (Figure 1). Our method takes as input a set of pair-

Figure 1: The interior distance measured from a single
source point (black point) inside a 2D shape.

wise boundary distances between vertices of the mesh and
propagates them into the interior of the mesh. The key steps
are: 1) to embed the boundary mesh into a high-dimensional
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space in a way that best preserves the prescribed boundary
distances, 2) to define a volumetric mapping of the interior of
the mesh into this high-dimensional space using barycentric
coordinates, and 3) to define the interior distance between
any two points simply as the Euclidean distance between
their embeddings.

This procedure can be encapsulated in a simple for-
mula: for any distance measure along the boundary, d(vi,v j)
(where vi and v j are mesh vertices), and any method for
defining barycentric coordinates of a point in the mesh in-
terior, wi(·) (where i is a vertex index), the interior distance,
d̂(p,q), between any two points, p and q, can be calculated
via the following quadratic form:

d̂2(p,q) = (~w(p)−~w(q))T A(~w(p)−~w(q)),

where ~w(p) = (w1(p), ...,wn(p))T is the vector of barycen-
tric coordinates for point p, and A is the Gram matrix of
the dot-products of the distance-preserving embeddings v∗i
of the mesh vertices vi. That is Ai j = 〈v∗i ,v∗j 〉.

This method was chosen for three reasons. First, it pro-
vides a framework within which it is possible to prove desir-
able properties of an interior distance measure. For example,
we prove that if the matrix A is conditionally positive defi-
nite, then the interior distance is a metric and interpolates the
boundary distances. Second, it is easy to implement and fast
to compute. For certain choices of boundary distances, this
formula can be evaluated in time linear in the number of ver-
tices of the mesh. Therefore, it is fast enough to be computed
at interactive rates for large meshes, and significantly faster
than any other interior distance of which we are aware. Fi-
nally, it provides a framework to define different interesting
distances inside volumes which are induced naturally from
different choices of boundary distances and barycentric co-
ordinates.

The main contribution of this paper is the proposed frame-
work for computing distance between pairs of points in the
interior of a mesh (Section 3). Within this general frame-
work, we consider the effect of different ways to embed
the boundary mesh in a high-dimensional space (Section
4) and prove desirable properties of the interior distance
in relation to properties of the distance along the boundary
and the barycentric coordinates (Section 5). In Section 6,
we present results of experiments with a particular version
of the interior distance that interpolates the diffusion dis-
tance [CLL∗05, GGV08] along the boundary using mean
value coordinates [Flo03,JSW05]. We find that the resulting
distance measure is fast to compute, insensitive to noise and
deformation, and consistent with our human expectations for
a distance within the objects tested. In Section 7, we use it
to define a new shape property, the barycentroid of shape,
which we find captures the notion of semantic center of the
shape.

2. Previous work

There has been a fair amount of prior work on computing
distances between points in the interior of a 3D object in
computer graphics, computational geometry, robot motion
planning, computer vision, medicine, and graph analysis.

The simplest and most common distance measure is the
Euclidean distance. Of course, Euclidean distance is quick
to compute and smooth. However, it is completely indiffer-
ent to the shape of the enclosing boundary mesh, and thus
only valuable for studying extrinsic properties of a shape. In
our work, we aim to find an intrinsic, shape-aware distance
measure – e.g., one that does not change with isomorphic
deformations of the boundary and better respects the global
volumetric shape.

The second most common approach is the inner distance
– i.e., the length of the shortest path between two points
through the interior of the object. While this distance has
intuitive meaning and has been found useful for shape anal-
ysis and shape matching [LJ07,LFR09], computing it is NP-
hard for 3D polyhedral boundaries [CR87]. It is an instance
of the Euclidean Shortest Path Problem With Polyhedral Ob-
stacles, which has been studied extensively in computational
geometry and motion planning [Pap85]. Although there are a
variety of polynomial-time approximation algorithms (e.g.,
using visibility graphs [CSY94,BCKO08]), they are still ex-
pensive. Moreover, the inner distance has derivative discon-
tinuities (where different shortest paths meet) and is only lo-
cally influenced by the boundary of the shape (at the points
of contact between the shortest path and the boundary).
Thus, smooth deformations of the boundary do not lead to
smooth changes to the inner distance.

More robust, global distances can be computed using
models of physical processes. For example, the diffusion dis-
tance between two points p and q represents the integral
of a heat diffusion process [CLL∗05]. Similarly, the ran-
dom walk distance represents the expected length of random
walks from p to q, and the commute-time distance repre-
sents the expected length of random walks from p to q and
back [YFD∗07]. Though these distance measures have many
of the properties we desire (e.g., smoothness, non-local in-
fluence of the boundary, etc.), and boundary versions of them
have been used successfully for shape analysis in computer
graphics (e.g., [GGV08]), they are expensive to compute
with high accuracy for volumetric interiors. Though many of
these distances are defined in a continuous setting, they are
typically computed approximately on a discrete graph repre-
senting the object interior (e.g., voxels, tetrahedra, or some
other meshing of interior space). As a result, they suffer from
approximation errors due to the discretization and/or require
large storage and compute times if the discretization is very
fine.
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Figure 2: The method of defining the interior distance is
through embedding the boundary (left) in high-dimensional
space (right) s.t. the prescribed pairwise distances are pre-
served as much as possible. The vertices are colored to de-
pict this embedding. The distance d̂(p,q) between two inte-
rior points p,q is defined as the Euclidean distance between
their embeddings p∗,q∗.

3. Overview

Our goal is to define an interior distance by propagating dis-
tances provided on the boundary of a mesh into its interior.
Specifically, given a set of pairwise distances di j = d(vi,v j)
on a mesh, where vi ∈ R3, i = 1, ...,n are the vertices of the
mesh, we aim to construct a bivariate interior distance func-
tion d̂(·, ·) such that d̂(vi,v j) exactly/approximately equals
d(vi,v j) for every two vertices on the mesh. Furthermore,
we want d̂ to possess properties characteristic of distance
functions, e.g., being a metric in the mathematical sense.

Our approach is to propagate distances with a three-step
procedure. First, we embed the vertices vi ∈ R3 in Rm (for
some m) by constructing a map vi 7→ v∗i ∈ Rm such that
‖v∗i − v∗j ‖Rm exactly equals or approximates di j. Then, we
extend this embedding map to the interior of the mesh via
barycentric interpolation by setting p 7→ p∗ = ∑i wi(p)v∗i ,
where wi(·) are barycentric coordinates. Finally, we define
the distance between points p and q as the Euclidean dis-
tance between their images:

d̂(p,q) := ‖p∗−q∗‖Rm (1)

This procedure is illustrated in Figure 2: the closed polyg-
onal line (left) is embedded into a high dimensional space
(right) such that the Euclidean distances between pairs of
vertices match the boundary distances on the mesh. Then, a
distance between two arbitrary interior points is defined as
the Euclidean distance between their images, where the im-
age p∗ of a point p is defined using the barycentric coordi-
nates of p w.r.t. the original boundary mesh. This procedure
can also be viewed as deforming the interior of the mesh into
the high-dimensional space via the barycentric coordinates
and measuring distances in that space.

One advantage of this approach is that it provides a for-
mula for the interior distance expressed directly in terms
of the barycentric coordinates of the points p and q and

the embedded boundary mesh vertices v∗i , which is simple
and efficient to compute. If we plug p∗ = ∑i wi(p)v∗i , and
q∗ = ∑i wi(q)v∗i in Eq. (1), we get:

d̂2(p,q) := 〈p∗−q∗, p∗−q∗〉Rm =〈
∑

i

(
wi(p)−wi(q)

)
v∗i ,∑

j

(
w j(p)−w j(q)

)
v∗j

〉
Rm

=

∑
i, j

(
wi(p)−wi(q)

)(
w j(p)−w j(q)

)
〈v∗i ,v∗j 〉Rm .

The last expression is a quadratic form in wi(p)−wi(q) and
can be written in matrix notation as

d̂2(p,q) = (~w(p)−~w(q))T A(~w(p)−~w(q)), (2)

where ~w(p) = (w1(p),w2(p), ...,wn(p))T is the column-
vector made by stacking the weights, and A is the Gram
matrix that contains the dot-products between the embedded
vertices v∗i , that is Ai j = 〈v∗i ,v∗j 〉Rm . In other words, if Y is
the m× n matrix whose ith column contains the coordinates
of the point v∗i in Rm, then A = Y TY .

A second advantage of this approach is that it provides a
formulation in which the properties of the interior distance
can be proved in terms of the matrix A and the barycentric
coordinates ~w(·). For example, it is easy to prove that d̂(p,q)
is a metric if A is conditionally positive definite. This and
other properties are proved formally in Section 5.

4. Embedding

In order to use our construction for measuring interior dis-
tances, one first has to find an embedding of boundary vi 7→
v∗i ∈ Rm such that ‖v∗i − v∗j ‖Rm exactly equals or approxi-
mates di j, the provided pairwise distances on the boundary.
We look at three classes of boundary distances: 1) an exact
distance-preserving embedding is available a-priori – in fact,
the distance itself is defined in terms of such an embedding;
2) an explicit embedding is not available, but the distance is
exactly embeddable; 3) an exact distance-preserving embed-
ding does not exist.

Classes 1) and 2) are the most efficient for our construc-
tion, and provide an interior distance that interpolates the
prescribed boundary distances. For class 3), our construc-
tion is still valid, except that the interior distance does not
interpolate, but only approximates, the input boundary dis-
tances.

Class 1: The most natural boundary distances for our frame-
work are the distances for which a distance preserving em-
bedding is known a-priori. Diffusion distance [CLL∗05] and
GPS distance [Rus07] are such examples. Both of these
distances are defined by embedding the mesh into a high-
dimensional space. For example, to obtain the diffusion dis-
tance, one considers the diffusion map [CLL∗05] that can
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be defined for meshes as follows [GGV08]. Consider a dis-
crete Laplace-Beltrami operator of the mesh, and compute
its eigendecomposition {λk,φk}n

k=1. The diffusion map is
the embedding

vi 7→
(

e−λ1t
φ1(vi),e

−λ2t
φ2(vi), · · · ,e−λnt

φn(vi)
)
∈ Rn,

here φk(vi) is the ith entry of the eigenvector φk. Now dif-
fusion distance is given as Euclidean distance between the
image under the diffusion map,

d2(vi,v j) =
n

∑
k=1

e−2λkt(φk(vi)−φk(v j))
2.

We clearly see that when using diffusion distance in our
framework, the diffusion map is the distance preserving em-
bedding that we need.

Class 2: For this class of distances the explicit embedding
is not available or expensive to compute, yet our framework
can be efficiently applied because we only need the Gram
matrix A as seen from Eq.(2), but not the explicit embedding.

When pairwise boundary distances are given, and these
distances are known to be exactly embeddable, we can use
the tools from Multi-Dimensional Scaling (MDS) [BG05,
CC01], to obtain the Gram matrix A. Indeed, the classical
metric MDS provides a way of writing A in terms of D, the
matrix of squared distances, Di j = d2(vi,v j). This is done
using the so-called “double centering matrix” J: let ~1 be a
column vector of 1’s and set

J = I− 1
n
~1~1T .

One can show that the Gram matrix A can be written as

A =−1
2

JDJ. (3)

In order for A to define an exact distance preserving embed-
ding, A must be positive semi-definite, which allows writing
A = Y TY , and the m× n matrix Y will contain the coordi-
nates of v∗i , i = 1, ...,n in Rm. We see that this approach pro-
vides both a check of exact embeddability, and an efficient
way of applying our framework via Eq.(2); also note that,
alternatively, Eq.(4) can be used.

An interesting example of this class is the commute-time
distance [YFD∗07], for which the Gram matrix A can be ap-
plied quickly to a vector. Indeed, it can be seen that the Gram
matrix is A = L+, the pseudo-inverse of the Laplacian. In this
case due to the sparcity of Laplacian, we can prove that the
computation of our interior distance can be done via Eq.(2)
in linear time in the number of mesh vertices.

Class 3: It is possible that a distance preserving boundary
embedding does not exist, which is the case for e.g. geodesic
distance. However, it is still possible to apply our framework
by finding an approximate embedding. In this case our con-
struction produces an interior distance that approximates the
prescribed boundary distances.

The fact that an exact distance preserving embedding of
the boundary into Euclidean space does not exist can be de-
tected after computing Gram matrix A using Eq.(3). In such
cases, A will not be positive semi-definite. We can obtain
an approximate embedding by constructing a positive semi-
definite matrix A′ that is as close to A as possible in some
norm. For example one such approximating matrix A′ can
be found by restricting A to the subspace spanned by the
eigenvectors of positive eigenvalues. This allows the decom-
position A′ = Y TY and we obtain a valid approximate em-
bedding. Now one can use either Eq.(2) with A′ instead of A,
or the explicit embedding to compute the interior distance.

5. Theoretical properties

We will now prove the properties of the interior distance
framework assuming that a distance preserving boundary
embedding vi 7→ v∗i exists, and the weights are barycentric
coordinates.

Before starting, we quickly review the properties of
barycentric coordinates: Lagrange property requires that
wi(v j) = δi j (the Kronecker delta); partition of unity requires
the weights to sum up to one, ∑i wi(p) = 1 for any p in the
interior; linear precision is that the equality ∑i wi(p)vi = p
holds for any point p in the interior.

Independence of the embedding: The interior distance d̂ is
uniquely determined by the input boundary distance d and
the weights; it does not depend on the specific embedding
used.

Proof To obtain the proof we will present an equivalent al-
ternative formula for the interior distance that uses the input
boundary distances and weights directly without any refer-
ence to the embedding. To this end, given any distance pre-
serving boundary embedding vi 7→ v∗i , consider the corre-
sponding Gram matrix A. Note that from

d2(vi,v j) = ‖v∗i − v∗j ‖2 = 〈v∗i ,v∗i 〉+ 〈v∗j ,v∗j 〉−2〈v∗i ,v∗j 〉

it follows that d2(vi,v j) = Aii + A j j − 2Ai j. We will write
this equality in the matrix form as follows. Introduce matrix
D with Di j = d2(vi,v j), and let~1 be the n× 1 column vec-
tor with all entries equal to 1, and ~a be the n× 1 column
vector that contains the diagonal of matrix A . Now we can
rewrite the previous equation as D =~a~1T +~1~aT −2A. Writ-
ing A = 1

2 (~a~1T +~1~aT −D), and substituting this expression
into Eq.(2) gives

d̂2(p,q) =−1
2
(~w(p)−~w(q))T D(~w(p)−~w(q)). (4)

The last equation does not contain terms with ~a because
~1T (~w(p)− ~w(q)) = 0, an equality that means that the co-
ordinates of the vector ~w(p)−~w(q) sum up to zero, which
follows from the partition of unity. Since this formulation of
the interior distance only uses the boundary distances and the
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weights, we see that our interpolation scheme is independent
of the particular embedding used.

As a by-product we get another interpretation of the defined
distance. Indeed, expanding the Eq.(4) as summation we get

d̂2(p,q) = ∑
i, j

Di jwi(p)w j(q)− (5)

− 1
2 ∑

i, j
Di j(wi(p)w j(p)+wi(q)w j(q)).

Now we see that our distance is defined by the weighted av-
erage of the known pairwise distances ∑i, j Di jwi(p)w j(q)
subtracted by a symmetric term which forces the distance to
be zero when p = q.

Interpolation: d̂ interpolates d on the boundary: d̂(vi,v j) =
d(vi,v j).

Proof Since an exact distance preserving embedding of the
boundary exists, the Lagrangian property, wi(vk) = δik, im-
plies that under our embedding the vertex vk is mapped to
∑i wi(vk)v

∗
i = ∑i δikv∗i = v∗k , and thus, d̂(vi,v j) = ||v∗i −

v∗j ||= d(vi,v j)

Metric: If the Gram matrix A is conditionally positive defi-
nite, then d̂ is a metric.

Conditionally positive definiteness of A means that for any
non-zero vector~x with ∑i xi = 0 we have~xT D~x > 0.

Proof We check the four properties that a metric must
satisfy. Remember that d̂(p,q) = ||p∗ − q∗|| is Euclidean
distance between p∗ and q∗ in Rm. Now, non-negativity,
d̂(p,q) ≥ 0, follows from non-negativity of Euclidean dis-
tance. Symmetry, d̂(p,q) = ||p∗ − q∗|| = ||q∗ − p∗|| =
d̂(q, p), follows from the symmetry of Euclidean distance.
Triangle inequality, d̂(p,q) ≤ d̂(p,r) + d̂(r,q), is the result
of triangle inequality for Euclidean distance. Finally, we
need to check that d̂(p,q) = 0 if and only if p = q. Clearly,
d̂(p, p) = ||p∗− p∗|| = 0. The only remaining property is
that d̂(p,q) = 0 implies p = q. From the formula (2), using
conditional positive definiteness of A and the fact that the
sum of entries of the vector ~w(p)−~w(q) is zero, one can see
that d̂(p,q) = 0 implies ~w(p) = ~w(q). Now by linear preci-
sion, we have p = ∑i wi(p)vi = ∑i wi(q)vi = q.

Note that we required A to be conditionally positive defi-
nite in order to ensure that d̂(p,q) = 0 implies p = q. Two
remarks are in order. First, for diffusion and commute-time
distances, A is conditionally positive definite. In fact, A is
positive definite for diffusion distance, because then A is
the heat kernel, and its eigenvalues are of the form e−tλ.
For commute-time distance A is the pseudo-inverse of the
Laplacian, and, thus, has positive eigenvalues, except for the
constant eigenvector. Second, what this condition achieves
is the injectivity of the map p 7→ p∗. Overall, this injectiv-
ity is related to the question of whether during a cage based
deformation the interior can fold over itself. Since in prac-
tice deformations using barycentric coordinates are injec-
tive (except in extreme cases, see [FK]; such cases are even

less probable in our setting because we embed into higher-
dimensional spaces), one usually gets a metric even without
assuming the conditional positive definiteness of A.

Same topology as Euclidean: If the Gram matrix A is con-
ditionally positive definite, and barycentric coordinates are
continuous, then d̂ induces the same topology in the interior
of the mesh as Euclidean distance.

This property is important because it ensures that we are
not augmenting the notion of closeness in the interior of the
mesh – for example, a connected set in Euclidean topology
does not become disconnected in the topology induced by
the new distance.

Proof We need to prove for a sequence of points pn, that
d̂(pn, p)→ 0 if and only if ||pn− p|| → 0. By continuity of
weights, ‖pn− p‖ → 0 implies ~w(pn)→ ~w(p), and then by
Eq. (2) d̂(pn, p) converges to zero. The opposite implication
follows because if d̂(pn, p)→ 0, then from Eq. (2) and con-
ditional positive definiteness of A, we get ~w(pn)→ ~w(p).
Linear precision can be used as in the previous proof to get
||pn− p|| → 0.

Maximum principle: If the weights are non-negative, then
the diameter of the interior under d̂ is not greater than the
diameter of the boundary under d:

max
p,q∈Ω

d̂(p,q)≤ max
p,q∈∂Ω

d(p,q).

Stated differently, the maximum distance between two in-
terior points is no more than the maximum distance on the
boundary.

Proof Let Dmax = maxDi j, then due to non-negativity we
get from equation (5) that

d̂2(p,q) ≤ ∑
i, j

Di jwi(p)w j(q)≤ Dmax ∑
i, j

wi(p)wi(q) =

= Dmax ∑
i

wi(p)∑
j

w j(q) = Dmax,

where we use the partition of unity property in the last step.

Euclidean reproduction: Interpolating Euclidean distance
from the boundary reproduces Euclidean distance in the in-
terior: if d(vi,v j) = ||vi− v j||R3 , then d̂(p,q) = ||p−q||R3 .

Proof Note that the identity map vi 7→ vi ∈ R3 provides an
embedding of vertices that preserves Euclidean distances.
The extension of this map to the interior is also the iden-
tity map because it is given by p 7→ p∗ = ∑i wi(p)v∗i =
∑i wi(p)vi = p, where the last equality holds because of the
linear precision. Now we have, d̂(p,q) = ||p∗ − q∗||R3 =
||p− q||R3 . The Euclidean reproduction property now fol-
lows from the fact that our construction is independent of
the embedding used.

This last property of our framework should be compared
with the linear precision required in the framework of
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barycentric coordinates. The result of this requirement is that
when barycentric interpolation is applied to a linear func-
tion, it is reproduced. Clearly, there is no intention of using
barycentric coordinates to interpolate linear functions, but
existence of this property leads generally to quadratic ap-
proximation order (in the diameter of the shape) and pro-
vides a validity check. In the same way the fact that Eu-
clidean distances are reproduced by our framework provides
a validity check and, most likely, a better approximation or-
der (see Figure 11).

6. Results

In order to investigate properties of our interior distance
framework empirically, we have performed several experi-
ments. The goal of these experiments is to study how inte-
rior distance changes with perturbations to the source point,
boundary geometry, boundary distances, and barycentric co-
ordinates.

Unless otherwise specified, we use the diffusion dis-
tance [CLL∗05,GGV08] as the boundary distance and mean
value coordinates [Flo03, JSW05] as the barycentric coordi-
nates. The diffusion distance was chosen because it is shape-
aware, it provides all the conditions for a metric, it is de-
fined in terms of a higher-dimensional embedding, and prac-
tically is very efficient to compute. The mean value coor-
dinates were chosen because they are computationally ef-
ficient, since they posses closed-form formulas both in 2D
[Flo03] and 3D [JSW05], and they have all the desirable
properties except non-negativity (which is only relevant for
the maximum principle).

For our experiments, we compute distances between pairs
of points and visually evaluate the results. For ease of vi-
sualization, we generally select a single “source point” and
then compute the distance to all other points in the interior
of the object from that point. In general, the “source point”
is depicted as a black dot, dark blue represents small dis-
tance values, dark red represents large values, and isolines
are shown with equal spacing in the interior distance range.
For 3D examples, we visualize slicing planes within the vol-
ume of the object.

Effect of source point: Figure 3 shows how the distance
changes as the source point varies within a 2D shape. From
this figure, one can see that the distance does not experience
any discontinuities as the source changes. Also, the isolines
confirm that the resulting distance is smooth within the shape
interior.

Effect of boundary shape: Figure 4 shows how the distance
from a fixed source changes as the boundary shape varies. It
can be seen that the interior distance is “shape-aware” – it is
affected by global shape features. For example, the farthest
isoline includes the upper right corner in every case, which
is intuitive. This figure is also a test of the effect of increas-
ing concavity. It is seen that even though the mean value co-

Figure 3: Variation of the interior distance as the source
point varies.

Figure 4: The effect varying shape on the interior distance.

Figure 5: The effect of adding increasing amounts of bound-
ary noise on the interior distance.

Figure 6: The effect of articulation on the interior distance.

Figure 7: The effect of deformation on the interior distance.

ordinates do become negative with concavity, the resulting
distance does not suffer any visual artifacts.

Effect of boundary noise: Figure 5 shows the interior dis-
tance for a series of shapes obtained by adding noise to the
boundary of a smooth shape. In this example, the vertices
are displaced by a Gaussian noise of standard deviation of
1%, 2%, and 4% of the shape’s diameter, from left to right.
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Figure 8: 3D Distance visualization within the human, dino-pet, hand, cheetah, octopus, and fertility models.

Figure 9: The effect of tessellation on the interior distance,
9K vertices (left) versus 1.5K vertices (right).

Note that the interior distance remains largely the same as
the boundary noise increases.

Effect of articulation: Figure 6 shows that the interior dis-
tance is insensitive to articulation. Notice even in the case of
the right-most articulation example, where the thickness in
the middle changes and an increased concavity appears, the
distance is still stable.

Effect of deformation: Figure 7 shows how the interior dis-
tance changes as a deformation is applied to the boundary.
In this case, the interior distance deforms with the boundary
– i.e., as interior points move to new locations, so too do the
isolines of distance.

Effect of 3D object type: Figure 8 shows the interior dis-
tance for a planar slice through the interior of different 3D
meshes with different source positions (black dots near the
centers of blue regions). Isolines again confirm that the dis-
tance is smooth and shape-aware.

Effect of tessellation: Figure 9 shows the interior distance
computed for two different tessellations of a 3D model: with
9K vertices on left, and 1.5K on right. The isolines confirm
the insensitivity of the interior distance to tessellation. This
suggests that the interior distance can be computed reliably
using a simplified mesh for very large models.

Figure 10: Interior distances derived from different bound-
ary distances (from left to right): geodesic, commute-time,
and diffusion distances.

Figure 11: Interior distances derived from different ver-
tex weights (from left to right): Shepard’s weights, mean
value coordinates (MVC), and maximum entropy coordi-
nates (MEC). The latter two (MVC and MEC) are barycen-
tric coordinates, while the Shepard weights are not (they
satisfy all conditions except linear precision). The zoom-in
shows the ripples appearing when using Shepard weights.

Effect of boundary distance: Figure 10 compares the in-
terior distance defined by three different boundary dis-
tances: geodesic distance (approximating the Gram ma-
trix A by a positive semi-definite one and embedding
via MDS), commute-time distance, and diffusion distance.
These three interior distances exhibit different levels of
shape-awareness, and thus each of the three may be most
appropriate for different applications.

Effect of barycentric coordinates: Figure 11 compares
the interior distance defined by three different interpola-
tion schemes: Shepard’s weights, mean value coordinates
(MVC), and maximum entropy coordinates (MEC). Shep-
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ard’s weights are not exactly barycentric coordinates as they
do not satisfy the linear precision requirement, but they do
satisfy all other requirements. The absence of linear preci-
sion seems to be the reason for the ripples seen close to
the boundary on the left image. MVC satisfy all conditions
(smoothness included) except non-negativity. MEC satisfy
all properties including non-negativity; however, MEC are
only conjectured to be smooth based on experiments [HS08].

Compute Time: Table 1 reports the time in seconds to com-
pute the interior distance for a variety of three-dimensional
models on a 2.2Ghz AMD Opteron 875 processor. Note that
our implementation is in MATLAB, except the calculation
of the mean value coordinates, for which we use C++. In
spite of using unoptimized code, distance calculations still
take milliseconds after precomputation.

|V| |F| #eigens preprocess per-distance
2.5K 4.9K 66 3.52 0.008
4.3K 8.6K 104 7.53 0.018
7.9K 15.8K 112 11.96 0.034
16K 31.9K 82 45.47 0.059

26.8K 53.6K 93 151.63 0.120

Table 1: Timing for distance evaluation in seconds is pro-
vided for 3D models of different sizes. During the prepro-
cessing the discrete Laplacian is set up, and enough eigen-
vectors are evaluated to achieve the set tolerance (see Ap-
pendix). Given the preprocess data, the last column shows
the time needed to compute the distance between a pair of
interior points; note that it is dominated by the computation
of the mean value interpolation.

7. Application - Computing the Barycentroid

Beyond computing distances, we propose a new shape anal-
ysis concept, which we call the “barycentroid” of a mesh.

The barycentroid provides a notion of the “center point”
of a shape, which we model after the following definition
of the usual center of mass. The center of mass (barycenter)
of a set can be defined as the point for which the average
squared Euclidean distance to the set elements is minimal.
We replace in this definition Euclidean distance by the inte-
rior distance, and call the minimizing point the barycentroid.
Since we are dealing with meshes, we need to actually min-
imize the area weighted averages; here the vertex voronoi
areas provide the appropriate weighting. When diffusion dis-
tance is used on the boundary, we can prove that minimizing
this area weighted average is equivalent to minimizing the
following simple potential U2(p) = ~w(p)T A~w(p).

Figures 12 and 13 show the isolines of U(·) in several two
and three dimensional cases. For calculating the barycen-
troid in 3D, we follow the direction of negative gradient of
this function U until reaching a minimum. Figure 12 also
demonstrates that the barycentroid is insensitive to noise

Figure 12: Visualization of isolines of U(·), the defining
function of the barycentroid, demonstrating the robustness
of the barycentroid to noise and deformation.

Figure 13: Isolines of U(·) for hand and dino-pet models.

and deformation. Figure 14 shows the insensitivity of the
barycentroid to different poses and different objects from the
same class. Note how the barycentroid stays approximately
constant as the object undergoes pose changes, demonstrat-
ing its invariance to articulation. In addition, the location of
the barycentroid remains consistent across different models
that can be seen as belonging to the same class. These exam-
ples give practical evidence that the minimizer point of U is
appropriate to serve as a “center point” both in 2D and 3D.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



R. M. Rustamov & Y. Lipman & T. Funkhouser / Interior Distance Using Barycentric Coordinates

Figure 14: The barycentroid is depicted as blue spheres in-
side various shapes. The first two rows demonstrate the in-
variance of the barycentroid to pose. The last row shows its
insensitivity to different objects of the same class.

8. Conclusion and Future Work

This paper presents a framework for taking a distance mea-
sure on a boundary mesh and propagating it into the interior
of the mesh while preserving its properties. In particular,
if a distance-preserving embedding exists, the constructed
interior distance: 1) interpolates the given distance on the
boundary , 2) satisfies the axioms of a metric, 4) reproduces
the Euclidean distance, 5) is topologically equivalent to Eu-
clidean distance, 6) possesses a “maximum principle” (when
the barycentric coordinates are positive), and 7) is fast to
compute. In addition to proving these properties theoreti-
cally, we provide empirical results for an instantiation of the
framework using the diffusion distance and mean value co-
ordinates.

This work provides a small, first step and therefore has
limitations that suggest topics for future work.

A first topic suitable for further investigation is to char-
acterize the empirical properties of our interior distance for
different combinations of boundary distances and barycen-

tric coordinates. In our initial implementation, we chose to
use diffusion distance and mean-value coordinates because
they have desirable properties for our framework. However,
perhaps others would provide even better properties. Or, per-
haps we could design distances and coordinates that do.

Another interesting topic for future work would be to
investigate applications of interior distances in computer
graphics and geometric modeling. We describe a method for
computing the barycentroid of a 3D mesh, which may have
applications in shape registration, matching, skeletonization,
etc. However, we imagine that several other applications are
possible and/or become practical with an interior distance
measure that is efficient to compute.
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Appendix

In this appendix, we provide more detail about our imple-
mentation in the case when the boundary distance is diffu-
sion distance and weights used are mean value coordinates.

Our computation of mean value coordinates in 2D is based
on the pseudocode provided in [HF06]. For 3D we use the
pseudo-code of [JSW05].

The diffusion distance is incorporated in our framework
using its explicit embedding – the diffusion map. The diffu-
sion map is based on the eigendecomposition of the Laplace-
Beltrami operator. We use the discrete Laplace-Beltrami op-
erator of the form M−1L, where the matrices L and M de-
fined as follows. In three dimensions, where the boundary
is a triangle mesh, let L be the cotangent Laplacian [PP93],
and M be the diagonal matrix that contains the voronoi ar-
eas of mesh vertices [MDSB02, Xu04]. In two-dimensions,
the boundary is a polygon; to obtain L we use the stencil
[−1/d−,1/d−+ 1/d+,−1/d+] at each vertex, and we de-
fine the “voronoi area” of each vertex as (d+ +d−)/2. Here,

d+ and d− are the distances to the two neighbors of the cur-
rent vertex.

The eigendecomposition is computed by solving the sym-
metric generalized eigenvalue problem Lφ = λMφ. The
eigenvalues λk are assumed to be ordered in a non-
decreasing order, and the eigenvectors φk are normalized to
have the unit M-norm, φ

T
k Mφk = 1.

Following [GGV08] we set the time scale parameter t of
diffusion inversely proportional to the first non-zero eigen-
value λ2 (remember λ1 = 0), namely, we use t = (8λ2)−1.
Note that due to the fast decay of the term e−λkt appear-
ing in the diffusion map, we only need a limited number
of eigenvectors to reliably approximate the exact embedding
(diffusion map). We retain all the eigenvectors that satisfy
e−λkt > ε, where we used ε = 10−6.

After computing these m eigenvalues/eigenvectors in pre-
process, we can compute the distance between two inte-
rior points in time O(mn), where n is the number of mesh
vertices. Indeed, we need to extend each dimension of the
boundary embedding to the interior via the mean value in-
terpolation. There are m dimensions, and the computation of
mean value interpolant takes time linear in the number of
mesh vertices.
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