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Abstract

We introduce the Symmetry Factored Embedding (SFE) and the
Symmetry Factored Distance (SFD) as new tools to analyze and
represent symmetries in a point set. The SFE provides new coordi-
nates in which symmetry is “factored out,” and the SFD is the Eu-
clidean distance in that space. These constructions characterize the
space of symmetric correspondences between points – i.e., orbits.
A key observation is that a set of points in the same orbit appears
as a clique in a correspondence graph induced by pairwise simi-
larities. As a result, the problem of finding approximate and par-
tial symmetries in a point set reduces to the problem of measuring
connectedness in the correspondence graph, a well-studied problem
for which spectral methods provide a robust solution. We provide
methods for computing the SFE and SFD for extrinsic global sym-
metries and then extend them to consider partial extrinsic and intrin-
sic cases. During experiments with difficult examples, we find that
the proposed methods can characterize symmetries in inputs with
noise, missing data, non-rigid deformations, and complex symme-
tries, without a priori knowledge of the symmetry group. As such,
we believe that it provides a useful tool for automatic shape analysis
in applications such as segmentation and stationary point detection.

1 Introduction

Symmetry plays a central role in nature. It is related to efficient
and robust arrangements, and it is prevalent in both natural and
man-made objects. As such, detecting, representing, and exploit-
ing symmetries is an important research topic in many disciplines,
including computer graphics and computer vision. Its numerous
applications in graphics include registration, segmentation, recog-
nition, compression, de-noising, viewpoint selection, completion,
beautification, and several others.

The goal of our work is to investigate a new method for analysis
and representation of symmetries in 3D objects. This problem is
difficult when objects have complex, multiple symmetries (e.g., the
4 rotations and 4 reflections of the Jewelry model in Figure 1), par-
tial symmetries (e.g., due to missing data and extra parts in the scan
of the flower statue), approximate symmetries (e.g., due to noise in
scanned data), and when the symmetry groups expected in the input
data are not known in advance.

Recent approaches to address this problem have relied upon meth-
ods that analyze symmetries in terms of their generating transfor-
mations. For example, [Podolak et al. 2006] proposed a continuous
measure assessing the degree to which an object is symmetric with
respect to every transformation within a prescribed group (e.g., pla-

Figure 1: Symmetry Factored Distance measured from the points
marked by black arrows (blue is small distance, red is large).

nar reflections), and [Mitra et al. 2006] described a method to de-
tect symmetries by clustering “votes” for transformations that align
boundary points with similar local shape descriptors. These meth-
ods have demonstrated their usefulness in several applications, but
they have a few problems: 1) they require knowing a priori which
symmetry transformations are expected (so that votes can be accu-
mulated in an appropriate parameterization of the transformation
space); 2) they require a large amount of processing and/or storage
in high dimensional spaces (e.g., rigid body transformations have
six dimensions); 3) they are able to represent symmetries only for
transformations that can be parameterized (e.g., not arbitrary non-
rigid deformations); 4) they cluster votes based on Euclidean dis-
tances in transformation space, which may not be meaningful due
to the (usually) non-linear dependence on the parameterization; 5)
they do not usually leverage the inter-dependence of repeated struc-
tures (e.g., rotations by 120 and 240 degrees), which appear as dis-
joint clusters in transformation space; and, 6) they do not explicitly
produce correspondences between symmetric points, which are re-
quired for many applications (e.g., symmetrization, segmentation,
de-noising, etc.).

Our approach is to find orbits, i.e., we search for correspondences
between symmetric points rather than the transformations that align
them. These correspondences are represented in a symmetry corre-
spondence matrix, a (usually sparse) n× n non-negative matrix C
that, roughly speaking, encodes symmetry relations between pairs
of n points sampled from the input data. Of course, this approach
is related to earlier methods that have computed fuzzy correspon-
dence matrices for alignment and matching problems [Gold et al.
1998; Lipman and Funkhouser 2009]. However, a symmetry cor-
respondence matrix has special properties that make it particularly
well-suited for symmetry detection. In particular, the top eigenvec-



tors of the correspondence matrix contain information that com-
pletely characterizes orbits. In the language of spectral methods on
graphs, this observation can be rephrased by viewing the symmet-
ric correspondence between points as an equivalence relation: all
points symmetric with one another form an orbit, which appears
as a clique in the graph induced by the symmetry correspondence
matrix. As a result, the problem of finding approximate and partial
symmetries in a point set reduces to the problem of measuring con-
nectedness in the correspondence graph, a well-studied problem for
which spectral methods provide a robust solution.

Analysis of the spectral properties of the symmetry correspondence
matrix leads us to define a new embedding of the input shape into a
higher dimensional Euclidean space (the Symmetry Factored Em-
bedding, or SFE). Euclidean distances in this embedded space “fac-
tor out” symmetries of the original shape – accordingly we call it
the Symmetry Factored Distance (SFD). More generally, the Sym-
metry Factored Distance between two points quantifies, in a contin-
uous way, the extent to which they are “symmetric”. This is shown
in Figure 1, which visualizes the values of SFD(x, ·) (distance from
one point to all others), for two models and two different choices
of the source point x in each model (marked with a black arrow).
Note how points in the same orbit have small distances (shown in
dark blue).

The main contribution of this work is the observation that symme-
try can be handled robustly and efficiently in correspondence space
with the definitions of the Symmetry Factored Embedding and the
Symmetry Factored Distance. To compute these representations,
we provide a randomized algorithm to generate a fuzzy symmetry
correspondence matrix from a 3D point set and then use spectral
analysis of this matrix to compute the Symmetry Factored Embed-
ding and Distance (Section 4). We find that these methods are able
to reveal orbits of symmetric points for 3D point sets containing
large amounts of noise, missing data, non-rigid deformation, and
multiple partial symmetries for several types of input data, includ-
ing LIDAR scans of cities and cryo-EM scans of macromolecules
(Sections 5 and 6). Moreover, we demonstrate their utility in two
shape analysis applications: mesh segmentation and detection of
stationary points (Section 7).

2 Previous work
Understanding the symmetries of shapes is a well studied problem
in many disciplines, including image processing, computational ge-
ometry, and computer vision. Recent work in computer graphics
has focused on analyzing partial and approximate symmetries and
on utilizing symmetries in shape analysis and mesh processing ap-
plications.

Symmetry detection in transformation space: Most recent ap-
proaches to detecting approximate and partial symmetries have fo-
cused on algorithms that cluster votes for symmetries in a parame-
terized “transformation space” [Imiya et al. 1999; Mitra et al. 2006;
Yip 2000; Li et al. 2005]. For example, [Mitra et al. 2006] gener-
ate “votes” for transformations that align pairs of similar points and
then cluster them in a space with coordinate axes labeled by the pa-
rameters of the potential symmetry transformations. These methods
have several drawbacks (listed in the introduction), some of which
can be overcome by utilizing discriminating local shape descrip-
tors to ensure that votes are cast only for likely symmetric point
correspondences. However, no matter how good the shape descrip-
tors are, these methods are not effective at finding correspondences
between points in complex symmetry orbits that are spread across
multiple different clusters in transformation space.

Symmetry representation in transformation space: A simi-
lar vein of work has utilized symmetry measurements to define
shape representations based on how symmetric an object is with

respect to multiple transformations. For example, [Kazhdan et al.
2003] used Zabrodsky’s symmetry distance extended to character-
istic functions to define a “symmetry descriptor” that measures the
symmetries of an object with respect to all planes and rotations
through its center of mass. [Podolak et al. 2006] built upon this
work and that of [Reisfeld et al. 1995] to define a planar reflective
symmetry transform (PRST) that measures reflectional symmetries
with respect to all planes through space. [Rustamov 2008] extended
the PRST to consider correlations at multiple radii. These represen-
tations store a measure of symmetry for a regularly sampled set of
transformations within a group, and thus they are practical only for
groups with low dimensionality (e.g., rigid body transformations
would require storing a six dimensional grid).

Symmetry representation on the shape: To extend symmetry
analysis methods to non-rigid shapes, [Xu et al. 2009] proposes a
method to accumulate votes for an “intrinsic reflectional symmetry
axis” directly on the input surface. Sampled pairs of surface points
vote for the curve of points geodesically equidistant to both sam-
ples to yield a continuous estimate of which points on the surface
are stationary under intrinsic reflection. Grass-fire algorithms are
used to extract a curve representation for the intrinsic reflectional
symmetry axis and to establish correspondences between nearby
symmetric points. This method was shown to be useful for seg-
mentation and part repair, but it works only for reflection.

Discovery of repeating structures: Others have utilized the re-
dundancy in repeating structures to detect symmetries more ro-
bustly [Bokeloh et al. 2009; Li et al. 2006; Leung and Malik 1996;
Liu et al. 2007; Pauly et al. 2008; Shikhare et al. 2001]. For ex-
ample, [Pauly et al. 2008] extend the voting method of [Mitra et al.
2006] by fitting parameters of a transformation generator to opti-
mally register with clusters in transformation space. [Berner et al.
2008] and [Bokeloh et al. 2009] take a similar approach, using a
subgraph matching of feature points and feature lines, respectively,
to establish potential correspondences between repeated structures
and a variant of iterative closest points (ICP) to simultaneously
grow corresponding regions and refine matches over all detected
patterns. This method is able to find repeated patterns in noisy data
[Pauly et al. 2008], but requires a priori knowledge of the commuta-
tive group expected in the data and a non-linear optimization which
may find a local minimum if not given a good initial guess.

Eigen-analysis methods: As symmetry detection can be viewed
as a particular instance of the shape alignment problem, spectral
methods previously introduced for matching, such as [Leordeanu
and Hebert 2005], can be used for symmetry detection [Hays et al.
2006]. Chertuk and Keller [2010] suggest finding distinct symme-
try transformations by observing top eigenvectors of the association
graph’s similarity matrix. The association graph matrix encodes
consistency values of all couples of possible correspondence pairs
and is a different matrix from the one used in this paper. Their
goal is also different from ours in that they aim at finding corre-
spondences supporting different distinct symmetry transformations,
while we aim to find orbits. One problem with this approach is
that correspondences from distinct symmetry transformations may
be spread across different eigenvectors corresponding to similar (or
same) eigenvalues resulting in inconsistencies in the extracted cor-
respondences. For example, for a perfectly symmetric shape the
dimension of the top eigenspace of the association graph’s matrix
equals the number of distinct symmetry transformations and it is
not clear how to choose the “correct” eigenvector basis that sepa-
rates the different transformations correctly. Our approach defines a
stable distance using all eigenvectors and eigenvalues that is insen-
sitive to such mixing, as well as independent of the specific choice
of eigenvectors (it depends on only the eigenspaces).



3 Approach

Our goal is to detect and quantify symmetries in a point set X =
{xi}ni=1 ⊂ R

d. A symmetry is a group of transformations G =
{g} that act on X and leave it intact. For example, the set of points
shown below, sampled from an equilateral triangle, can be rotated
by 120◦, 240◦ around its center, and we get the same set of points
after the rotation (if we forget about the labeling of the points).
Likewise, the point set is preserved if we reflect these points with
respect to any line connecting the center and one of the corners of
the triangle. Therefore the symmetry group of this point set is the
dihedral group. Often symmetry groups G are subgroups of rigid
transformation in the Euclidean two or three dimensional space,
but they need not be restricted to only this case; for example, self
isometries of a surface are also symmetries.

A basic observation of this paper is that it is useful to think about
symmetry in the correspondence space. We start with describing
the perfect symmetric case, that is, a case similar to the triangle,
in which every symmetry transformation leaves the points X in-
tact (gX = X ), and we address the case of imperfect/approximate
symmetry afterwards.

Perfect symmetry The symmetry correspondence graph is a
graph whose vertices are the points in X , with undirected edges
(xi, xj) between points in the same orbit. Two points are in the
same orbit if there exists a symmetry transformation which takes
xi to xj . It is easy to check that since symmetry transformations
of a shape form a group, the relation “xi, xj are in the same orbit”
is an equivalence relation. This means that the symmetry corre-
spondence graph has a very specific structure: the number of its
connected components equals the number of orbits, and each such
connected component is a clique. The symmetry correspondence
graph can be described by an adjacency matrix C ∈ Rn×n, which
is generally sparse (at least for discrete symmetries). If we rear-
range the rows and columns of this matrix according to the orbits,
then C is a block-diagonal matrix in which each block consists of
only ones, and zeros appear everywhere outside the blocks. The
figure above shows this matrix for the triangle point set (red is one
and blue zero).
The spectral properties of the symmetry correspondence matrix C
contain a lot of information about the symmetry of the shape and
will play an important role in extracting data from the symmetry
correspondence matrix, especially in the imperfect case. As proved
in the Appendix, the number of non-zero eigenvalues equals the
number of orbits, the magnitude of each eigenvalue is the size of
that orbit, and there exists an eigenvector corresponding to each
eigenvalue that is constant on the corresponding orbit and zero ev-
erywhere else. These eigenvectors are shown for the triangle exam-
ple above: the image second from the right in the top row shows
the eigenvalue histogram of the symmetry correspondence matrix,
and the bottom row visualizes the three nonzero eigenvectors. Each
eigenvector is shown twice: once as a polar plot, and once color
coded on the point set X . Note that the white points are exactly the
orbits.
Further note that these eigenvectors can be thought of as functions

defined over the point set X , that is f : X → R; we will therefore
also refer to them as eigenfunctions. The linear space spanned by
these non-zero vectors is the space of functions that are invariant to
the shape’s symmetry: every combination of these vectors is con-
stant on the orbits, and points in X get transformed by symmetries
only inside their orbit, and, vice versa, every symmetry-invariant
function is constant on orbits. This means that the non-zero spec-
trum of the symmetry correspondence matrix encapsulates all the
information about the orbits of the symmetry, regardless of its spe-
cific type (e.g., cyclic, dihedral, etc.). Importantly, it is separated
from the “rest” of the eigenvectors by a spectral gap related to the
size of the orbit. This is even more apparent after a normalization
such that the rows of the symmetry correspondence matrix sum to
one – then, the nonzero eigenvalues are all ones, as shown in the
histogram of eigenvalues on the top right of the figure above.

Our plan is to use the top eigenvectors multiplied with their eigen-
values to define an embedding of the point set in a higher dimen-
sional space where Euclidean distance in that space “factors out
symmetry”. Since in the perfect case, only the eigenvectors cor-
responding to nonzero eigenvalues are constant on orbits and they
span the space of functions constant on orbits, this procedure will
lead to an embedding where the Euclidean distance is zero between
points in the same orbit and nonzero between points in different or-
bits. We will name this embedding the Symmetry Factored Embed-
ding (SFE) and the corresponding Euclidean distance in that space
the Symmetry Factored Distance (SFD).
Approximate symmetry “Real life” data is seldom perfectly
symmetric, due to sampling, noise, warps, partial symmetry, etc.
In this case, we use a continuous estimation of symmetry between
points in the data X to build a fuzzy version of the symmetry cor-
respondence matrix (i.e., with continuous values [0, 1]) and then
use its spectral properties to construct the Symmetry Factored Em-
bedding and Distance. Intuitively, our continuous estimation of
symmetry between points is a relaxation of the above described
binary relation “being in the same orbit”. There are two justifica-
tions for using the SFE and SFD to detect approximate symmetries.
First, since there exists a spectral gap separating the symmetry-
aware eigenfunctions from the non-symmetry-related eigenfunc-
tions, even when the symmetry correspondence matrix has missing
entries or is contaminated with noise, the top eigenfunctions are sta-
ble. This is demonstrated in the image below, where we see three
sets of points, sampled from a perfect equilateral triangle, with dif-
ferent noise levels. To the right of the point set we show in each
case the fuzzy correspondence matrix as computed using our (ran-
domized) algorithm. Note that to bring out the block structure, the
rows and columns are rearranged - for visualization purposes only,
since we obviously do not know this ordering, which determines the
orbits, in the general case. As the shape becomes more noisy and
deviates from perfect symmetry, the symmetry correspondence ma-
trix gradually loses its block structure. Nevertheless, the top three
eigenfunctions are still distinct from all the rest (see the eigenvalue
histogram on the bottom row); we show the second most dominant
eigenfunction in polar coordinates, and it is clear that it is stable as
well under the deviation from perfect symmetry.



Figure 2: The SFD on the triangle point sets.

Second, the Symmetry Factored Embedding and Distance can be
viewed as a version of the diffusion map and diffusion distance
[Coifman et al. 2005; Nadler et al. 2005], with a special “symmetry-
factored” kernel. Therefore, the SFD (visualized with colors for the
three triangles in Figure 2) has a natural interpretation in terms of
random walks on a graph. Intuitively, the SFD is measuring con-
nectivity in the symmetry correspondence graph by integrating over
all paths (up to a certain length) between points. In the perfectly
symmetric case, the symmetry correspondence graph is a discon-
nected collection of cliques; as we deviate from perfect symmetry,
edges are added between different cliques and removed inside the
cliques. It follows that SFD, which considers all the paths up to
some length t between points, is a very suitable tool to robustly
detect these contaminated cliques. This is shown in the example
below, which the left colored matrix shows an approximation of
the symmetry dissimilarity matrix of the triangle point set (approx-
imated by the first step of our algorithm after only few iterations).
Obviously the block structure misses some strong links inside the
blocks (cliques) and has some “shortcuts” between different blocks
(cliques). Next to it, we show the Symmetry Factored Distance ma-
trix for “times” (=length of path) t = 1, 10; we mark by white and
black arrows examples where our algorithm finds missing links and
rectifies shortcuts, respectively.

4 Methods

Our implementation of the proposed methods follows the compu-
tational pipeline shown in Figure 3. Given a point set X (top-left
corner), we first construct a fuzzy correspondence matrix by a ran-
domized voting procedure (bottom left, Section 4.1). Then, we
compute the Symmetry Factored Embedding, Π(X ), that directly
provides the Symmetry Factored Distance (Section 4.2), which can
be visualized as a (block-structured) correspondence matrix (top
row) or by a distance field from selected points (three are shown in
the bottom right). Each of these steps is discussed in detail in the
following subsections. For the sake of clarity, we focus the discus-
sion on methods for finding global symmetries that are subgroups of
rigid motions, and later we will generalize to partial and non-rigid
symmetries (Section 5).

4.1 Symmetry Correspondence Matrix

The first step in our algorithm is constructing a fuzzy symmetry cor-
respondence matrix C ∈ Rn×n for the point set X = {xi}ni=1 ⊂
Rd (in this paper d = 2, 3). The entries Cij ∈ [0, 1] quantify
continuously how much the points xi, xj belong to the same orbit.

We start by describing our computation for the dissimilarity mea-
sure of symmetry between pairs of points undergoing global, rigid

Figure 3: Algorithm pipeline. Given a point set X : 1) approximate
the symmetry correspondence matrix Cij , 2) using spectral proper-
ties of C, compute the Symmetry Factored Embedding Π(X ), and
3) extract Euclidean distances in the embedded space which are the
Symmetry Factored Distance d(xi, xj).

transformations. We define the matrix S ∈ Rn×n by
Sij = S(xi, xj) = inf

g∈T :gxi=xj
D(X , gX ), (1)

where T denotes the rigid transformations, D(X ,Y) is a deviation
measure between point setsX ,Y , for example we used Root Mean-
Squared Deviation (RMSD):

D(X ,Y) =

(∑n
i=1 d(xi,Y)2 +

∑n
j=1 d(yj ,X )2

2n

)1/2

, (2)

where d(xi,Y) = minj ‖xi − yj‖ is the Euclidean distance from
point xi to the set Y .

Intuitively Sij measures how well can X be preserved by a rigid
transformation that takes xi to xj . It is not hard to see that if
Sij = 0 then xi, xj are in the same orbit of a perfectly symmet-
ric shape. Therefore this definition can be seen as generalization of
the “in orbit” equivalence relation introduced before; it provides a
continuous value rather than one or zero.

The dissimilarity matrix S can be approximated in a number of
ways, of which we provide one possible method based on random-
ized voting at the end of this subsection. Once we obtain S we
convert it to the (unnormalized) symmetry correspondence matrix
via

C̃ij = e
−
(

Sij
σ diam

)2

, (3)

where diam = maxij ‖xi − xj‖ is the point set’s diameter, and
σ > 0 is a localization parameter which set the confidence in the
higher values of the dissimilarity symmetry measure. Usually we
use σ = 0.1% − 1% such that the resulting matrix C̃ is sparsely
filled. The last step is turning C̃ to the symmetry correspondence
matrix C by making it row stochastic (meaning each row sum up to
one). Intuitively,Cij encodes the probability of each point xj being
in the orbit of point xi. Therefore, C can be seen as a random walk
matrix where jumping around in the same orbit is very likely, while
passing between orbits, especially ones which do not have adjacent
points is not likely.

We observe that, when translating a point set by some vector v the
RMSD satisfies D(X ,X + v) ≤ ‖v‖, therefore since the defini-
tion of Sij is based on the infimum over all rigid transformation
(including translation) we obtain the upper bound

Sij ≤ D(X ,X + (xj − xi)) ≤ ‖xj − xi‖ . (4)

This bound provides a clear connection with diffusion maps [Nadler
et al. 2005]: the dissimilarity used there (sometimes called affin-
ity) is ‖xi − xj‖, and the corresponding similarity measure satis-

fies e−‖xi−xj‖
2
/2ε ≥ C̃ij for σ =

√
2ε/diam. This shows that



our random walk matrix is exactly like diffusion, except we have
shortcuts for symmetry; points in the same orbit are linked with
short (ideally zero length) edges.

Construction of S: Calculating S directly from the definition
(1) requires searching over the orthogonal transformation group
for every pair of points. Instead, we use a randomized algorithm
in the spirit of previous voting techniques [Mitra et al. 2006].
First, we initialize our matrix Sij = ∞. Next, we repeatedly
pick two pairs of points x1, x2 and y1, y2 randomly of approxi-
mately the same distance |‖x1 − x2‖ − ‖y1 − y2‖| < α · diam
(we use alpha ≈ 0.02), and which are not too close to each
other ‖x1 − y1‖ > ε · diam or ‖x2 − y2‖ > ε · diam (we use
ε ≈ 0.025), since we always know that the identity is perfect sym-
metry (the diagonal of S is always zero). Next, we augment each
pair with the approximated normal at the first point in each pair
n̄(x1), n̄(y1). We only consider pairs which have approximately
the same angle w.r.t their normal 〈n(x1), x2 − x1/ ‖x2 − x1‖〉 ≈
〈n(y1), y2 − y1/ ‖y2 − y1‖〉 (we allowed deviation of upto 5 de-
grees). We then orthogonalize each pair of points (as a vector) w.r.t
the normal and complete it to an orthogonal frame where the direc-
tion of the third added vector is randomized (to account for reflec-
tions): v1 = n(x1), ṽ2 = (x2 − x1) − 〈x2 − x1, n(x1)〉n(x1),
v2 = ṽ2

‖ṽ2‖
, v3 = ±v1 × v2. Next, the rigid transformation g de-

fined by these two frames is applied to the entire point set (gX ),
and the deviation from the original point set D(X , gX ) is mea-
sured. If g aligns at-least some fraction of the points in X (usually
0.2 − 0.4), measured by counting the number of mutually closest
points, then the value D(X , gX ) is cast into S using a min opera-
tion at the entries Sij corresponding to these mutually closest pairs.
Once the voting process ends, we translate the minimal value of S
to zero, and take minimum of each entry Sij with ‖xi − xj‖, that
is Sij ← min {Sij , ‖xi − xj‖}, justified by the bound in eq. (4).

4.2 Symmetry Factored Embedding and Distance

Once we have the symmetry correspondence matrix we can cal-
culate the Symmetry Factored Embedding. The general technique
of looking at the first eigenvectors of a similarity matrix and using
them as “good coordinates” for dimensionality reduction and clus-
tering has been widely exploited in machine learning literature and
related fields [Shi and Malik 1997; Belkin and Niyogi 2001]. The
new observation in this paper is that these techniques are well suited
for detecting and quantifying orbits of symmetry in correspondence
space.

The SFE is defined by using eigenfunctions of the random walk
matrix C. We use the normalization suggested by [Nadler et al.
2005] (described in the Appendix for completeness). Denote by ψk
and λk, k = 1..n, the eigenvectors and eigenvalues (resp.) of C,
that is Cψk = λkψk. Note that all eigenvalues of C are bounded
between -1 and 1.

The Symmetry Factored Embedding Πt : X → Rn is defined

Πt(xi) =
(
λt1ψ1(xi), λ

t
2ψ2(xi), ..., λ

t
nψn(xi)

)
, (5)

where t is a “time” parameter (we mostly used t = 20− 80). This
setting gives more importance to eigenvectors with higher mag-
nitude eigenvalues (hence more symmetry-aware), and ignore the
ones with small eigenvalues (less symmetry-aware). Further note
that although we pick eigenvectors in eigenspaces possibly with di-
mensionality larger than one, the SFD is nevertheless invariant to
this choice; in other words our construction is dependent only upon
the eigenspaces rather a specific (and arbitrary) choice of eigenvec-
tors (see TheoremA.3 in Appendix).

The Symmetry Factored Distance is then defined as the Euclidean

distance in the embedded space, that is dt(xi, xj)2 =∥∥Πt(xi)−Πt(xj)
∥∥2

=

n∑
k=1

λ2t
k |ψk(xi)− ψk(xj)|2 . (6)

4.3 Symmetry Invariant Function space

A consequence of the previous discussion is that we can charac-
terize the space of functions f : X → R defined over the point
set X that are invariant under the (approximated) symmetry. In the
perfect symmetric case symmetry invariance means that

f(g(xi)) = f(xi),

for all i = 1, ..., n and every g ∈ G. In particular, we can take any
function u : X → R defined over the point set and “symmetrize”
it. That is, making it adhere to the internal symmetry of the point
set.

The main idea is that this symmetrization can be done in the frame-
work introduced above. In particular, we show that multiplying
powers of the symmetry correspondence matrix by a vector (func-
tion) h ∈ Rn×1, that is hs = Cth, will lead to its symmetrization.
Basically, the reason is that by multiplying h with the powers of
the symmetry correspondence matrix we actually average its values
over the paths of the symmetry correspondence graph, dominated
by orbits.

More precisely, we will use the following decomposition of C (see
Appendix). Denote by Ψ = (ψ1, ..., ψn) the matrix with the eigen-
functions of C as columns, and denote by Φ = (Ψ−1)T its trans-
pose inverse. We denote the columns of Φ by φ1, ..., φn. Next,
since C is diagonalized by Ψ we have C = ΨΛΨ−1 = ΨΛΦT ,
where Λii = λi is a diagonal matrix with the eigenvalues at the
diagonal. Then in particular

Ct =

n∑
k=1

λtkψkφ
T
k . (7)

When multiplying a vector h with this matrix we get

Cth =

n∑
k=1

λtkψk 〈φk, h〉 . (8)

Plugging t = 0, we get h =
∑n
k=1 ψk 〈φk, h〉 which is basically

writing the decomposition of the vector h in the basis of eigen-
functions Ψ. Since |λi| ≤ 1 where the symmetric eigenfunctions
have eigenvalues close to positive one, and non-symmetric eigen-
functions have eigenvalues distributed around zero (see Section 3),
eq. (8) “projects” the function h on the space of symmetry invari-
ant functions. Symmetrization of functions is a useful geometric
processing tool for which explore applications in Section 7.

5 Generalizations

The symmetry analysis method described in the previous sections
has two independent components: 1) the creation of the symmetry
correspondence matrix, C, and 2) the analysis of this matrix based
on its spectral properties to quantify orbits. The second compo-
nent is very general and fits the abstract definition of symmetry as
group acting on points sets – i.e., without relying upon the proper-
ties of any specific transformation group. The first, however, was
described in the previous section specifically to deal with subgroups
of rigid motions acting globally on the point set X . It is therefore
natural to consider ways to replace the first component with meth-
ods that measure different types of symmetry. In this section, we
consider two methods, one for analyzing partial extrinsic, and an-
other for global intrinsic symmetries.



Partial Symmetry There are three main types of partial rigid
symmetry: 1) the point set X is a subset of some point set Y
with global extrinsic symmetry, 2) the point set X contains a subset
Y ⊂ X which has global extrinsic symmetry, and 3) the point set
X can be subdivided into disjoint sets X = t`Y` such that each of
which is satisfying (1) or (2). Obviously, the third case contains the
first two.

We treat these cases with a simple modification to D(·, ·), the de-
viation measure between point sets. Basically, we need to design
D(·, ·) to produce low distance if some sufficiently large part of the
point set X has been matched. That is, we set the distance to zero
if some fraction p ∈ (0, 1] of the points in X has been matched. p
can be seen as the prescribed amount of shape that defines symme-
try, that is, a rigid transformation g which leaves a p fraction of the
points X close to X is considered a “symmetry”. To achieve this
we modify the RMSD as follows: Dp(X ,Y) =(∑

i∈Ip(xi,Y) d(xi,Y)2 +
∑
j∈Jp(yj ,X ) d(yj ,X )2

2pn

)1/2

, (9)

where Ip(xi,Y) =
{
i : d(xi,Y) ≤ pth {d(xi,Y)}ni=1

}
, where

pth {d(xi,Y)}ni=1 denotes the p−th percentile of the set
{d(xi,Y)}ni=1, and Jp(yj ,X ) is defined similarly.

The image below (a) demonstrates the tradeoff between different
values of p, in partial 2D flower point set. The SFD (measured
from the arrow marked points) based on using Dp(·, ·) with p = 1
is shown on the left, results in discovering the global reflective sym-
metry. On the other hand taking p = 0.4 (right) reveals that this
shape can be seen as a complete 5−fold flower with a missing part.
In (b), using p = 0.4 again, we show that a point set which has
subsets with different symmetry groups (type 3 above) is getting
separated using the SFD (measured from the marked points). This
suggests that the SFD could be used to perform complex segmenta-
tion of shapes/images that otherwise would not be possible.

(a) (b)

Global Intrinsic Symmetry When working in correspondence
space, it is also possible to think about the process of finding orbits
without a specific notion of a transformation group. In this section,
we demonstrate this idea for the global intrinsic (“non-rigid”) sym-
metry case [Ovsjanikov et al. 2008; Raviv et al. 2007; Bronstein
et al. 2009]. In particular, we show that it is possible to take exist-
ing intrinsic symmetry descriptors and improve their performance
using the previously described “diffusion of symmetry”. Given a
manifold mesh M = (X , E, F ), with X as its vertices, E edges
set, and F faces, we use the symmetry-invariants as implied by
Ovsjanikov et al. [2008], namely the pointwise absolute values of
the Laplacian eigenvectors (assuming non-repeating eigenvalues).
That is, if we denote by u1, ...., uK the first K eigenvectors of
the cotangent Laplacian on meshes [Pinkall and Polthier 1993], the
global intrinsic symmetry dissimilarity measure is then

S2
ij =

K∑
k=1

(|uk(xi)| − |uk(xj)|)2 . (10)

We can now use this dissimilarity matrix as explained in Section
4. Figure 4 shows the first (i.e., most dominant) two eigenvectors

of the Laplacian (left) and the symmetry correspondence matrix
C (right). Note that the latter integrates the information from the
Laplacian’s eigenvectors and better respect the approximate intrin-
sic reflective symmetry of the model (see for example the arrow
marked area).

Figure 4: Comparison between the first two eigenvectors of the
Laplacian (left) and the first two eigenvectors of the symmetry cor-
respondence matrix C (right). The color map is normalized to bet-
ter show values near zero (in dark blue).

6 Results

To investigate the properties of the Symmetry Factored Embed-
ding/Distance, we ran a series of experiments with different types
of inputs and made comparisons to alternative approaches. The
experiments were done on a 2.2GHz Opteron 275 processor. All
meshes/point clouds were first subsampled to around 1k−2k points
using an iterative algorithm which iteratively picks the farthest (in
Euclidean sense) point in X from the sample set and adds it to the
set. Once the SFD is computed on the sample set we transfer it back
to the original point set using Shepard’s interpolation scheme.

Complex symmetry groups Our first experiment focuses on the
ability of the Symmetry Factored Distance (SFD) to characterize
orbits in complex symmetry groups comprising of rigid transforma-
tions. Figure 5 shows two representative examples. In this image
(and several others in the paper), the SFD is measured from one
source point (black arrow) to all others, where dark blue represents
zero distance, dark red represents the largest distance, and other dis-
tances are normalized to exaggerate distances around zero. On the
left, the virus has icosahedral symmetry (a symmetry group of size
120), while the mechanical part on the right has a type of dihedral
symmetry (symmetry group of size 12). Note how the SFD cor-
rectly reveals the orbits for the source points even in these complex
symmetry groups.

Figure 5: The SFD visualized on two models with global extrinsic
symmetry.

Robustness to noise Our second experiment investigates the ro-
bustness of our method to noise. We computed the SFD from a
point on a model perturbed by increasing amounts of noise and vi-
sualized the deviation as the amount of noise increases. Figure 7
shows an example result for a cube. Each row shows the SFD from



(a) (b)

Figure 6: The SFD visualized on two models with partial extrinsic symmetry.

a fixed source point (marked on the leftmost cube) through increas-
ing levels of noise. Note that although this example seems simple,
the symmetry group of the cube is octahedral, and as such, it com-
prises 48 distinct transformations. Yet, our method can find orbits
on the cube even with large amounts of noise.

Figure 7: The SFD visualized on a series of cubes with increasing
noise level.

Partial extrinsic symmetry Our third experiment investigates
computation of the SFE and SFD for point sets with partial extrin-
sic symmetry. The SFD is shown for several examples with missing
data and extra parts in Figures 1, 8, and 6. Figure 1 (bottom row)
shows a noisy scan of a flower statue in which the SFD charac-
terizes the 9-fold symmetry of the petals despite missing data and
extraneous parts. Figure 8 shows three more examples: a) a vase
model with a bottom part that is (approximately) 4-fold symmetric
and a top part that is only reflective symmetric, b) a 6-fold symmet-
ric mechanical part with a missing piece (note how the SFD still
recovers the existing part of the orbit correctly), and c) an aerial LI-
DAR scan of cars in a row where two cars are sampled very sparsely
and the trees and ground are extraneous parts. In the latter case (c),
note that observing only local properties of the marked cars (on the
right) is probably not enough to recognize them as cars or to asso-
ciate them with the rest of cars in the row due to poor sampling –
symmetry is an important cue here.

Figure 6 shows more difficult examples. The left part of the figure
(a) shows objects extracted from a LIDAR scan of a street scene (the
ground plane is shown for visualization only, and the inset views
show the scene from the top). It contains both partial translational
and reflectional symmetries between semantically similar objects,
but no segmentation nor tranformation group is provided to the sys-

Figure 8: The SFD visualized on a group of models with partial
extrinsic symmetry.

tem (besides an up-vector for the ground plane). The SFDs from a
point on a traffic light, a fire hydrant, and a bush are shown. Note
that difficult elements to recognize like small and poorly-sampled
water hydrants (marked with black squares in the middle image)
are correctly clustered together due mainly to the strong symmetry
detected in the scene. Figure 6 (b) shows a LIDAR scan of a bridge
with D2 symmetry (reflection and rotation by 180◦ though its mid-
dle), non-uniform sampling, noise and missing parts. In spite of
these problems the SFD captures the approximate notion of sym-
metric orbits very well – note the repeating “blue” elements with
SFD close to the three different selected source points (marked with
a black arrow), found even when the point cloud is very poorly sam-
pled (as shown in the bottom right inset). These examples provide
evidence for the robust nature of the Symmetry Factored Embed-
ding in the presence of noisy and partial data.

Global intrinsic symmetry Next, we show the SFD computed
for models with non-rigid deformation and compare them to the
dissimilarities computed using the Laplacian eigenvectors. In each
image pair of Figure 9, we show Sij as computed from eq. (10)
on the left, and we show the SFD on the right. Note that the SFD
better clusters the symmetric points with respect to the approximate
intrinsic bilateral reflection symmetry.



Figure 9: Comparison between using the symmetry invariants Sij
and the SFD to find intrinsic correspondences (orbits) in human
models.

Comparison to methods based on correlation The next exper-
iment evaluates the robustness of our method to noise in compari-
son to the algorithm presented by Kazhdan et al. [2004]. Kazhdan’s
algorithm takes as input a function over the sphere and provides
a symmetry distance for every k, indicating “how symmetric” the
function is with respect to k-fold rotations. The computation of
this distance is based on autocorrelation and thus it should be ro-
bust to noise. To make a comparison with this method, we take the
2D sphere (i.e., circle) and generate a very noisy 5-gon parameter-
ized over it. The figure below shows the noisy point set (in red is
the ground-truth 5-gon), along with a graph (second from the left)
presenting Kazhdan’s symmetry descriptor for k = 2, 3, ...10. As
seen, using their algorithm for detecting the symmetry will yield
3-fold as the most likely symmetry in the data. However, using our
algorithm, that is looking at the top eigenvectors of the symmetry
correspondence matrix (the top two are shown in polar plots), the
5-fold symmetry is more apparent. If we use Kazhdan’s method to
search for k-fold symmetries in the top non-constant eigenvector
produced by our method, the 5-fold symmetry is easily detected, as
seen in the global minimum in the rightmost graph.

Comparison to methods based on voting It is also instruc-
tive to compare our method to alternative approaches that detect
symmetries in transformation space, in this case a simple method
that accumulates votes for rotational symmetries. The figure below
shows the result of performing a few iterations of the voting algo-
rithm described in Section 4.1, casting the same “votes” both in the
transformation space (in this case 2D rotations parameterized over
the circle), and correspondence space. The density map in trans-
formation space should contain five clusters as the point-set has
approximated 5-fold symmetry (we disregarded reflections in this

example). However, it is clear that at least one rotation is missed
(by 360/5◦) by the votes cast. Furthermore, the other transforma-
tions are seen only vaguely (the red lines show the ground truth).
On the other hand, the top non-constant eigenvector (bottom mid-
dle and right) of the symmetry correspondence matrix (bottom left)
still robustly detects the 5-fold symmetry. Finding orbits is gener-
ally more robust than finding transformations since orbit clustering
exploits consistency relations between found transformations to re-
cover missed transformations.

Comparison to direct analysis of the dissimilarity matrix An-
other possible alternative would be to directly use the dissimilar-
ity measures Sij produced by our voting algorithm to estimate the
“symmetry factored distance” between pairs of points. In the per-
fect case, like the one presented in Section 3, this approach may
suffice. However, in cases of imperfect symmetries, the symmetry
diffusion provided by our method is important to robustly integrate
the “observations” into a consistent set of symmetry orbits. This
is demonstrated in Figure 10 for two examples: the flower model
and a row of cars acquired with a LIDAR scanner. We show a side
by side comparison of taking the dissimilarity measure Sij (left)
with the SFD (right) from the same source point (black arrows).
Note how the SFD better models the close symmetry relationship
between all the cars, even the ones that are poorly sampled by the
LIDAR scanner.

Timing and complexity In this subsection we provide theoretical
analysis of our algorithm and report running times. We specifically
analyze the complexity of the voting algorithm used to approximate
the matrix S for global extrinsic symmetries, which dominates the
overall computational complexity of that implementation. Similar
analysis can be performed for the case of partial extrinsic symme-
tries. Afterwards, we discuss the complexity of the spectral analy-
sis.

The voting algorithm as described in Section 4.1 takes O(n logn)
for each iteration (vote), assuming a spatial data structure (kd-tree)
is used for closest point query. As to the number of votes required,
since consistency of orbits is taken care of by the spectral analysis,
it is enough to reveal a generating set of transformations (that is,
a set of transformation which can build any transformation in the
symmetry group). The probability of getting the randomized two
pairs of points revealing some generating transformation is propor-
tional to k/n

√
n on average, where k is the averaged orbit size gen-

erated by the subgroup defined by that generating transformation:
the probability of getting the first point in the second pair right is



Figure 10: Comparing the dissimilarity measure Sij (left) to the
SFD (right).

Figure 11: Symmetry-aware segmentation. We use the SFE with
the basic k-means algorithm.

k/n on average, since there are k (on average) repeating appear-
ances of the first point in the first pair, and the probability of getting
the second point right assuming the first is right is proportional to
1/
√
n on average (due to the requirement that the distance between

the pairs is approximately equal). The overall complexity of ap-
proximating Sij is then O(n2√n logn), where the constant can be
bounded independently of the symmetry group type, or even better,
depends on the reciprocal of the minimal average orbit size of the
generating set’s subgroups. So the higher the symmetry - the better.

As to practical running times, we mostly ran our algorithm cn
√
n

iterations based on the analysis above, where c = 1− 3. The table
below lists observed running times for some of the examples in the
paper.

Model pnts time Model pnts time
Cube 386 29s Julius 1000 231s

Bridge 1000 258s Flower 1000 290s
Chair 1000 358s Dragon 1000 850s
Street 1000 441s Horse 1000 920s

Jewelery 1200 893s Mech.1 1200 750s
Cars 1200 675s Mech.2 1500 852s

Cryo EM 2194 1774s Virus 2000 1052s

Figure 12: Detecting symmetry in Polio-virus through clustering
Cryo-EM data in Symmetry Factored Embedding space.

For the spectral analysis of the matrix C it is enough to take the
first few eigenvectors due to the spectral gap. Since the matrix C
is usually sparse (orbit sizes are finite and much smaller than n)
the eigen-analysis of the matrix C can be done in time O(n1.5)
in number of samples. Except for the non-rigid case, we have not
exploited this property, since calculating the first 100 eigenvectors
in 1000× 1000 matrix takes around 5 seconds in Matlab, which is
negligible in comparison to the time complexity of approximating
S.

7 Applications

In this section, we explore two shape analysis applications of the
methods presented in Section 4: symmetry-aware segmentation of
point sets and approximating the locus of stationary points.

Symmetry-aware segmentation Symmetry is an important cue
for segmentation of shapes into functional parts. It has been used
previously by [Podolak et al. 2006] to decompose meshes. How-
ever, their method focused specifically on planar reflective symme-
tries and would not extend well to handle arbitrary symmetries.

In this section, we investigate the idea of using the SFD to fa-
cilitate symmetric segmentation of meshes. The main obser-
vation is that the distances between points in symmetric orbits
are reduced in the Symmetry Factored Embedding space (zero
in the case of perfect symmetry), and so clustering points in
that space should produce decompositions with symmetric points
in the same cluster. To experiment with this idea, we exe-
cute a standard k-means clustering algorithm on points in the
embedded space Π(X ) = {Π(xi)}ni=1 and then decompose
the input based on the resulting clusters (we smooth the in-
dex function to get slightly smoother boundaries of clusters).

The inset figure shows a simple example for a
2D point set with k = 2 (two clusters). Note
the different symmetry groups of each cluster.
More complex 3D examples are shown in Fig-
ure 11. There are cases with partial symmetry
(bridge, flower, mechanical part in top row)
and complex symmetry (jewelry, mechanical
part in middle row). Figure 12 shows the re-



Figure 13: Finding stationary points in 2D star shape. We use the
functional symmetrization procedure on the coordinate functions
to robustly locate the set of stationary points (in red). Note that
the procedure automatically reveals changes in global symmetry
(5-fold to line reflection), and is stable to noise.

sult of segmentation of virus density map based on the Symme-
try Factored Embedding: given a Cryo-EM volumetric density map
of the polio-virus (isosurface extraction shown on the top-left), we
identify local maximas (top-right), and cluster them based on a k-
means algorithm in the SFE space to reveal the icosahedral sym-
metry (bottom-left). The image on the bottom-right shows a cut
through the middle of the virus point set to reveal its internal sym-
metry. These examples all depend on characterization of complex,
partial, and/or approximate symmetries that would be hard to detect
with other methods.

Stationary points of extrinsic symmetry Stationary points of
extrinsic symmetry are points q ∈ Rd left fixed by the symmetry
transformations of X , that is g(q) = q for all g ∈ G. They provide
important information about the structure of a shape and can be
used for recognition, alignment, and symmetrization of 3D meshes.

We find that detection of stationary points is straight-forward in
our framework. The basic observation is that centroid of an orbit of
finite symmetry group is a stationary point of symmetry [Zabrodsky
et al. 1993]. Let x ∈ X be an arbitrary point, then the centroid q
of the orbit of x, that is the set {gx | g ∈ G}, is q = 1

|G|
∑
g∈G gx

(see Lemma A.4 in Appendix). Then, for all ĝ ∈ G we have

ĝq =
1

|G|
∑
g∈G

(ĝg)x =
1

|G|
∑
g∈G

gx = q,

where the first equality is due to linearity of the operator ĝ and the
second equality is due to the fact that ĝG = G.

This suggests that finding stationary points can be done by aver-
aging the coordinates of orbits. This can be done robustly in the
framework introduced in Section 4.3, utilizing the symmetrization
of functions defined over the point set X . In particular, if we as-
sume X is written as a matrixRn×d where each row i contains the
coordinates of xi w.r.t. some global coordinate system, then mul-
tiplying X with Ct, that is CtX , averages X over the orbits. This
can be seen, for example, in the perfect symmetric case where the
non-zero eigenvectors ψk and the corresponding φk are constant
on orbits (φk are left eigenvector and in the perfect case φk = ψk).
Therefore, eq. (8) shows that CtX equals the piecewise constant
vector which is constant on every orbit and equals the orbit’s cen-
troid.

Figure 13 shows the symmetrized coordinate functions CtX as red
points, for four 2D contours. Note, the robustness of their posi-
tions in the center of the flower, despite noise and deviation from
perfect 5-fold symmetry in the input (leftmost and rightmost). In
the second example, a piece of the contour has been removed, but
the stationary point stays approximately the same. When removing
a larger part of the input in the third image, a reflective symmetry
becomes the dominant symmetry of the shape and the distribution
of the red points becomes a line.

Figure 14: Finding approximate stationary locus of symmetry for
a collection of 3D models.

Figure 14 shows coordinate symmetrization for stationary points
approximation in 3D. The top row shows the stationary points in
black. In the other rows, we demonstrate how the stationary points
can be used to automatically identify the stationary set type of an
object (point, line, plane, or none). Our procedure is quite sim-
ple: we first scale the models’ diameter to one, then, once the co-
ordinate functions of the point set has been symmetrized, that is
Xs = CtX , we perform a Principle Component Analysis (PCA)
on the set Xs, and analyze the sizes of the three eigenvalues with
respect to a threshold ε = 0.001 – if there is only one above thresh-
old, then the stationary set is a line, if two - a plane, and if none -
a point. If there are three eigenvalues above the threshold, we can
say that the point set is “asymmetric.” These cases are shown in dif-
ferent examples of Figure 14 – eigenvalues are shown as bar charts
next to each figure, and ε = 0.001 is visualized as red line in those
plots. Note, for example, that the mechanical part (bottom-left) has
point (not line) symmetry, a fact which is rather delicate to discover
with other methods.

Lastly, Figure 15 shows a combination of the symmetry-aware clus-
tering application described above and stationary point approxima-
tion described in this section: we first segment the shape by cluster-
ing orbits, and then we find the stationary points for each part and
fit a primitive (point, line, or plane) with the appropriate dimension-
ality. This analysis provides a concise description of the shape parts
based on symmetry.



Figure 15: Incorporating symmetry-aware segmentation and sta-
tionary points extraction for decomposing models to symmetric
part.

8 Conclusions, limitations, and future work
In this paper, we introduce the Symmetry Factored Embedding
(SFE) and the Symmetry Factored Distance (SFD). The main obser-
vation is that analyzing symmetries in correspondence space with
spectral analysis provides a robust way to detect and quantify sym-
metry in point sets. During experiments, we find that the SFE and
SFD can characterize complex symmetry groups, provide robust-
ness to noise, and be applied on data sets with partial symmetries
and non-rigid deformations. Moreover, they can be used to segment
symmetric objects and identify stationary points.

This work is just a first step, and it has several limitations. For ex-
ample, our current measure of deviation for partial extrinsic sym-
metry does not directly enforce that continuous parts of the object
align with one another, but rather only that a prescribed fraction
aligns. This formulation can cause the algorithm to neglect small,
but important, parts of the shape (like two small bumps on a sphere).
This problem could be alleviated by considering more sophisticated
dissimilarity measures when constructing S. Another issue relates
to the setting of parameters. Our system has three: 1) σ separates
different orbits – it intuitively defines how much we “trust” the val-
ues of the dissimilarity measure (like a smooth truncating function),
2) t prescribes the time of diffusion, or equivalently deciding which
eigenvectors should be used according to the magnitude of their
eigenvalues, and 3) p indicates the fraction of the object that should
be aligned by a partial symmetry. In our current implementation,
we set them manually. An interesting topic of future work would
be to derive theoretical or practical ways to either avoid them or set
them automatically.

In terms of future work, there are several ways the ideas in this
paper could be extended. First, on the theoretical level, it seems
that new shape measures could be defined in terms of the matrix C
and its spectral properties, like quantifying how symmetric a shape
is without prescribing a transformation group. Second, in terms of
algorithms, it seems natural to allow attributes associated with input
points ofX to be considered when measuring the deviation between
points. Lastly, we believe this framework can be used in order to
solve for correspondences between different shapes with symmetry.
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A Appendix
We prove several properties related to the constructions described
in the paper. We start with the eigen-analysis of the symmetry cor-
respondence matrix:
Theorem A.1. The eigen-structure of the (not row normalized)
symmetry correspondence matrix C in the case of perfect symme-
try has the following properties: 1) every orbit correspond to a
single non-zero eigenvalue λk, k = 1..K. 2) The magnitude of
each eigenvalue λk equals the size of its corresponding orbit. 3)
To each eigenvalue λk there corresponds an eigenvector ψk which
is constant on the corresponding orbit and zero elsewhere. 3) the
rest of the eigenvalues λK+1, ..., λn are all zero. Lastly, the row-
normalized correspondence matrix has the same eigenvectors, how-
ever the non-zero eigenvalues are all one.

Proof. The proof is simple and relay on the observation that in the
perfect symmetry case the symmetry correspondence matrix can be
rearranged to be of perfect block structure. This rearrangement is
done by conjugating the matrix with a permutation matrix P which

puts the indices of orbital points together: Ĉ = PTCP . Therefore,
we can assume the matrix C is already in block structure. Every
block of the matrix corresponds to an invariant subspace, so we can
analyze each block independently. Every block (all ones matrix)
has a single constant eigenvector of eigenvalue equal the size of the
block (orbit), and all the rest of the eigenvalues are zero. Taking
into account that every block corresponds to one orbit, the result
follows. The row-normalized case can be treated similarly.

In this paper we use the normalization suggested by [Nadler et al.
2005] to the eigenvectors of the random-walk matrix C: the matrix
C is similar to the symmetric matrix Cs = D1/2CD−1/2, where
Dii =

∑
j C̃ij is the diagonal matrix with the sum of rows of C̃

in the diagonal. Therefore it has orthogonal decomposition Cs =
UΛUT and it has the same eigenvalues as C, therefore,

C = D−1/2CsD
1/2 =

(
D−1/2U

)
Λ
(
D−1/2U

)−1

.

From this last equation we see that Ψ = D−1/2U consists of
columns (right) eigenvectors of C. Note that these vectors are or-
thonormal w.r.t the inner product defined by D, that is ΨTDΨ =
Id. The reason Nadler et al. [Nadler et al. 2005] performs this nor-
malization is to make the Euclidean distance in the diffusion map
space equal the diffusion distance. In our context this implies that
the SFD can be interpreted as diffusion distance (the proof repeats
Nadler’s arguments):
Theorem A.2. The symmetry factored distance can be seen as dif-
fusion distance in the symmetry correspondence graph.

Next we prove that the symmetry factored distance is invariant to
specific choice of eigenvectors. In other words, that it only depends
on the eigenspaces of C.
Theorem A.3. The symmetry factored distance depends only on
the eigenspaces.

Proof. Let Θ = ΨM be a different choice of eigenvectors of C
with the same eigenvalues that is CΘ = ΘΛ. Then M has to be
block (of sizes matching the dimensions of eigenspaces) orthogo-
nal matrix since Id = ΘTDΘ = MTΨTDΨM = MTM . The
SFD dt(xi, xj) is the Euclidean norm of the difference between the
ith and the jth rows of the matrix ΨΛt. On the other hand when
using the basis Θ we compare the rows of the matrix ΨMΛt. Since
every eigenspace is left invariant by M , and the eigenvalue is fixed
on every eigenspace the part of the SFD contributed from every
eigenspace is the same using the two bases.

Lastly we prove the formula for the centroid of an orbit used in
Section 7:
Lemma A.4. For a discrete symmetry transformation group G,
the centroid of an orbit of a point x is given by the formula
q = 1

|G|
∑
g∈G gx.

Proof. Denote by Gx the stabilizer of the point x, that is the sub-
group Gx = {h ∈ G | hx = x}. Write G as union of its left cosets
w.r.t Gx, that is G = ∪Li=1giGx, where L = |G| / |Gx|, {gix}Li=1 is
the orbit of x and gix 6= gi′x. Then∑

g∈G

gx =

L∑
i=1

∑
h∈Gx

gi(hx) =

L∑
i=1

gix |Gx| ,

and therefore

1

|G|
∑
g∈G

gx =
|Gx|
|G|

L∑
i=1

gix =
1

L

L∑
i=1

gix.


