
Min-Cut Based Segmentation of Point Clouds

Aleksey Golovinskiy

Princeton University

Thomas Funkhouser

Princeton University

Tra�c Light Car

Figure 1. Example segmentations. Our method is able to extract

foreground points from background clutter. (For easier visualiza-

tion, points are drawn with colors representing their heights)

Abstract

We present a min-cut based method of segmenting ob-

jects in point clouds. Given an object location, our method

builds a k-nearest neighbors graph, assumes a background

prior, adds hard foreground (and optionally background)

constraints, and finds the min-cut to compute a foreground-

background segmentation. Our method can be run fully au-

tomatically, or interactively with a user interface. We test

our system on an outdoor urban scan, quantitatively eval-

uate our algorithm on a test set of about 1000 objects, and

compare to several alternative approaches.

1. Introduction

As 3D scanning technologies advance, the promise of

ubiquitous 3D data is fast becoming reality. In particular,

3D point clouds of entire cities are becoming available. This

explosion of data fuels a need for algorithms that process

point clouds. The segmentation of point clouds into fore-

ground and background is a fundamental problem in pro-

cessing point clouds. Specifically, given an estimate for the

location of an object, the objective is to identify those points

that belong to the object, and separate them from the back-

ground points. Besides the essential task of separating fore-

ground from background, segmentation can be helpful for

localization, classification, and feature extraction. In this

paper, we describe and evaluate a min-cut based segmen-

tation algorithm that was summarized in [6] as a part of a

system to detect objects in outdoor urban scans.

The problem of segmenting objects in 3D point clouds is

challenging. The foreground is often highly entangled with

the background. The real-world data is noisy. Sampling is

uneven: ground-based scans have point densities that domi-

nate from the direction the scan is taken, and airborne scans

have poor sampling for nearly vertical surfaces. In addition,

data sets such as the one studied in this paper consist of

point clouds aggregated from both land and airborne scans,

leading to considerable discrepancies in sampling rates be-

tween different objects and often different surfaces of the

same objects. Finally, non-reflective surfaces such as win-

dows are missing. Examples of results of our method over-

coming some of these difficulties are shown in Figure 1

Since large-scale outdoor point cloud scans are an

emerging source of data, there is not much work de-

scribing segmentations of such scans. What work exists

mostly focuses on the extraction of geometric primitives

or parts([13, 18]) rather than entire objects. We adapt the

techniques of computer vision ([1]) and computer graphics

(e.g. [9]), where graph-cut based methods have been used

to, respectively, separate foreground and background in im-

ages, and decompose 3D surfaces into parts. We extend

such methods to 3D point clouds. Unlike images, we can-

not use colors or textures as cues, and unlike most computer

graphics (and CAD) segmentation problems, the input is a

noisy point cloud representing a scene, rather than a clean

surface model of an individual object.

We propose a min-cut based segmentation method. Our

method works by creating a nearest neighbors graph on the

point cloud, defining a penalty function that encourages a

smooth segmentation where the foreground is weakly con-

nected to the background, and minimizing that function

with a min-cut. The method was summarized as part of a

system of object detection for urban outdoor scenes in [6];

in this paper, we expand on that summary with a more de-

tailed description of the algorithm and discussion of the de-

sign choices, examples, and an in-depth evaluation.

2. Previous Work

We summarize previous work in three related areas: seg-

mentation of point clouds, part decomposition of 3D ob-

jects, and segmentation of images.

Point Cloud Segmentation. Some work has been done

on segmenting point clouds. In some scenarios, such as [3],

the input is a point cloud representing a single object, and

the goal is to decompose the object into patches. The al-

gorithms proceed by either reconstructing a mesh and then

segmenting it, or by segmenting the point cloud directly.

While some work has been done on segmentation of point

clouds in scenes, the emphasis is usually on extracting ge-

ometric primitives (such as in [13] and [18]) using cues

(a) Input (b) Graph (c) Background Penalty (d) Foreground Constraint (e) Result

Figure 2. Overview of our system. (a) The system takes as input a point cloud near an object location (in this case, a short post). (b)

A k-nearest neighbors graph is constructed. (c) Each node has a background penalty function, increasing from the input location to the

background radius (visualized with color turning from green to red as the value increases). (d) In the automatic version of our algorithm,

a foreground point is chosen as a hard constraint (in the interactive mode, the user chooses hard foreground and background constraints).

The resulting segmentation is created via a min-cut (e).

such as normals and curvature. In outdoor scans, effective

estimation of curvatures is difficult for many objects, be-

cause the data is noisy and encodes complex objects, so the

segmentation cues we use do not rely on curvature estima-

tion. In general, the problem of extracting foreground object

points from background in outdoor scenes is relatively new,

and is driven by the recent availability of outdoor scans.

Part Decomposition of 3D Objects. Much work has

been done in computer graphics and CAD on segmenta-

tion of 3D models of single objects, usually represented by

meshes (a survey can be found in [14]). A wide variety of

algorithms have been proposed for this problem, including

ones based on convex decomposition [2], watershed anal-

ysis [12], K-means [17], hierarchical clustering [4, 5], re-

gion growing [19], and spectral clustering [11]. The objec-

tive is to decompose an object into functionally meaningful

parts or regions. These methods typically construct a graph

from the input mesh, and cluster the graph to produce a seg-

mentation by using cues such as concavity along boundaries

and part compactness, often using graph cut techniques, as

in [9]. Some methods (such as [15]) create a scalar func-

tion over the surface of the mesh, and then decompose the

mesh along discontinuities in that function using min-cut

based methods. [7] present an interactive method where the

user paints on different segments of the mesh, and a region-

growing method is used to partition the mesh with these

constraints–this is similar to our interactive system. Our

goal differs in that rather than decompose an object into

parts, we aim to separate the foreground object from the

background points. Also, we do not have fine-scale geo-

metrical cues such as curvature, but rather rely on distances

between points and point densities.

Image Segmentation. Segmentation of images is a clas-

sic problem in computer vision. There are approaches that

seek to decompose an image into regions (such as Normal-

ized Cuts [16]). There is also a great deal of work on fore-

ground/background segmentation. Some methods are data-

driven and use examples of object instances from a class to

segment a new object [10]. More relevant to us are methods

that perform foreground segmentation in a non-data-driven

manner. One such method is Snakes [8], in which an initial

boundary is specified either by the user or automatically,

and is then refined to minimize an error functional. The

most relevant work to ours is [1], in which the authors take

advantage of the min-cut algorithm to create a segmenta-

tion that satisfies constraints placed by the user or automatic

cues. As the authors note, the min-cut algorithm is partic-

ularly adept at such segmentations, since it solves a global

minimization in low-order polynomial time, and the terms

of the minimization can include neighborhood smoothing

constraints as well as hard or soft foreground/background

constraints. We adapt this framework to the domain of 3D

point clouds, where the main cues are distances and point

densities, rather than colors and textures.

3. Overview

Given a suspected location of an object, we need an al-

gorithm that returns the foreground points that belong to the

object. In particular, we are interested in objects found in

cities that range in size from fire hydrants to traffic lights.

Desirable properties of a segmentation algorithm include:

• Correctness: it would be best to get the foreground as

accurately as possible (with respect to precision/recall)

• Input parameters: since over- and under-segmentation

is inevitable, it is helpful for an algorithm to accept ad-

ditional intuitive parameters describing a-priori assump-

tions about the object (for example, the approximate

horizontal radius to the background). This was used

in the system of [6], for example, to request multiple

segmentations of an object for more robust feature ex-

traction.

• Speed: a segmentation algorithm is likely to be exe-

cuted for many locations in a large point cloud, so run-

ning time is important.

The intuition behind our algorithm is that a good fore-

ground segmentation consists of points that are well-

connected to each other, but poorly connected to the back-

ground. The overview of our method is shown in Fig-

ure 2. Given an input scene (Figure 2a), we build a nearest-

neighbor graph (Figure 2b) to encourage neighboring points

to be assigned the same label. Then, given as input an ex-

pected horizontal distance to the background, we create a

background penalty (Figure 2c) that encourages more dis-

tant points to be in the background. In an automatic or inter-

active manner, we add hard constraints for foreground and,

optionally, background points (Figure 2d). Our algorithm

returns the segmentation generated by the min-cut, which

(i) minimizes the cut cost of the nearest neighbor graph, (ii)

minimizes the background penalty, and (iii) adheres to the

hard foreground or background constraints (Figure 2e).

Section 4 describes the construction of the graph and

background penalty. Then, section 5 describes the addition

of hard constraints in the fully automatic regime of our al-

gorithm (including a method of automatically choosing the

background radius), the addition of hard constraints in the

interactive regime, and accelerations for greater efficiency.

4. Basic Setup

The input to the segmentation algorithm is (i) a 2d lo-

cation and (ii) a suspected background radius (horizontal

radius at which we assume the background begins). We

estimate the ground plane with iterative plane fitting, and

remove points close to the ground (within .2m). We then

construct a graph between neighboring points, which en-

sures smoothness of segmentation, and a soft background

penalty, which encourages points far from the object loca-

tion to be labeled as background.

4.1. Graph

We create a graph representing the structure of the point

cloud, where closer points are more strongly connected.

Specifically, we construct a k-nearest neighbors graph on

the input points (we use k = 4). The edges of this graph

have weights that decrease with distance, so that if edge

i connects points at a distance di, its weight is wi =
exp(−(di/σ)2), where we use σ = .1m (a common spac-

ing of points in our data). Because the k-nearest neigh-

bors graph often results in several disconnected components

within each foreground object, we connect the closest point

pairs of disconnected components.

Note that the cut cost of a potential segmentation of this

graph takes into account both distances between points in a

foreground/background cut, and the density of points on the

boundary via the number of broken link edges. This makes

the min-cut algorithm more robust to spurious connections

between foreground and background. Note also that the

construction of the graph makes it adaptive to the point

cloud resolution, without requiring a pre-defined threshold.

When the min-cut is computed, this graph ensures that the

segmentation is smooth (neighboring points are more likely

to be assigned to the same segment) and that a larger sepa-

ration between foreground and background is encouraged.

(a) Small Background Penalty

0 0.2 0.4 0.6 0.8 1
0

1

2
x 10

−4

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04
(b) Large Background Penalty

Horizontal distance from location (1 is object radius scale)

Figure 3. Background penalty, as a function of horizontal radius

from the input location (normalized so that 1 is the input back-

ground radius). The penalty consists of two components: (a) a

penalty starting at a small radius but rising slowly that encourages

points disconnected from foreground to be in the background, and

(b) a steep penalty close to the background radius that mandates

that points outside of the background radius be in the background.

4.2. Background Penalty

Given a background radius, we create a soft background

penalty whose goal is two-fold: to strongly encourage

points at the background radius to be labeled as background,

and to encourage components only loosely connected to the

object location to be in the background. We create a point-

wise background penalty B(p) that is added to the total cost

of the cut for every point p chosen to be in the foreground.

This is done by introducing a virtual background node that

connects to every real node with edges of cost B(p).

This background penalty B(p) can be set to reflect any

background prior. In our system, we make B(p) a func-

tion of the horizontal distance r to the object location (rela-

tive to the background radius). The penalty consists of two

linear components (Figure 3). The first component begins

at a small distance, and increases relatively slowly (Fig-

ure 3a). This ensures that components that are disconnected

or weakly connected to the foreground are encouraged to

be in the background. The second component begins at

a large distance, closer to the background radius, and in-

creases rapidly (Figure 3b), ensuring that points near the

background radius are labeled as background.

5. Performing Segmentation

The previous section described the how the graph is

set up to encourage two properties with soft constraints:

a smoothness error that encourages nearby points to have

the same label, and a background penalty that encourages

points close to the background radius to be in the back-

ground. It remains to specify constraints that encourage

points to be in the foreground. Our algorithm can be run in

two regimes: automatically, and interactively, both adding

hard constraints. In both cases, the final segmentation is

found with a min-cut. Below, we describe the automatic

regime (including automatically choosing the background

radius), the interactive regime, and some accelerations.

5.1. Automatic Regime

In the automatic version of our algorithm, some assump-

tion for the foreground needs to be made. In our system, we

include as a hard constraint the point closest to the (horizon-

tal) object location at a predefined height (we use 1.2m) and

its M closest neighbors in the foreground (we use M = 3).

The algorithm given so far produces an automatic seg-

mentation of objects with a radial scale given as input.

Some applications (such as extracting features from multi-

ple segmentations, as in [6]) benefit from this parameter, but

for other applications, a fully automatic selection of this ra-

dial scale is useful. To select the background radius (which

ranges from 1m to 5m for our objects of interest), we run

the min-cut algorithm for several iterations to automatically

determine the best background radius for the segmentation.

Starting from the smallest radius in the range, we run the

above algorithm, and increase the radius to the maximum of

the range (by 1m increments) until (i) the number of fore-

ground points exceeds a threshold (we use 35) segmentation

and (ii) the resulting cut is below a threshold (we use .4).

Two examples of choosing the background radius auto-

matically are shown in in Figure 4. For these objects (a

car and a sign), segmentations are shown for R = 2m and

R = 4m, and the chosen radius is outlined. These examples

illustrate that it is difficult to choose a static background ra-

dius that works for a range of objects, but that it is possible

to automatically determine (even without additional prior

information) the appropriate radius for a particular object.

5.2. Interactive Regime

While no automatic algorithm will be completely suc-

cessful, in some scenarios it may be practical to use an

interactive segmentation tool. Such a tool should follow

the user-constraints at interactive rates, while automatically

making a reasonable guess in unconstrained regions, and

allowing any segmentation to be reached with sufficiently

many constraints. Similar to the ideas of [1] our min-cut

algorithm is easily set up for such a tool.

The interactive algorithm starts with the graph and back-

ground weights given in previous section. Instead of assum-

ing a foreground constraint, as in the automatic algorithm,

we allow the user to iteratively add (and remove) points as

hard background or foreground constraints. The segmenta-

tion is re-calculated as the min-cut under these constraints.

The interactive tool is shown in Figure 5. To create a

segmentation, the user looks at the input scene (Figure 5a),

and selects a radius that includes the object to segment (Fig-

ure 5b). Note that for an object such as the shown newspa-

per box, automatic segmentation is very difficult since the

box is connected to adjacent newspaper boxes. To perform

manual segmentation, the user adds foreground and back-

ground constraints as necessary, responding to the interac-

tively generated segmentation until the result is satisfactory

(a) R = 2m (b) R = 4m

Figure 4. A constant choice of background radius cannot segment

both examples above (R = 2m and R = 4m are shown). To auto-

matically choose the background radius, we run the min-cut algo-

rithm for several choices, and select the smallest radius that results

in a segmentation with a small enough cut cost and large enough

foreground size, choosing correctly the segmentations outlined by

dotted squares in the above examples.

(Figure 5c, d). Note that the nearest neighbors graph en-

sures that each successive segmentation is a smooth extrap-

olation of the constraints.

5.3. Accelerations

Segmentation code is likely to be used at least once for

each object of interest. A scan of even a moderately sized

city or town will have tens of thousands (if not more) of ob-

jects of interest, so it is important for the algorithm to run

quickly. A typical object will have from 10 to 200 thousand

points in its radial support, so the basic algorithm described

above will run slowly (the O(n3) cost of the min-cut algo-

rithm is the initial bottleneck). We describe several accel-

erations to the basic algorithm that reduce the running time

from about 10s to about .1s per object.

To reduce the number of nodes on which the min-cut is

performed, we contract the graph by hierarchically merging

nodes. A number of clustering errors may be used; we order

the nodes to merge by the distance between their centroids,

and merge nodes until the graph reaches a pre-set size (we

use 1000 nodes). Note that arc weights are added to form

outgoing arcs from a newly merged node, so the min-cut is

altered only if two nodes on different sides of the correct

min-cut are merged during this stage.

After introducing the above contraction, finding K-

nearest neighbors (using a KD-tree) and the contraction it-

self become the bottleneck. To reduce the number of nodes

that serve as input to finding nearest neighbors and contrac-

(a) Input (b) User chooses radius (c) User adds foreground constraints (d) Result after additional constraints

Figure 5. The user surveys the input scene (a), and chooses a radius that includes the object to segment (b). The user creates several

foreground constraints (green circles), and a segmentation is interactively performed, with foreground point shown in blue (c). If necessary,

the user adds additional constraints (background constraints in red), until the segmentation is satisfactory (d). The user has the option of

toggling between views of all points (as shown here), or only background or foreground points, to make sure the object is not over or under

segmented.

tion, we add a pre-process that creates an axis-aligned grid

and creates a graph node at each occupied grid cell, at the

location of the centroid of points in that cell. We use a grid

spacing of .2m. Note that this stage adjusts the cut costs of

those grid cells that have multiple nodes.

6. Results

In this section, we first describe the data used for testing

our prototype system. We then describe two alternative seg-

mentation algorithms, and show some example results and

comparisons. Finally, we perform a quantitative evaluation

of our algorithm.

6.1. Data

We tested our segmentation algorithm on the LIDAR

scan and dataset described in [6], which covers about 6

square kilometers of Ottawa, Canada. The truthed part of

that scan covers about 300,000 square meters with about

100 million points, and contains about 1000 objects of in-

terest placed by BAE Systems. These object of interest form

the basis of our quantitative evaluation.

The scans were collected by Neptec. They were col-

lected from four car-mounted TITAN scanners facing left,

right, forward-up, and forward-down, and from an airborne

scanner. The scans were merged and provided to us as a

single point cloud, with a position, intensity, and color per

point. The colors from car-mounted scanners were not very

accurate, so we focused on geometry as the only cue for

segmentations in this paper. The reported alignment error

between ground-based and air-based scans is 0.05 meters,

with a reported vertical accuracy is 0.04 meters.

6.2. Alternative Algorithms

In this section we describe two simple alternative to per-

form segmentation of point clouds.

All Points. A simple way to extract the foreground

points is to assume that all points within some distance of

the input location are foreground. The algorithm is then to

return all (above-ground) points within a preset horizontal

radius.

While this is a trivial technique, it works well for isolated

objects, and it is consistent. It is also effective for feature

extraction for applications that do not require the points in

the object to be explicitly identified. Extracting all points

allows the maximum radius of an object as input, which is

intuitive. Of course, this method is limited, and fails when

there are background points within the specified radius.

Connected Components. Noting that foreground ob-

jects often consist of a dense group of points far from the

background, a slightly more sophisticated way to perform

segmentation is to assume that the foreground consists of a

connected component. That is, the algorithm starts with a

seed point assumed to be in the object (in our case, the clos-

est point to the input 2d location at a preset height of 1.2m),

and labels as foreground the set of points connected to this

seed point via distances smaller than some threshold length.

This method works for simple cases, when objects are

relatively dense and well-separated from the background. It

is a version of the clustering algorithm known as single-link

clustering, which suffers from two well-known problems.

First, it is not easy to choose a global distance threshold

that works for a large range of objects. Second, since this

is a greedy algorithm, it is not robust to noise or points that

are found between the foreground and background, and for

many objects, there does not exist a distance threshold that

captures all of the foreground in the connected component

without capturing any of the background. Because a choice

of distance threshold may result in an unreasonably large

connected component, a practical implementation of this

method requires two input parameters: the connected com-

ponent distance threshold, and a cut-off horizontal radius

beyond which points are assumed to be in the background.

6.3. Examples

In this section, we show several example segmentations

created with our method as well as with alternatives. While

a more complete, quantitative comparison is performed in

the next section, these examples provide useful intuition.

Figure 6 contains segmentations of several objects, in-

cluding a car, several lamp posts, a sign, and a trash can.

The first column has the ground truth segmentation cre-

ated with our interactive tool. The next column has the all

All Points

(r = 2)

Con Comp

(r = 2; s = .08)

Con Comp

(r = 2; s = .1)

Min Cut

(r = 2)

Min Cut

(r = 4)

Min Cut

(automatic r)

Ground

Truth

Car

Lamppost

Lamppost

Lamppost

Sign

Trashcan
Figure 6. Example segmentations. Each row has an object with ground truth segmentation, followed by an all-points segmentation, two

connected component segmentations with different spacings, two min-cut segmentations with different static background radii, and a min-

cut segmentation with automatically chosen background radius. While connected components and min-cut with static background radii are

sometimes successful, the min-cut segmentation with automatic background radius is more robust to clutter and varying object sizes.

points segmentation, with a radius r = 2. The next two

columns have connected components segmentations, with

radius r = 2 and spacing s = .08 and .1. The next two

columns have our min-cut segmentation, with a static back-

ground radius r = 2 and r = 4. The last column has results

of our method with an automatic background radius.

Because none of the example objects are isolated, the

all points segmentation returns many background points.

The connected components segmentation is more success-

ful: the result for the car example is close to correct with

s = .1, and the sign example is correct for s = .08. How-

ever, the spacing is difficult to adjust: both connected com-

ponent segmentations under-segment the car while over-

segmenting most of the other examples.

The min-cut segmentations with a static background

have better results. For the sign example, both radii return

the correct segmentation, and the first lamp post example is

close to correct with both radii. For each of the example ob-

jects, one of the two settings of r returns the correct segmen-

tation with the min-cut. But, for most examples, the wrong

choice of r returns a drastic over- or under-segmentation.

The min-cut method with automatic radius, on the other

hand, is able to choose the correct background radius for

these examples, returning correct segmentations.

Of course, no automatic segmentation algorithm is per-

fect. Some example failure cases of our automatic algo-

rithm are shown in Figure 7. Our algorithm can fail in

several scenarios. In (a), many noise points lie between

a control box (on the right) and a light standard (on the

left). The resulting high cut cost of the correct segmen-

tation makes it difficult for our algorithm to automatically

choose the correct (smaller) background radius, so both ob-

(a) (b) (c)

Figure 7. Example failures of the automatic segmentation algo-

rithm. In (a) the control box (on the right) cannot be separated

from a close light standard (on the left). In (b), only a part of a car

is returned. In (c), a lamp post is not separated from a close roof.

jects are returned. In (b), a car has a very weakly connected

component, which is returned. The small cost of the cut of

this component (relative to the correct segmentation of the

entire car, which has noisy connections to the adjacent car),

again makes it difficult to choose the correct background

radius. In (c), a lamp post is very strongly connected to an

adjacent roof. While an appropriate choice of background

may return a better segmentation, more useful cues for this

case include normal continuity and concavity.

6.4. Evaluation

Using the ground truth segmentations we created with

our interactive segmentation tool, we are able to quantita-

tively evaluate the performance of our segmentation algo-

rithm, and compare to the alternatives.

We gather statistics as follows. For each object of inter-

est, we run a segmentation algorithm, and record its preci-

sion (ratio of correctly predicted foreground points to the

total number of predicted foreground points) and recall (ra-

tio of correctly predicted foreground points to the number

of ground truth foreground points). A high precision indi-

cates that most of the predicted foreground points are in the

object, and a high recall indicates that most of the object

points have been predicted to be in the foreground.

Table 1 contains the results, averaged first by object class

and then overall, for the segmentation algorithms shown in

Figure 6: all points, two settings of connected components,

two settings of min-cut with static radius, and min-cut with

an automatically chosen background radius. Some objects

are easier to segment: parking meters are often isolated, so

both connected component and min-cut algorithms perform

well. Other objects, such as trash cans, are often close to

background clutter, so the precision is lower. Min-cut algo-

rithms are able to raise both precision and recall for trash

cans relative to connected components. Likewise, min-cut

algorithms improve performance significantly for cars and

signs. Other objects, such as newspaper boxes (an example

of one is shown in Figure 5) are very close to each other, so

while our algorithm improves the precision, it remains low.

Overall, as expected, the all points algorithm has a rel-

atively high recall at the cost of low precision. The two

connected component algorithms have a higher precision,

and the min-cut algorithms improve on this performance.

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
a
ll

Precision

All Points

Connected Components

MinCut

MinCut Automa!c Radius

Figure 8. Precision-recall plots of our algorithm compared to sev-

eral alternatives. The all points algorithm is shown in blue at

varying radii. The connected components algorithm is shown in

red with varying spacing. The min-cut algorithm is shown in

green with varying statically chosen background radii. Finally, the

min-cut algorithm with automatically chosen background radius

is shown in purple with varying cut cost thresholds. The perfor-

mance improves in the order of the algorithms presented.

The min-cut algorithm with automatic radius has better per-

formance that the two shown settings of the static radius

version. This last point is more apparent in Figure 8 (repli-

cated from [6]), which shows the precision-recall curves re-

sulting from running the above segmentation algorithms at

several settings. Specifically, it shows the all-points algo-

rithm at varying radii (blue), connected components at vary-

ing spacing (red), min-cut with varying static background

(green), and min-cut with automatically chosen radius at

varying thresholds (purple). Comparing the last two curves

shows the improvement in performance made by automati-

cally choosing the background radius.

7. Conclusion

In this paper, we presented a graph-cut based method for

segmenting objects in point clouds. We showed how our

method can be adapted for both automatic and interactive

segmentation. We used the interactive version of our algo-

rithm to generate a truth set of about 1000 segmentations,

and used this truth set to quantitatively evaluate the auto-

matic algorithm, comparing to two alternatives.

There are two immediate directions for future work.

First, we can augment our algorithm with more cues to

make it more effective. One can fit geometric primitives,

such as planes and cylinders to the data, and augment our

algorithm with the observation that since many urban ob-

jects are man-made, points belonging to the same primitive

are likely to belong to the same object. Similarly, one can

add cues such as convexity (object parts are likely to be con-

vex) and symmetry (many objects exhibit strong symmetry,

so segmentations ought to be symmetric as well).

Second, our segmentation algorithm is likely to be a step

in recognition system, as shown in [6]. While our segmenta-

tions can inform recognition, feedback is likely to be useful

– once an object type has been proposed, our algorithm is

simple to adjust to account for the prior shape of this type,

and a more accurate segmentation can be generated.

All Points Con Comp Con Comp Min-Cut Min-Cut Min-Cut

in (r = 2) (r = 2; s = .08) (r = 2; s = .1) (r = 2m) (r = 4m) (auto r)

Class Truth Area Pr Re Pr Re Pr Re Pr Re Pr Re Pr Re

Short Post 338 13 99 89 99 86 99 93 98 82 99 92 99

Car 238 77 75 93 47 91 59 93 20 92 82 92 77

Lamp Post 146 60 99 82 95 79 97 89 96 86 99 89 98

Sign 96 36 100 73 74 68 97 84 98 73 100 83 100

Light Standard 58 68 93 84 92 83 92 92 86 91 92 91 92

Traffic Light 42 58 75 75 75 72 75 92 72 84 87 84 86

Newspaper Box 37 13 100 15 96 14 100 40 86 21 100 38 93

Tall Post 34 35 100 42 89 42 96 79 84 46 100 58 96

Fire Hydrant 20 36 100 81 89 81 95 89 100 82 100 88 100

Trash Can 19 17 100 48 93 43 94 57 100 54 100 60 100

Parking Meters 10 14 100 100 98 100 99 100 100 100 100 100 100

Traffic Control Box 7 19 100 82 96 79 99 79 100 68 100 80 100

Recycle Bins 7 46 100 71 94 64 99 92 99 80 100 92 100

Advertising Cylinder 6 70 100 79 83 79 83 97 100 89 100 96 100

Mailing Box 3 48 100 86 100 86 100 98 100 98 100 98 100

“A” - frame 2 59 100 70 50 69 100 87 100 69 100 86 100

All 1063 43 93 82 84 79 88 89 78 81 95 86 93
Table 1. Per-class precision/recall results of the segmentation algorithms.

8. Acknowledgments

We thank Neptec, John Gilmore, and Wright State Uni-

versity for providing the 3D LIDAR data set. This work

started as part of the DARPA’s URGENT program, and we

thank BAE Systems for including us in the project, espe-

cially Erik Sobel, Matt Antone, and Joel Douglas. Alek-

sey Boyko, Xiaobai Chen, Forrester Cole, Vladimir Kim,

and Yaron Lipman provided valuable ideas, and Kristin

and Kelly Hageman helped with ground truthing. Finally,

we thank NSF (CNFS-0406415, IIS-0612231, and CCF-

0702672) and Google for providing funding.

References

[1] Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d

image segmentation. IJCV, 70(2):109–131, 2006.
[2] B. Chazelle, D. Dobkin, N. Shourhura, and A. Tal. Strate-

gies for polyhedral surface decomposition: An experimental

study. Computational Geometry: Theory and Applications,

7(4-5):327–342, 1997.
[3] J. Fransens and F. Van Reeth. Hierarchical pca decompo-

sition of point clouds. In Proceedings of the Third Interna-

tional Symposium on 3D Data Processing, Visualization, and

Transmission, pages 591–598, 2006.
[4] M. Garland, A. Willmott, and P. Heckbert. Hierarchical face

clustering on polygonal surfaces. In ACM Symposium on

Interactive 3D Graphics, pages 49–58, 2001.
[5] N. Gelfand and L. Guibas. Shape segmentation using local

slippage analysis. In Symposium on Geometry Processing,

pages 214–223, 2004.
[6] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based

recognition of 3d point clouds in urban environments. ICCV,

September 2009.
[7] Z. Ji, L. Liuy, Z. Chen, and G. Wang. Easy mesh cutting. In

Eurographics, volume 25, 2006.
[8] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active

contour models. International Journal of Computer Vision,

1(4):321–331, January 1988.
[9] S. Katz and A. Tal. Hierarchical mesh decomposition using

fuzzy clustering and cuts. ACM Transactions on Graphics

(TOG), 22(3):954–961, 2003.
[10] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-

egorization and segmentation with an implicit shape model.

In In ECCV workshop on statistical learning in computer vi-

sion, pages 17–32, 2004.
[11] R. Liu and H. Zhang. Segmentation of 3d meshes through

spectral clustering. In Proceedings of the 12th Pacific Con-

ference on Computer Graphics and Applications, 2004.
[12] A. Mangan and R. Whitaker. Partitioning 3D surface meshes

using watershed segmentation. IEEE Transactions on Visu-

alization and Computer Graphics, 5(4):308–321, 1999.
[13] T. Rabbani, F. van den Heuvel, and G. Vosselmann. Seg-

mentation of point clouds using smoothness constraint. In

IEVM06, 2006.
[14] A. Shamir. Segmentation and shape extraction of 3d bound-

ary meshes (state-of-the-art report). In Eurographics, pages

137–149, 2006.
[15] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh

partitioning and skeletonisation using the shape diameter

function. Vis. Comput., 24(4):249–259, 2008.
[16] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE PAMI, 22(8):888–905, 2000.
[17] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of poly-

hedral surfaces using decomposition. In Eurographics 2002,

pages 219–228, September 2002.
[18] R. Unnikrishnan and M. Hebert. Robust extraction of mul-

tiple structures from non-uniformly sampled data. In IROS,

volume 2, pages 1322–29, October 2003.
[19] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral surface

decomposition with applications. Computers & Graphics,

26(5):733–743, 2002.

