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Abstract

This paper describes a method for extracting roads from a large scale unstruc-
tured 3D point cloud of an urban environment consisting of many superimposed
scans taken at different times. Given a road map and a point cloud, our system au-
tomatically separates road surfaces from the rest of the point cloud. Starting with
an approximate map of the road network given in the form of 2D intersection loca-
tions connected by polylines, we first produce a 3D representation of the map by
optimizing Cardinal splines to minimize the distances to points of the cloud under
continuity constraints. We then divide the road network into independent patches,
making it feasible to process a large point cloud with a small in-memory work-
ing set. For each patch, we fit a 2D active contour to an attractor function with
peaks at small vertical discontinuities to predict the locations of curbs. Finally,
we output a set of labeled points, where points lying within the active contour are
tagged as “road” and the others are not. During experiments with a LIDAR point
set containing almost a billion points spread over six square kilometers of a city
center, our method provides 86% correctness and 94% completeness.

Keywords: road extraction, urban environments, LIDAR

1. Introduction

Constructing semantically-tagged 3D models of urban environments is a long-
standing problem with applications in navigation, planning, social engineering,
and virtual tourism. In particular, semantic tagging and modeling of roads is cru-
cial to understanding the complete structure of a city, since roads provide a con-
tinuous surface spanning an entire city, segment the city into blocks, and provide
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contextual cues for recognizing smaller objects (e.g., fire hydrants are usually a
fixed distance from a roadside). As such, accurate extraction of roads is an impor-
tant problem in GIS analysis, scene segmentation, and object recognition.

Due to its importance, researchers have developed methods to extract roads
from several types of input data, including satellite and aerial imagery, aerial LI-
DAR data, and terrestrial LIDAR scans.

For road extraction from satellite and aerial images, a variety of methods have
been proposed, using cues based mainly on color, monochromatic intensity and
texture patterns (Fortier et al., 1999; Mena, 2003). For example, common algo-
rithmic strategies include region growing (Amo et al., 2006; Bicego et al., 2003;
Hu et al., 2007; Mena and Malpica, 2005; Tesser and Pavlidis, 2000), segmenta-
tion and clustering (Ferchichi and Wang, 2005; Wan et al., 2007), machine learn-
ing (Butenuth et al., 2003; Yager and Sowmya, 2003), multi-scale extraction and
refinement (Baumgartner and Hinz, 2000; Heipke et al., 1995; Mayer et al., 1998;
Steger, 1998), and active contours (Laptev et al., 2000; Peng et al., 2008). These
methods tend to work well in rural environments, where color and intensity is rel-
atively distinctive and consistent within roads, and in urban environments when
assumptions can be made about the structure of roads (e.g., a semi-regular grid
pattern (e.g., Hu et al., 2004; Youn and Bethel, 2004)) and/or a knowledge base
and carefully tuned parameters can be provided (e.g., Hinz, 2004). However, good
performance has not been achieved in general urban environments (Mayer et al.,
2006).

A number of papers have addressed the problem of road extraction from aerial
LIDAR scans (ALS) (Alharthy and Bethel, 2003; Choi et al., 2007; Clode et al.,
2007). In (Alharthy and Bethel, 2003) the points were filtered by their intensity,
proximity to a digital terrain model(DTM) and then the network was extracted
by finding connected components. (Clode et al., 2007) use a similar approach to
select candidate road points. However, instead of using a connected component
filter they extract the road area by employing a phase coded disk operator (Clode
et al., 2004) and follow with joining and intersecting the extracted roads. In (Choi
et al., 2007), road points were extracted by a series of circle buffers clustering
points by elevation and reflectance and merging clusters based on the maximum
possible slope of the road. This work has been extended to a parallel algorithm by
(Li et al., 2008). (Hatger and Brenner, 2003) offer a method which does not rely
on the intensity at all - it extracts roads by planar approximations along the lines of
roads in an existing GIS map. (Oude Elberink and Vosselman, 2006) fit a polyg-
onal annotated map to an ALS to assign proper third dimension to the objects,
modeling discontinuities in the elevation, followed by surface reconstruction.
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Other research groups have considered point clouds from terrestrial LIDAR
scans (TLS) acquired with a sensor mounted on a vehicle (e.g., Chen et al., 2009;
Goulette et al., 2006; Jaakkola et al., 2008; Yu et al., 2007). These methods
achieve good results in some urban settings by leveraging temporal and spatial
structuredness of the data and knowledge of the position and the angle of the
scanner when it scans each point. Unfortunately, many point clouds, such as the
one used in our study, are provided without such structure or information. Also,
these methods provide limited means to deal with frequent and variably large in-
terruptions in curb lines that occur in urban environments. Finally, road extraction
proceeds by considering local windows in the direction of the scanning vehicle’s
movement, providing little global consistency in the case when a description of an
entire road network of a city is necessary.

The goal of our work is to derive a method for extraction of roads from a
large scale dense point cloud merged from multiple aerial and terrestrial source
scans of an urban environment. For example, consider the point cloud shown in
Fig. 1: it was collected by Neptec with one airborne scanner (78 scans/second, full
waveform) and four car-mounted TITAN scanners (50 scans/second, first return
only), facing left, right, forward-up, and forward-down as the car moved along
all roads in a 6 kilometer2 region of downtown Ottawa, Canada (Neptec, 2009).
Scans were merged at the time of collection and output as a single point cloud
containing 951 million points, each with a UTM position, intensity, color and an
identifier of the source scanner. The total size of the data set is approximately
35GB. The reported error in alignments between airborne and car-mounted scans
is 0.05 meters, and the reported vertical accuracy is 0.04 meters.

Such a large, dense point cloud provides unique opportunities for road ex-
traction. Since data is included from aerial scanners, the point cloud provides
large-scale coverage of all roads in an entire city, making it possible to employ al-
gorithms that enforce global consistency of extracted roads. Since data is also
included from terrestrial scanners, it provides fine-scale sampling density and
precision suitable for detection of curbs and other small features of roads, and
it provides coverage of all roads, including multilevel intersections, overpasses,
bridges, and tunnels. This combination makes it possible to couple local and
global road extraction criteria to achieve good results in difficult urban settings.

However, there are many challenges. The points from different scanners may
be captured at different times, in different weather conditions, under different il-
lumination, and with different sampling densities. The scanline-order of points
acquired from each scanner may be discarded during the merging process (as is
the case for our data set). Misalignments and/or ghosting of moving objects (e.g.

3



(a) 2D projection of the entire point cloud. (b) Screen shot of the point cloud.

Figure 1: Point cloud acquired with aerial and terrestrial LIDAR scanners covering a six
kilometer2 region of downtown Ottawa. (a) The image on the left shows a top-down view
of the scanned area, while (b) the image on the right shows a perspective view of one
region (a road going under the building forming a tunnel)

.
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pedestrians and cars) may appear as point clouds are merged; and, there may be
large occlusions in the data set due to trees, cars, and other urban objects. More-
over, the sheer size of the data makes it impossible to store all points in memory
simultaneously. These challenges make it difficult to employ traditional algo-
rithms directly.

In this paper, we describe a method for high precision (up to a curb) road ex-
traction from a large scale dense merged point cloud of an urban environment.
The key idea is to leverage both global properties of roads (topology and smooth-
ness) and local road features (curb boundaries) to extract roads accurately and
consistently. In contrast to the previous methods, our approach deals with very
large point clouds that are not expected to offer any information about the loca-
tion and orientation of the scanner, nor to be organized into scanlines or grids,
nor to be consistent in its color and intensity values or sampling rate (as long
as sampling is dense enough to notice objects as small as a curb). Furthermore,
our approach treats any multilevel structure, including long tunnels, as any other
case, processing them in the same pipeline. Our method separates the stage of a
global 3D fitting from accurate local 2D fitting, each of the stages working on a
small subset of the larger dataset. This enables us to keep entire relevant subsets
in memory while processing an extremely large point cloud, as well as to paral-
lelize extraction routines for independent streets. Within each subset, we employ
ribbon snakes to extract smooth road boundaries aligned with curbs. We have
implemented a prototype system and present qualitative and quantitative results
of using active contours with various curb detectors within the framework of our
approach on a large multisource point cloud of an urban environment.

2. Method

Our method takes as input a point cloud and an approximate 2D map of a road
network (e.g., as provided by (OpenStreetMap, 2010)), and it produces a model
of the road boundaries along with a tag for every point in the cloud indicating
whether it is part of a road or not. It is intended to work for road networks that
can be represented as a connected set of smooth continuous surfaces of slowly
changing width and elevation delimited partially by elevation discontinuities (e.g.,
curbs), as are commonly found in urban environments.

The pipeline of processing steps is depicted in Fig. 2. We first project the
given 2D map of the road network onto the given 3D point cloud in a manner that
preserves the road network’s topology and ensures geometric continuity - creating
a map spline. We then split the map spline into independent parts, road patches,
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and extract a subcloud of relevant points for each road patch. These subclouds
are small enough and can be processed independently with an out-of-core frame-
work that requires small working sets. For each subcloud, we build a 2D attractor
map that estimates the locations of elevation discontinuities. Then, we compute
a ribbon snake for each road patch by optimizing an active contour that aims to
maintain smoothness of its boundary while fitting its boundary to likely predic-
tions in the attractor map. Finally, the points in the respective subcloud that fall
inside the active contour are labeled as road points. The following subsections
describe the motivation and implementation for each of these steps in detail.

Figure 2: Processing pipeline.

2.1. Road Map Registration
The first step of our processing pipeline is to register the input 2D map of

the road network with the input 3D point cloud. Typical maps acquired on-line
(e.g., OpenStreetMap, 2010) are provided as a graph, with nodes representing
road intersections (given as 2D locations) and edges representing road patches
(given as 2D polylines), but without 3D elevations (Fig. 3). Since later stages of
our processing pipeline require 3D locations for points on street maps, our goal in
this step is to estimate elevations for every 2D point in the map by projection onto
the 3D point cloud.

While simply projecting 2D map points onto 3D LIDAR points may seem
simple at first glance, it is difficult in cases where the LIDAR points are poorly
sampled, where roads cross over one another (e.g., at bridges and tunnels), where
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Figure 3: Open Street Map data provided as input to our method (OpenStreetMap, 2010).
Zoomed view of area highlighted with red rectangle appears on right. Red points are
intersections. Green points are polyline vertices. Blue lines are roads.
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there are obstacles over the road (e.g., trees and cars), and/or where the map is in-
accurate (e.g., goes outside the road boundary). In these cases, a naive projection
onto the closest LIDAR points will yield road maps with sharp elevation discon-
tinuities. Instead, we need a globally consistent and smooth set of road elevations
throughout the entire city.

Our approach is to optimize elevations of Cardinal spline control vertices ar-
ranged in a network with 2D locations and topology of the road network given in
the input map. We place a spline control vertex at the 2D position of every in-
tersection in the map and at 2D positions sampled regularly at 15 meter intervals
along every polyline of the connecting intersections in the input map (Fig. 4). We
then solve for the elevations (Z coordinates) for these control vertices V to min-
imize an error function E(V ) providing the weighted sum of squared distances
between the elevations of points s on the spline curve S and nearby LIDAR points
N(s):

E(V ) =
∑

s∈S(V )

(w(s)
∑

p∈N(s)

(sz − pz)2)

where V is the set of control vertices, s is a set of points sampled at 1 meter
intervals along the Cardinal spline S defined by V , sz is the elevation of s, p is a
LIDAR point in the set of points N(s) within 15 cm of s in 2D, w(s) is a weight
computed as the inverse of the variance of the elevations within N(s), and pz is
the elevation of p (Fig. 4).

Figure 4: Projecting a 2D map onto the 3D point cloud.

This approach fits a smooth spline curve to the LIDAR data, weighted to fa-
vor points with small elevation variance, and thus draws the curve to 3D LIDAR
points that are most clearly on the road. The resulting elevations are guaranteed
to be smooth, since the spline curve is guaranteed to be C1 continuous at intersec-
tions and C2 continuous everywhere else, with the expected curvature determined
by the spacing of control vertices (15 meters). Since the control network is con-
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nected throughout the entire city (control vertices at intersections are shared and
therefore connect splines representing adjacent roads), and the elevations for all
roads are solved simultaneously, elevations are predicted correctly even in areas
of occlusions and/or missing data, as large-scale smoothness constraints guide the
solution to correct results in regions where data is locally imperfect.

After solving for the control vertices V , we snap the elevation for each sample
point s to that of the LIDAR point closest to the spline curve position at s. Finally,
to correct minor discontinuities introduced in this step, we finish by visiting each
sample point s in order and assigning its elevation to be that of the preceding
sample if its incline exceeds a conservative threshold (35% - the incline of the
world’s steepest road (NZ, 2005)).

In the end, we have a set of connected polylines with 3D points lying on the
road surface. Fig. 5 shows some results. To evaluate the quality of results of
this step, we look at how often a smooth projection onto the point cloud was not
possible, and how much of an incline anomaly throughout the city these failure
cases produced. To address the first question, we compare how many map samples
could not be smoothly projected onto the point cloud within the maximum incline
window. For a manually created map of Ottawa (described in Section 3.4), there
are only 11 samples that do not fit the Ottawa point cloud smoothly, out of over
4×104 sample points in the input map. To evaluate the smoothness of the final 3D
map spline, we look at the average and largest absolute incline of the resulting map
splines. Average inclines are very close to zero, which shows that overall fitting
of the map to the point cloud of a rather flat region is successful. The maximum
incline is 0.4, which means that among the 11 samples that do not fit smoothly,
the biggest jump is 40 cm vertically per 1 meter on a plane. We believe that this
minor and infrequent issue can be explained by the map passing through an object
on the road, e.g. a car. Visual observations also indicate good quality of fitting,
e.g. Fig 5, where map splines fit to correct road surfaces of the overpass, and
to both roadways of a dual roadway elevated bridge, with one roadway densely
covered from above.

2.2. Point Cloud Partitioning
The second step is to partition the point cloud into “subclouds” that contain

parts of the input data that can be processed independently. This step is necessary
because the entire point cloud is far larger than fits into memory on most comput-
ers, and thus must be partitioned into small “working sets” that can be processed
efficiently.
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(a) Overpassing roads. (b) Bridge map fitting.

Figure 5: Map fitting and extraction results. Map splines projected onto the cloud are
shown as red lines. These images illustrate a correct fitting of the map spline to the point
cloud in a case of roads crossing in 2D but not in 3D, and on a partially covered elevated
dual roadway bridge.

There are many ways in which a point cloud can be partitioned into working
sets. For example, previous works break point clouds into spatial tiles arranged
in a regular grid and process each tile independently. However, that approach
requires processing challenging road topologies within each tile (since a tile can
contain many disconnected parts of the road network), and it can introduce no-
ticeable seams at tile boundaries if tiles are processed independently. Instead, we
aim for a partitioning that yields simple road topologies within each working set
and whose results can be stitched together with few seams.

Our approach is to partition the point cloud into independent working sets
based on the topology and geometry of the input map. Specifically, for spline
curve S representing a road patch connecting two intersections of the given road
network, we extract a subcloud for S with the following steps:

1. For each sample s in S (spaced at 1 meter intervals), we estimate a local
support plane P (s) by fitting a plane to LIDAR points within a 4 meter
radius of s.

2. For each spline sample s, we extract a working set of points WS(s) from
the LIDAR point cloud that lie within a distance of 0.5 meters from the
support plane P (s) and within a 22 meter radius of s (where 22 meters is 6
times the standard lane width in Canada: 3.66 meters (RTAC, 1986)).

3. We merge working sets of all the spline samples into one set of LIDAR
points to form a subcloud for S.

This approach was chosen for several reasons. First, roads exhibit rapid changes
in their structure (width, curvature) at intersections, and thus intersections are
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natural places to partition road networks into independent patches with large co-
herence within each patch and manageable seams at patch boundaries. Second,
LIDAR points on roads that cross over one another (bridges, tunnels, etc.) are
separated by this process into separate subclouds, preventing them from interfer-
ing with each other. Finally, the subcloud for any given road patch is generally
small, since it contains points only near the road elevation within a small radius
of the road patch centerline (empirically, the size of each road patch is on the or-
der of ×103 to ×105 times smaller than the size of the entire point cloud), and
thus it provides an appropriate granularity for memory management during road
extraction.

Our method for finding points in the subcloud is accelerated by an out-of-core
spatial indexing structure that stores points on disk in contiguous blocks based on
cells of a regular 2D grid. This structure enables rapid retrieval of points within
a given 2D region of the point cloud. Even with this indexing, for the Ottawa
data set, the subcloud extraction step takes several hours, most of which is spent
reading data from disk.

An example result of the subcloud extraction process is shown in Fig. 6. Points
within the subcloud for one road patch are shown in white and blue, while others
are shown in black – note that obstacles sitting above the road are excluded from
the subcloud.

2.3. Attractor Map Construction
The third step is to analyze the LIDAR points within the subcloud for each

road patch and construct an attractor map, a(x, y), to be used for fitting an active
contour surrounding the road area within the patch in the next step. The ideal
attractor map has a large value at road boundaries and small values everywhere
else, so that the active contour will snap to road boundaries precisely.

In urban environments, roads usually have constraints on their widths and
have boundaries recognizable by elevation discontinuities (e.g., curbs). Thus, our
attractor map has two terms, an extent constraint, e(x, y), and a curb detector,
c(x, y):

a(x, y) = αattr · e(x, y) + βattr · c(x, y)

The extent constraint, e(x, y), penalizes road boundaries outside the expected
range of distances from the input map spline. In our current implementation, we
set e(x, y) to zero if (x, y) is less than one lane width (3.66 meters in Canada (RTAC,
1986)) or greater than 6 lane widths from the closest point on the map road spline,
and 1 otherwise. This term will penalize road predictions that are too thin or wide.
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Figure 6: Subcloud extracted for a road patch. The patch centerline is shown as a red line.
Points belonging to the subcloud are shown in white and blue, other points are shown in
black for contrast. Low resolution 2D projection of the cloud in original color is provided
for context.

The curb detector, c(x, y), provides an estimate for probability that a curb
can be found at (x, y). To compute it, we compute a curb detector c(p) at every
point p in the subcloud and then aggregate them by averaging within regularly
sampled 2D grid cells. Specifically, for every point p in the road patch subcloud,
we estimate a value c(p) by analyzing the normal direction and elevation variation
within a local neighborhood N(p) of p as follows:

c(p) = f(∆h) · (1− (~np · ~n2
s) (1)

where ∆h is a function of the local elevation variance of points in N(p), ~np is a
normal estimated by at the point p based on principal component analysis ofN(p),
~ns is a normal of the support plane estimated at the nearest road patch spline point,
and N(p) is a set of at least 20 points closest to p.

In this work, we consider three possible definitions of f(∆h). The first, fn,
is simply a constant function (elevation variation is not considered in the attrac-
tor map). The second, fnStep, is a step function, with value 1 if the elevation
range lies within preset bounds determined by road construction standards (4 to 8
inches in (Seattle, 2010)). The third, fnExp, is a continuous function that is largest
when ∆h = ∆havg and smaller elsewhere, with σ∆hmax defining how narrow the
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(a) an (b) anStep (c) anExp

Figure 7: Visualization of attractor maps for one example road segment. Darker pixels
indicate larger values. The non-white region represents area where e(x, y) 6= 0.

window for the elevation variation should be before the c(p) becomes negligibly
small. Following the same road construction standards, we use a 15 cm average
and a 5 cm deviation to ensure that the standard-compliant curbs fall within the
one standard deviation.

fn(∆h) = 1 (2)

fnStep(∆h) =

{
1,∆hmin ≤ ∆h ≤ ∆hmax

0, otherwise
(3)

fnExp(∆h) = exp

(
−(∆h−∆havg)

2

2σ2
∆hmax

)
(4)

Figure 7 shows visualizations of the attractor maps computed with each of
these three f(∆h) functions (an uses fn, and so on). an identifies curb lines
on the map. However, it fires on any remotely vertical group of points and thus
generates a lot of noise in the attractor map. The anStep measure filters out much
of the noise, mostly firing on curbs and similar small objects. However, it uses a
step threshold and any road delimiter that is too small or too tall disappears from
the map. This results in increased gaps in the curb line. anExp offers a trade-off
between the former two by still capturing but downweighting deviations in the
curb’s height.
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2.4. Road Boundary Estimation
The third step is to estimate the boundaries of the road from the 3D curve

representing the road patch centerline (Sec. 2.1) and the attractor map representing
the expected locations of curbs (Sec. 2.3).

This problem is challenging for several reasons. First, the point cloud may
have noisy and missing data (e.g., due to occlusions). Second, the given road patch
“centerline” may not be located at or even near the center of the road (e.g., due to
inaccuracies in the input map). Third, there can be numerous obstacles (e.g., cars)
and other urban features (e.g., barriers) on the road that could provide high values
in the attractor map and thus be confused with road boundaries. Finally, there are
many places where road boundaries are not distinguishable in the attractor map
(e.g., at driveways or when the shoulder is gravel), which makes finding the road
boundary difficult without simultaneous analysis of large regions. As a result,
simple region growing algorithms that threshold the attractor map and “flood fill”
will produce erroneous results in all but the simplest cases.

Our approach is to extract road boundaries by optimization of a “ribbon snake”
(Fua, 1997), a parametric contour, v(s) = (x(s), w(s)), described by the position
of its centerline x(s) and its width w(s) as a function of arc length s. The ribbon
snake is fit to a potential by optimizing its centerline position and width to mini-
mize an energy functional with internal smoothness and external data approxima-
tion terms.

This ribbon snake representation was chosen because it provides a parame-
terization of the road boundary that allows efficient formulation of an error func-
tional measuring how well the predicted road boundary fits to the given input
data. Specifically, our error functional, Esnake, includes an internal term favoring
smoothness of the road boundary and an external term favoring alignment of the
road boundary with high values in the attractor map:

Esnake =

∫ 1

0

κsnakeEinternal(v(s)) + γsnakeEexternal(v(s))ds (5)

The internal smoothness energy term, Einternal, measures how similar the
shape of the ribbon centerline is to the input road patch centerline. To facili-
tate computation of this term, the ribbon centerline is represented based on t(s),
a function of arc-length s representing the distance from ribbon snake center-
line to the input road patch curve in the direction locally perpendicular to the
input road patch curve (~nt(s)). This formulation enables us to enforce the snake’s
internal energy to depend on the initial road patch curve rather than penalizing
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the initial curvedness, if any. It also facilitates modeling global shifts of the rib-
bon centerline, which is important because the input road patch centerline might
be significantly off-center (due to inaccuracies in the input map). To enable the
snake to translate globally without penalty we introduce tavg that we compute as
an average of t(s) over the whole snake, and we actually represent the snake as
v(s) = (u(s), w(s)), where u(s) = (t(s)− tavg). We compute the internal energy
term as:

Einternal(v(s)) = (αsnake|vs(s)|2 + βsnake|vss(s)|2)/2 (6)

The external data approximation energy term, Eexternal, measures how well
the ribbon snake boundary aligns with the attractor map:

Eexternal(v(s)) = −a(x(v(s)), y(v(s)))

In order to enforce the smoothness of the road’s width and center, without en-
couraging shrinkage of its area, we set the rigidity parameter of the snake (βsnake)
well above other parameters, and keep the elasticity parameter (αsnake) very small.
Parameters γsnake and κsnake, which control the trade-off between smoothness and
approximation terms of the snake’s energy function, were chosen experimentally
(γsnake = 10 and κsnake = 1).

As in the original snake paper (Kass et al., 1988), we optimize the ribbon snake
by iteratively refining components of v(s) using the following matrix equation:

vt = (A+ γsnakeI)−1(γvt−1(s)− ft−1(s))

where, t and (t − 1) indices refer to respective values at current and previous
iterations of the solution, A = αsnakevss(s) + βsnakevssss(s) is a diagonal ma-
trix representation of the derivative of the Einternal(vt−1(s)), and f(s) is derived
from Eexternal. Namely, for our snake representation f(s) = ((~f · ~nt(s))l + (~f ·
~nt(s))r, (~f · ~nt(s))l − (~f · ~nt(s))r), where ~f = ~f(x, y) is a ”force” vector that
attracts the snake towards the minima of Eexternal taken at left and right points of
the ribbon snake (indices l and r, respectively). To compute ~f(x, y) and avoid the
necessity of initializing the snake near the curb lines, similarly to (Marikhu et al.,
2007), we use an improved approach proposed in (Xu and Prince, 1997) where the
authors introduced the concept of the gradient vector flow (GVF) to enable attrac-
tors to propagate their influence further into the image and increase the capture
range of an active contour. To do this ~f(x, y) is represented as (u(x, y), v(x, y))
and its components are computed by minimizing the following error function:

EGV F =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇P |2|f−∇P |2dxdy (7)
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where P (x, y) = Eexternal(x, y). Computation of GVF for each attractor map
needs to be done only once - before fitting the snake.

In Fig. 8 we illustrate the process on an example of the road patch located in
the point cloud shown in original color in Fig. 8a and by elevation encoded in color
in Fig. 8b. Fig. 8c shows the attractor map a(x, y) built from the subcloud of the
given road patch. The GVF field obtained from a(x, y) is shown in Fig. 8d with the
direction of ~f(x, y) at every point encoded by hue: red meaning ~f(x, y) pointing
right, blue - down, cyan - left, and green - up. Fig. 8e shows the initial position of
the snake along the map spline position for the road patch. Fig. 8f shows the final
result of fitting the snake, which smoothly and accurately fits the curb lines where
they exist with only occasional and very small smooth protrusions outside where
there is no curb.

2.5. Semantic Tagging
The final step of our pipeline is to produce a set of points to be tagged as being

on a road. This step is quite easy once the ribbon snake for every road patch has
been computed. For each road patch, we simply identify the set of points within
the patch’s subcloud whose projection onto the XY plane falls within the region
delimited by the ribbon snake for that patch. We then unite the sets of points found
for all road patches to produce the final output.

Since road patches are processed independently, this process could potentially
miss points and/or introduce discontinuities at road intersections. However, in
practice, since patch subclouds extend into the middle of intersections, the points
tagged as road for adjacent patches almost always overlap, and so points are rarely
missed. Also, since patches overlap at intersections, the precise placement of the
road boundary for each patch at each intersection is not as important as the bound-
ary of their union, and thus the final output almost always provides continuous
road boundaries, even at intersections.

3. Results and Discussion

In order to test how well the proposed method detects roads in a large LIDAR
point cloud, we ran a series of experiments with the methods described in the
previous sections on the Ottawa data set described in the introduction. Again,
this data set comprises 951 million LIDAR points covering several hundred road
patches in a downtown area.

In addition to describing accuracy and timing results for our method, we re-
port the results of experiments with different input data (road maps) and different
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(a) Input point cloud. (b) Color-coded by elevation. (c) Attractor map.

(d) Hue-coded GVF map. (e) Snake initialization. (f) Final snake.

Figure 8: Snake fitting of a single road patch. (a) - road patch (view from above) in the
original color, (b) - same view with points color-coded by their elevations: from green
(smallest) to red (highest), (c) - attractor map formed from the subcloud around the road
patch (darker regions are stronger attractors), (d) - GVF map with the vector direction
encoded with the hue, (e) - snake is initialized around the map spline with a minimal
width of 1 lane, (f) - final result of fitting the snake to the attractor map.
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Input road map Manual
Attractor map anExp

3D spline sampling rate every 1 m
Control vertex sampling rate every 15 m
Fitting data support cylinder radius 15 cm
Maximum road incline window ±35%
Maximum expected road width 10 lanes
Minimum expected lane width 1 lane
Subcloud extraction vertical window 1 m
Subcloud extraction support radius 22 m
αattr 0.2
βattr 1
∆havg 15 cm
σ∆hmax 5 cm
∆hmin 10 cm
∆hmax 20 cm
αsnake 0.01
βsnake 100
γsnake 10
κsnake 1

Table 1: Summary of the parameters and their values used in our experiments.

algorithmic design decisions (curb detectors). These experiments provide an indi-
cation of the sensitivity of our method to the varying parameters. Unless otherwise
specified, parameters were set to the values shown in Tab. 1 chosen either to match
standards of road construction or empirically.

On average, each experiment (beginning to end computation for the entire
point cloud) took approximately 24 hours using a cluster machine of 20 2.2GHz
Opteron Dual-Core processors with 8GB of memory and 11 2.3GHz Opteron
Quad-Core processors with 16GB of memory.

3.1. Ground Truth and Evaluation Metrics
To evaluate the accuracy of road detection results in each experiment, we com-

pare them to a manually created ground truth representation of the roads, gt. This
ground truth is represented as a 2D grid specifies for every 0.5 x 0.5 meter cell a
value of ”1” if any road in the city overlaps the cell (shown in green and red in
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Fig. 9), and ”0” otherwise. It was created by manual marking of an image overlaid
on the point cloud using an interactive tool.

To evaluate how well our road prediction matches this ground truth data set,
we produce a predicted grid, pred, by projecting all LIDAR points in the road
prediction output into a 2D grid and then setting to ”1” the value of every grid cell
containing at least one point from the predicted set and all other grid cells to ”0.”
Then, we compute the following accuracy metrics by comparing the two grids:

• Correctness (precision): p = TP/(TP + FP )

• Completeness (recall): r = TP/(TP + FN)

• Quality: q = TP/(TP + FP + FN)

• Average spill size:
s =

∑
‖roadsidepred‖ d(roadsidegt, roadsidepred)/‖roadsidegt‖

• Prevailing spill direction: d = (FP − FN)/(FP + FN)

where TP is the number of true positives (gt(x,y)=pred(x,y)=1), TN is the num-
ber of true negatives (gt(x,y)=pred(x,y)=0), FP is the number of false positives
(gt(x,y)=0, pred(x,y)=1), FN is the number of false negatives (gt(x,y)=1, pred(x,y)=0),
and roadsidegt and roadsidepred are pixels in the ground truth and prediction, re-
spectively, that are on the boundary of the road areas. The nominator of s is a
sum of unsigned distances from each pixel in roadsidepred to the closest pixel in
roadsidegt, and the denominator is the size of the roadsidegt.

The first three metrics (p, r, and q) are standard for evaluation of the road
extraction algorithms (e.g., Clode et al., 2007; Harvey, 1999; Heipke et al., 1997;
Mayer et al., 2006; Wiedemann, 2003). The latter two are new in this paper.
First, s, is the average distance of the roadside in the predicted extraction from the
roadside in the ground truth, indicating how far, on average, from the actual curb
line the predicted road area ended. Simply put, it describes how deep of a spill
we can expect per 1 meter of the reference road, allowing us to make conclusions
about the shape of the spills: given same TP , FP , FN , and TN whether the
spills are long and shallow or deep and short. Second, d, shows which direction
of the spills is prevailing - inside the ground truth area or outside. The direction
of spills is indicative of the susceptibility of the method to terminating the road
growth too early or too late, depending on the ability of our method to accurately
locate the curbs. If d is negative, snakes are prone to early growth termination
due to spurious snake attractors, and vice versa - when d is positive, curb detector
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does not create strong enough attractors to hold the snakes from growing outside
the curb line.

These evaluation methods leverage marked 2D grids rather than marked 3D
points for reasons of practicality (manually labeling 3D points is much more dif-
ficult). Although they do not precisely characterize predictions of 3D structures
(bridges, tunnels, and overpasses) and they introduce discretization errors (due to
the grid), we find that they provide a good overall evaluation of the methods and
are quite representative of results observed qualitatively through visual observa-
tion.

3.2. Results
Evaluation of the results of our method on the Ottawa LIDAR point cloud are

presented visually in Fig. 9. The color coding depicts true positives in green, false
negatives in red, false positives in magenta, and true negatives in cyan. Most of
the area is cyan and green indicating that correct classification prevails. Detailed
observation shows that our method succeeds in most cases, making minor errors in
cases where curbs are not well-defined. In particular, it succeeds in many difficult
cases where roads have gaps in the curb line. For example, Fig. 9c shows a very
complicated intersection, where all 15 corners are level with the ground for cross-
walks. It also succeeds in cases where roads are part of a multilevel environment.
For example, Fig. 9b shows a properly extracted open single-roadway bridge, and
Fig. 9a shows a long tunnel underneath a building extracted from the area shown in
Fig. 1. These examples would require special treatment using previous methods.

While our algorithm performs well for most roads throughout the city, there
are cases where it fails. In particular, areas where several snakes meet are often
jagged and abrupt because there is no inter-snake interaction in our model. Al-
though snakes that meet at an intersection cover most of it, each of their area of
interest ends midway into the intersection, where the lack of curbs enables snakes
to behave in a manner inconsistent with one another. Another source of error with
respect to the reference is spilling through gaps in curbs. Although we demand
high rigidity from the snake, if we have a long interruption in the curb line, a
nearby curb of another road can provide enough attraction for a snake to smoothly
bend outside the road area or even to spill completely over a thin roadway separa-
tor. Unless there is a much longer consistent curb line around the gap to support
the line, these spills can become large, in extreme cases of closely located gaps,
even allowing the snake contour to bypass entire curb segments between the gaps.
An example of poor extraction with these cases is in Fig. 9d. In Fig. 9e you can
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Figure 9: Classification error map.
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see another failure case - here the road is being reconstructed and moved to fol-
low an alternate geometry; hence, the features of the road are poorly defined and
inconsistent throughout this area causing an incorrect solution.

Overall, our algorithm achieves 86.3% precision, 94.0% recall, 81.8% quality,
2.02 average spill size, and 42.2 prevailing spill direction for the Ottawa data set.
We believe that this performance is suitable for many applications that leverage
detected roads as contextual cues for object recognition and urban planning.

3.3. Attractor Map Comparison
In this subsection, we study how the construction of the attractor map affects

the overall road detection results. In this study, we ran three experiments, keeping
all parameters the same (as in Tab. 1) except the attractor map, for which we tested
an (Eq. 2), anStep (Eq. 3), and anExp (Eq. 4).

A comparison of the results is shown in Tab. 2. an provides the highest preci-
sion, yet the lowest recall and quality, and negative d, suggesting that snake fitting
often terminates before reaching the actual curb. The average spill size for an is
also the largest. The combination of a small negative d, lowest quality, and a large
s describe the predominantly inward deep spills. anStep has the opposite features
- lowest precision, highest recall, high positive spill direction. This proves the
qualitative observation that anStep filters out too much data, providing large win-
dows for the snake to leak outside of the road’s area. Smaller s with a much larger
absolute value of d suggests that the spills are more undulate. This also makes
sense from the perspective of the snake formalism: smaller values on the attrac-
tor map create weaker input from the approximation term of the snake’s energy
and the smoothness enforcement dominates. When using anExp, we can see that
although its precision and recall are marginally smaller than the others, it has the
highest quality, suggesting that it finds the best balance between early and late ter-
minations. Positive d suggests that the spills are predominantly outward, and the
smallest of three s together with the highest quality shows that the spills are shal-
low and the predicted curb lines in this case are closer to the ground truth. These
observations suggest that anExp is the most robust curb detector for this data set.

3.4. Input Map Comparison
In this last subsection, we study how the choice of input map affects the road

detection results. In this study, we ran two experiments, each using one of the
following two road maps as input:
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Metric an anStep anExp

p (%) 88.7 83.2 86.3
r (%) 86.2 95.7 94.0
q (%) 77.7 80.2 81.8
s 2.62 2.26 2.02

d (%) -11.6 63.3 42.2

Table 2: Results of using different curb detectors. Best values are given in bold.

• Manual: a map created specifically for the Ottawa point cloud using an
interactive tool to select approximate 2D positions of intersections and 2D
polylines near the centerlines of road patches. The map yields 383 road
patches ranging in length from 5.5 to 627 meters, averaging at 107 meters.

• OpenStreetMap: a map downloaded from www.openstreetmap.org. This
map is freely available on-line (Fig. 3). This map yields 688 road patches
ranging in length from 1.3 to 1563 meters, averaging at 132 meters.

Table 3 shows the evaluation measures for road predictions produced by our
method with these two maps. The results achieved with OpenStreetMap are lower
than the ones with the Manual map by 9% in correctness, 13% in completeness,
19% in quality, and more than twice as large in average spill size. The reasons
for these differences are due mainly to extra, missing, and misplaced roads in the
OpenStreetMap data. For example in Fig. 10a, an entire street is marked with red
(FN ), indicating that the street is not present in the map at all. Also some curb-
separated dual roadway roads are only half-extracted due to the map indicating
only one of the roadways (Fig. 10b). This results in the drop in completeness.
The drop in correctness comes from the parts of the map that do not follow the
path of the roads in the point cloud: the road in the subcloud has been extracted
regardless and it greatly contributed to both FP and FN areas in the classification
error map - see Fig. 10c for an example.

These results indicate that our current implementation is sensitive to the qual-
ity of the map used. However, we believe it would be possible to extend our
approach to overcome errors in the map by detecting roads automatically and/or
optimizing their positions directly from the point cloud. This is a topic for future
work.
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Metric Manual Map OpenStreetMap
p (%) 86.3 78.4
r (%) 94.0 81.3
q (%) 81.8 66.4
s 2.02 4.64

d (%) 42.2 8.2

Table 3: Results with manually created and OpenStreetMap maps.

(a) Road is not in
the map at all.

(b) Dual roadway
presented as a single
line in the map.

(c) Map describes a dis-
crepant road network.

Figure 10: Failure cases when using map from OpenStreetMap. Green is TP , Red is FN ,
Magenta is FP , Cyan is TN , Black is no points.
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4. Conclusion

We have described an approach for a map guided extraction of roads from a
large dense merged point cloud made of real life urban environment scans. By
partitioning the problem into patches, using a curb detector to encode elevation
discontinuities, and fitting ribbon snakes to model road boundaries, we combine
both small-scale (curb detectors) and large-scale (snake smoothness) cues to ex-
tract roads more robustly than either alone. Our method is able to deal with all
kinds of roads, including bridges, tunnels, and multilevel intersections. It is par-
allelizable, does not rely on point cloud’s color, texture or intensity properties,
and demands only for the cloud to be sampled densely enough and the magnitude
of noise to be low enough for the curb-like features to be noticeable. Results of
experiments on a point cloud with almost a billion points suggest that the system
is scalable and provides fairly accurate results for difficult cases encountered in
urban environments.

This method has several limitation that suggest for the following directions
of future work. Among the main directions we see the need to decrease the sen-
sitivity of our approach to the incorrect map data or to completely extract the
road network directly from the point cloud. A set of verification steps will ben-
efit the robustness of our approach, e.g. preventing road extraction at a poorly
fitted 3D spline area. Also, striving to achieve scalability by treating each road
patch independently, our method does not explicitly deal with road intersections
where subclouds overlap. Special treatment is necessary for the intersection ar-
eas extraction due to their possible topological complexity, especially in urban
environments. This can be achieved in the future by allowing the snakes to inter-
act at the overlapping areas, among the possible solutions we see using ziplock
snakes (Neuenschwander et al., 1997) in the overlap areas or explicit modeling of
the intersections in the manner it is done in (Mayer et al., 1998, Sec.4.3). Global
fitting of a network of snakes to the entire point cloud may yield better results, but
may also be extremely computationally expensive. Another future work direction
is the cross-data portability of our approach. The applicability of our method to
data collected from other cities and countries as well as possibility of extension
to rural environments is an interesting direction for future investigation. Finally,
the running time to process the entire city can be decreased by optimizing the
implementation.
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