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Goal

Understanding indoor scenes observed in RGB-D images

• Robotics

• Augmented reality

• Virtual tourism

• Surveillance

• Home remodeling

• Real estate

• Telepresence

• Forensics

• Games

• etc.
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Input RGB-D Image(s)

Semantic Segmentation



Goal

Understanding indoor scenes observed in RGB-D images in 3D

3D Scene Understanding

Input RGB-D Image(s)

Semantic Segmentation



Goal

Understanding indoor scenes observed in RGB-D images in 3D

• Surface reconstruction

• Amodal object detection

• Object relationships

• Materials, lights, etc.

• Physical properties

• Novel views

• Info sharing

• Spatial inference

• Simulation

• etc.

Semantic Segmentation



Goal for This Talk

Learn ConvNets to recognize patterns in voxels

• Local shape descriptor

• Amodal object detection

• Semantic scene completion
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A. Zeng, S. Song, M. Niessner, M. Fisher, J. Xiao, T. Funkhouser, 

“3DMatch: Learning Local Geometric Descriptors from 3D Reconstructions,” 

submitted to CVPR 2017 



Local Shape Descriptor

Goal: train a discriminating 3D local shape descriptor from data

Local shape descriptor Local shape descriptor

…0.58 0.21 0.92 0.67 0.04 0.53

Match!

0.58 0.21 0.92 0.67 0.04 0.53 …



Local Shape Descriptor

Challenge: where to get training data?



Local Shape Descriptor: “3D Match”

Approach: train on wide-baseline correspondences in RGB-D reconstructions

“Ground truth” match between 

RGB-D Images from different views



Local Shape Descriptor: “3D Match”

Approach: train on wide-baseline correspondences in RGB-D reconstructions



Local Shape Descriptor: “3D Match”

Method: sample true/false correspondences from RGB-D reconstructions, 

train Siamese network 



Local Shape Descriptor: “3D Match”

Result: learns to discriminate local shapes found in real-world data



Local Shape Descriptor: “3D Match” Results

Result 1: learned feature descriptor predicts RGB-D point correspondences 

more accurately than hand-tuned descriptors

Match classification error at 95% recall

Fragment Alignment Success Rate



Local Shape Descriptor: “3D Match” Results

Result 2: feature descriptor learned from RGB-D reconstructions provides 

matching for recognizing poses of small objects in Amazon Picking Challenge

Predicting pose of  3D object model in RGB-D scan

Object pose prediction accuracy



Local Shape Descriptor: “3D Match” Results

Result 3: feature descriptor learned from RGB-D reconstructions provides 

discriminative matching of semantic correspondences on 3D meshes



Talk Outline

Local Shape Descriptor

Amodal object detection

Semantic scene completion
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S. Song and J. Xiao, 

“Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images,” 

CVPR 2016 



Object Detection

Goal: given a RGB-D image, find objects (labeled 3D amodal bounding boxes)

Input: Single RGB-D Output: labeled 3D Amodal Boxes



[CVPR13] Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images

[IJCV14]   Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and semantic segmentation

[ECCV14] Object Detection and Segmentation using Semantically Rich Image and Depth Features

[CVPR15] Aligning 3D Models to RGB-D Images of Cluttered Scenes

[CVPR16] Cross Modal Distillation for Supervision Transfer 

2D Operations

2D Instance

Segmentation

Coarse Pose

Classification

Point Cloud

Alignment

2D Contour

Detection

2D Region

Proposal

2D Object

Detection

Encode Depth Map

as Extra Channels

3D Amodal

Detection Result

Depth Map

Image

3D Output3D Input 3D

Object Detection

Most previous work:



3D Deep Learning

Object Detection: “Deep Sliding Shapes”

Approach:

3D Amodal

Detection Result

Depth Map

Image

3D Operations 3D Output3D Input
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Object Detection: “Deep Sliding Shapes”

Data encoding:

1) Estimate 

major directions 

of room

2) Compute 

TSDF



Object Detection: “Deep Sliding Shapes”

Data encoding:

1) Estimate 

major directions 

of room

2) Compute 

TSDF

2.5 m

5.2 m

5.2 m



Object Detection: “Deep Sliding Shapes”

Data encoding:

1) Estimate 

major directions 

of room

2) Compute 

TSDF



Region 

Proposal 

Network

TSDF 3D Region Proposals

Object Detection: “Deep Sliding Shapes”

3D region proposal network:



×3

×50
Pixel Area

Physical Size

Object Detection: “Deep Sliding Shapes”

3D region proposal network:



Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:
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Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:
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Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

Receptive field: 0.4 m3



Level 1 Anchors

0.6×0.2×0.4 m

0.5×0.5×0.2 m

0.6×0.2×0.4 m
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Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

Receptive field: 0.4 m3
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Object Detection: “Deep Sliding Shapes”

Multiscale 3D region proposal network:

Receptive field: 1 m3
Receptive field: 0.4 m3



Level 2 Anchors
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Object Detection: “Deep Sliding Shapes”

Receptive field: 1 m3



bed

Object Detection: “Deep Sliding Shapes”

Object Recognition NetworkRegion Proposal Network

RGB-D Image



project to 2D

Object Detection: “Deep Sliding Shapes”

Joint object recognition network:



TSDF

Image Patch

Object Detection: “Deep Sliding Shapes”

Joint object recognition network:



Object Detection: “Deep Sliding Shapes”

Joint object recognition network:
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Object Detection: “Deep Sliding Shapes”

Joint object recognition network:



Object Detection: “Deep Sliding Shapes” Experiments

Train and test on amodal boxes provided in SUN RGB-D

S. Song, S. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite,” CVPR 2015



2D Deep Learning

3D Deep Learning

3D Non-Deep Learning

Object Detection: “Deep Sliding Shapes” Results

Quantitative comparisons:

Object detection accuracy on NYU v2 dataset (mAP)



Sliding Shapes: sofa Ours: bathtub 

Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:



Sliding Shapes: chair Ours: sofa 

Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:



Sliding Shapes: table Ours: bed 

Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:



Sliding Shapes: miss Ours: table and chairs

Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:



Sliding Shapes: toilet Ours: garbage bin+bed

Object Detection: “Deep Sliding Shapes” Results

Qualitative comparisons:



Talk Outline

Local Shape Descriptor

Amodal object detection

Semantic scene completion
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Large S. Song, F. Yu, A. Zeng, A. Chang, M. Savva, and T. Funkhouser, 

“Semantic Scene Completion from a Single Depth Image,” 

submitted to CVPR 2017 



Input: Single view depth map Output: Semantic scene completion 

Semantic Scene Completion

Goal: given an RGB-D image, label all voxels by semantic class



3D Scene

visible surface

free space

occluded space

outside view

outside room

Semantic Scene Completion

Goal: given an RGB-D image, label all voxels by semantic class



visible surface

free space

occluded space

outside view

outside room

3D Scene

Semantic Scene Completion

Goal: given an RGB-D image, label all voxels by semantic class



semantic scene completion

This paper

scene completion Firman et al.

surface segmentation Silberman et al.

The occupancy and the object identity

are tightly intertwined !

3D Scene

Semantic Scene Completion

Prior work: segmentation OR completion



Prediction: N+1 classes

SSCNet

Input: Single view depth map Output: Semantic scene completion 

3D ConvNet

Semantic Scene Completion: “SSCNet”

Approach: end-to-end deep network



Semantic Scene Completion : “SSCNet”



Semantic Scene Completion : “SSCNet”



Encode 3D space using flipped TSDF

Semantic Scene Completion : “SSCNet”



Encode 3D space using flipped TSDF

Voxel size: 0.02 m

Semantic Scene Completion : “SSCNet”



Local geometry

Receptive field: 0.98 m

Semantic Scene Completion : “SSCNet”



High-level 3D context

via big receptive field

provided by 

dilated convolution

Receptive field: 2.26

Semantic Scene Completion : “SSCNet”



Multi-scale aggregation

Receptive field: 0.98 m Receptive field:1.62 m Receptive field: 2.26 m

Semantic Scene Completion : “SSCNet”



Semantic Scene Completion: “SSCNet” Experiments

Where to get training data?



Semantic Scene Completion: “SSCNet” Experiments

Where to get training data?

No dense volumetric ground truth with semantic labels for a complete scene

SUN3D: No semantic labelsNYU: only visible surfaces



Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset



Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset

• 46K houses

• 50K floors

• 400K rooms

• 5.6M object instances



Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset

synthetic camera views depth

ground truth

semantic scene

completion



Semantic Scene Completion: “SSCNet” Experiments

SUNCG dataset



Train on SUNCG Test on NYU

Semantic Scene Completion: “SSCNet” Experiments



Semantic Scene Completion: “SSCNet” Results

Result: better than previous volumetric completion algorithms

Comparison to previous algorithms for volumetric completion



Zhang et al.

Ground Truth

Ours(SSCNet)

Color Image Observed Surface

Firman et al.



Semantic Scene Completion: “SSCNet” Results

Result: better than previous 3D model fitting algorithms

Comparison to previous algorithms for 3D model fitting



Ours(SSCNet)Geiger and WangLin et al.

Color Image Observed Surface Ground Truth



Ours(SSCNet)Geiger and WangLin et al.

Color Image Observed Surface Ground Truth



Ours(SSCNet)Geiger and WangLin et al.

Color Image Observed Surface Ground Truth



Summary

Three projects where ConvNets are trained to recognize patterns in voxels

with different …

• Tasks

• Scales

• Training data

• Loss functions

• Network architectures

• Training protocols



Future Challenges

Acquiring larger data sets

Leveraging geometric structure

Leveraging semantic structure

Better integration RGB and D

Better surface parameterizations

Finer-grained categories

Higher resolution

etc.
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1,500 surface reconstructions 36,213 labeled objects

A. Dai, A. Chang, M. Savva, 

M. Halber, T. Funkhouser, and M. Niessner, 

“ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes,” 

submitted to CVPR 2017.
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“Fine-to-Coarse Registration of RGB-D Scans,” 

submitted to CVPR 2017



Future Challenges

Acquiring larger data sets

Leveraging geometric structure

Leveraging semantic structure

Better integration RGB and D

Better surface parameterizations

Finer-grained categories

Higher resolution

etc.

M. Halber, T. Funkhouser, 

“Fine-to-Coarse Registration of RGB-D Scans,” 

submitted to CVPR 2017



Future Challenges

Acquiring larger data sets

Leveraging geometric structure

Leveraging semantic structure

Better integration RGB and D

Better surface parameterizations

Finer-grained categories

Higher resolution

etc.

M. Halber, T. Funkhouser, 

“Fine-to-Coarse Registration of RGB-D Scans,” 

submitted to CVPR 2017



Future Challenges

Acquiring larger data sets

Leveraging geometric structure

Leveraging semantic structure

Better integration RGB and D

Better surface parameterizations

Finer-grained categories

Higher resolution

etc.

Sleeping Area

ottoman

bed

sofa
dresser with mirror

dresser

nightstand

lamp

wall

dresser

dresser with mirror

Y. Zhang, M. Bai, J. Xiao, P. Kohli, and S. Izadi, 

“DeepContext: Context-Encoding Neural Pathways 

for 3D Holistic Scene Understanding,” 

submitted to CVPR 2017 
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