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Abstract

The goal of our work is to develop an efficient, automatic algo-
rithm for discovering point correspondences between surfaces that
are approximately and/or partially isometric.

Our approach is based on three observations. First, isometries are
a subset of the Möbius group, which has low-dimensionality – six
degrees of freedom for topological spheres, and three for topolog-
ical discs. Second, computing the Möbius transformation that in-
terpolates any three points can be computed in closed-form after a
mid-edge flattening to the complex plane. Third, deviations from
isometry can be modeled by a transportation-type distance between
corresponding points in that plane.

Motivated by these observations, we have developed a Möbius Vot-
ing algorithm that iteratively: 1) samples a triplet of three random
points from each of two point sets, 2) uses the Möbius transforma-
tions defined by those triplets to map both point sets into a canoni-
cal coordinate frame on the complex plane, and 3) produces “votes”
for predicted correspondences between the mutually closest points
with magnitude representing their estimated deviation from isom-
etry. The result of this process is a fuzzy correspondence matrix,
which is converted to a permutation matrix with simple matrix op-
erations and output as a discrete set of point correspondences with
confidence values.

The main advantage of this algorithm is that it can find intrinsic
point correspondences in cases of extreme deformation. During
experiments with a variety of data sets, we find that it is able to find
dozens of point correspondences between different object types in
different poses fully automatically.

1 Introduction
Finding correspondences between a discrete set of points on two
different surface meshes is a fundamental problem in computer
graphics, geometric processing, and medical imaging. Among its
many applications are shape interpolation, attribute transfer, surface
completion, statistical shape modeling, symmetry analysis, shape
matching, and deformable surface tracking.

For many of these applications, the input meshes represent different
objects in different poses, and thus alignment of extrinsic shapes is
insufficient. However, the intrinsic shapes for objects of the same
class are often approximately isometric, and sometimes they are
composed of large parts that are nearly isometric. For example,
this is the case for the dog and the wolf shown in Figure 1, as well
as for cloth deformations (perfect isometries), faces, and surfaces

Figure 1: Correspondences found automatically between a dog and
a wolf. Corresponding points are shown as spheres of the same
color with a radius proportional to the confidence of the correspon-
dence.

of brains and other anatomical organs. The goal of our work is
to develop efficient algorithms for discovering dense sets of point
correspondences for these shapes automatically.

This problem is challenging for two reasons. First, the space of
possible correspondences is very large (O(N!) for N input points),
and thus strategies for searching this space with the hope of find-
ing the correspondence with minimal deformation error are either
very slow or resort to heuristics. Second, even if it were possible
to consider all potential correspondence sets, it would be difficult
to compute an appropriate deformation error (deviation from isom-
etry) for each one. Therefore, previous methods have relied upon
humans to provide initial landmark correspondences, work only on
examples with similar local shape features, compute approximate
deformation errors, and/or take long computation times.

In this paper, we propose an algorithm that we call Möbius Voting.
The key observation is that the space of isometries between simply-
connected surfaces is contained within the Möbius group, which
has low dimensionality. For genus zero surfaces (sphere topology),
the Möbius group has six degrees of freedom; and for patches with
boundaries (disc topology), it has only three. Thus, defining the en-
tire mapping between two isometric surfaces is possible with just
three point correspondences. Moreover, there is a Conformal Flat-
tening (Uniformization) operator (based on Pinkall and Polthier’s
non-conforming conjugate harmonic maps [1993]) that takes a mid-
edge representation of the mesh onto a 2D canonical domain de-
fined by three points, where: 1) the discrete conformal error of the
mapping is zero, 2) the Möbius transformation defined by the three
point correspondences can be computed in a closed form, as a ratio-
nal linear function in the complex plane, 3) the Möbius transforma-
tion can be applied to any point in the complex plane by computing
a simple rational function that is fast to compute, and 4) deviations
from an isometric mapping can be modeled with a simple function
based on transportation-type distances.

The main implication of these observations is that it is possible to
design an algorithm that finds a dense set of correspondences be-
tween nearly isometric meshes in polynomial-time. At the core of
our algorithm is a Hough-style voting scheme where three random
points are repeatedly sampled from each of two meshes and used to
define Möbius transformations that map them to a shared canonical



Möbius-invariant representation. Intuitively, if these transforma-
tions align many points in the two sets (Figure 3), then the three
sampled point pairs are probably true correspondences, as are all
the ones that are aligned (are mutually closest). So, we log votes for
all these potential point correspondences with magnitude inversely
related to how well they conform to an isometric mapping. The re-
sult after O(N3) votes is a “fuzzy correspondence matrix,” where
each element C(i, j) provides a score for how likely the i-th point
of one set is in correspondences with the j-th point of the other. We
transform this fuzzy matrix into a discrete permutation matrix by a
greedy algorithm, which provides a discrete set of point correspon-
dences and a confidence score for each one as output.

The main advantage of this algorithm is that it finds partial and
approximate point correspondences automatically for a wide class
of deformations. Rather than relying upon local shape descrip-
tors, thresholds, and other heuristics to prune bad correspondences,
it leverages invariants of the global conformal structures of the
meshes to find the set of correspondences that is most consistent
with isometric mappings between large regions of the surfaces.
During experiments, we find that this strategy is able to find dozens
of point correspondences between meshes of several types fully au-
tomatically (e.g,. Figure 1).

The main contribution of this paper is the idea of leveraging
the low-dimensionality of the Möbius group in an automatic
correspondence-finding algorithm. In order to capitalize on this
idea, we had to make several smaller contributions. First, we em-
ploy a mid-edge flattening scheme and prove that it is robust to
holes and boundaries (Section 5). Second, we suggest a variant of
the Generalized Hough Transform that finds partial sets of corre-
spondences by voting directly into a fuzzy correspondence matrix
– e.g., rather than voting for transformations and then clustering
(Section 6). Third, we define a transportation distance measure of
how far the mapping defined by a set of point correspondences is
from a perfect isometry (Section 7). Finally, we provide results of
experiments on several databases and qualitative results.

2 Previous Work
Finding correspondences between two sets of discrete of points
sampled from a surface is a classical problem, and thus there is
a large literature on the subject. Previous approaches can be char-
acterized by: 1) the method used to measure deformation error, and
2) the strategy used to search for correspondences. In all cases,
the goal is to find the (possibly partial) set of correspondences that
minimize the deformation error.

Measuring Deformation Error: Most work on non-rigid
alignment of meshes has focused on cases where small deforma-
tions are expected – e.g., for registration of poorly calibrated range
scans [Brown and Rusinkiewicz 2007; Li et al. 2008], for statisti-
cal analysis of similar objects in the same pose [Allen et al. 2003],
or for medical imaging [Audette et al. 2000]. For these problems,
low-frequency deformation models are sufficient (e.g., thin-plate
splines [Brown and Rusinkiewicz 2007]). For larger scale defor-
mations, such as those found in template fitting [Pauly et al. 2005],
deformation transfer [Sumner and Popovic 2004], intrinsic symme-
try analysis [Ovsjanikov et al. 2008], and other applications where
objects have different poses and/or different local shapes, more flex-
ible deformation models are required. Some previous work has re-
lied upon iterative optimization of nearly rigid deformations [Allen
et al. 2003; Pauly et al. 2005; Mitra et al. 2007; Ovsjanikov et al.
2008], while others have explicitly defined error functions that mea-
sure global extrinsic deformations [Botsch and Sorkine 2008]. For
example, [Eckstein et al. 2007] use a pseudo-Hausdorff distance to
define matching between surfaces, where their optimization process
is defined via generalized gradient flow.

Figure 3: Fixing three corresponding pairs of points (red, green,
and blue) on two different poses of the cat defines a Möbius trans-
formation which applied to the flattening of the first pose (top-left)
and yields the flattening at the bottom-left. Note that after applying
this transformation the two flattenings (bottom row) look similar.

Several methods aim to define a deformation error that models de-
viations from isometry. For example, [Bronstein et al. 2006] use
a variant of the Gromov-Hausdorff distance. This is a nice mathe-
matical formulation, but relies upon repeatedly computing geodesic
distances between arbitrary pairs of points on a mesh, and so it is
expensive to compute. A less expensive approach is to embed the
mesh in a (possibly higher dimension) space such that the Euclidean
distance between two embedded points is an approximation of the
geodesic distance on the original mesh [Elad and Kimmel 2003;
Jain et al. 2007; Ovsjanikov et al. 2008]. Then deformation er-
ror can be measured with a rigid model in the embedding space.
The main difficulty in this approach is achieving a good isometry-
preserving embedding. Indeed, it is well-known that, in general, a
(non-flat) surface cannot be mapped without error to the Euclidean
plane. So, even in the perfect case, where the two input surfaces are
perfect isometries, their embedding is not congruent; and, hence
rigid alignment in the embedding space is not the same as isometry
on the original mesh.

Other methods have used human-provided landmark points and/or
correspondences found with local shape descriptors to define a
mapping between two surfaces, and then measure deviations of sur-
face properties (e.g., curvature) at points aligned in the map. For
example, [Wang et al. 2007] use point constraints predicted by spin
images [Johnson and Hebert 1999] to establish a sparse set of corre-
spondences and then use least-squares conformal mapping to create
a cross-parameterization. In later work, [Zeng et al. 2008] further
elaborate this direction by cutting the surfaces into patches, given
user-defined boundary correspondence, and combine several com-
formal mappings. Furthermore, they measure deformation error by
an integral of the differences between conformal factors and cur-
vatures over the domain of the map. Here again, the feature point
constraints are either user-defined or produced by local shape de-
scriptors, such as SIFT [Lowe 2004]. The drawback of these ap-
proaches is that they rely upon a sparse set of feature correspon-
dences derived only from local shape properties, and they do not
take into consideration global structure during this process. Thus,
they would not work well when the local shapes of two surfaces
differ greatly.



Figure 2: The outline of our algorithm as described in the Overview Section 3. Note that the Mid-edge flattenings displayed in the voting
stage are not used in the algorithm and put here for reference.

Searching for Correspondences: There are several ways
to find the set of correspondences that minimizes a deformation
error. The most general method is to perform a combinatorial
search of the correspondence space. Since O(N!) different cor-
respondence permutations are possible amongst two point sets of
size N (without even allowing outliers), brute force search is in-
tractible. Thus, several researchers have investigated search strate-
gies based on branch-and-bound [Gelfand et al. 2005], priority-
driven search [Funkhouser and Shilane 2006; Zhang et al. 2008],
belief propagation [Anguelov et al. 2004], and integer quadratic
programming [Berg et al. 2005]. However, still, they usually re-
quire thresholds to prune poor correspondences, and are slow.

A faster approach is based on Iterative Closest Points (ICP) [Besl
and McKay 1992]. This greedy method finds an initial set of
correspondences based on closest points (possibly in an embed-
ding space), deforms the surface according to those correspon-
dences, and repeats until convergence. Although it has more com-
monly been used for registration of rigid surfaces [Rusinkiewicz
and Levoy 2001], ICP has also been applied for large number of
non-rigid deformation problems [Allen et al. 2003; Bronstein et al.
2006; Brown and Rusinkiewicz 2007; Huang et al. 2008; Pauly
et al. 2005]. In particular, [Mitra et al. 2007] and [Huang et al.
2008] use a variant for finding correspondences across extreme de-
formations, and [Bronstein et al. 2006] use it for finding correspon-
dences between surfaces that differ by an isometry. The problems
with this approach are that it relies upon an initial guess for either
the correspondences or the deformation, and it finds a local mini-
mum. Thus, it is not fully automatic and can produce suboptimal
solutions.

Several authors cast the (rigid and non-rigid) correspondence prob-
lem into a fuzzy linear assignment problem [Gold et al. 1998; Chui
and Rangarajan 2003]. In this approach, the problem is written in
a form of a functional which contains both the sought for corre-
spondences (which can contain continuous values [0− 1]) and the
deformation error function. Then, this functional is minimized by
interleaving between optimizing for correspondences and optimiz-
ing for deformations. In our work, we will also be using correspon-
dences matrices with real coefficients, but these matrices will be
constructed by a randomized voting algorithm.

Perhaps the state-of-the-art algorithm for automatic correspondence
finding for extreme deformations is the recent paper by [Zhang et al.
2008]. They use a priority-driven strategy to search the combinato-
rial space of correspondences. For each proposed correspondence
set, they deform the mesh with the method in [Lipman et al. 2005]
and measure distortion with an error functional defined in [Kraevoy
and Sheffer 2006]. They are able to find 5-10 correspondences be-
tween meshes with significant deformations.

3 Overview

Given two meshes, M1 and M2, as input, our goal is to establish a
set of correspondences between points on those surfaces such that
the mapping between them is close to an isometry.

The key observation which makes
this problem tractable is best
understood in the smooth case:
isometries are a subset of a
larger group of conformal map-
pings. The Uniformization The-
orem states that any genus zero
surface (sphere topology) can be
mapped conformally (with an-
gles preserved) to the unit sphere.
Therefore, any isometry between genus zero surfaces gives rise to
a one-to-one and onto conformal map from the unit sphere to itself
(depicted in the figure on the right where g denotes the isometry
and Φ1,Φ2 are the uniformization maps). The group of all one-to-
one and onto mappings of a sphere to itself is well understood and
is called the Möbius group. This group has six degrees of freedom,
and so fixing three distinct points on each sphere defines a Möbius
map uniquely.1

This observation allows us to develop a polynomial-time algo-
rithm for finding point correspondence between nearly-isometric
surfaces as shown in Figure 2. The algorithm iteratively: 1) sam-
ples three points from each mesh, 2) computes the Möbius trans-
formations that align those three point pairs in a canonical do-
main, 3) transforms all (sampled) points from both meshes by those
Möbius transformations, and 4) measures deformation error be-
tween mapped points (deviation from isometry). The computed
deformation errors are accumulated in a fuzzy correspondence ma-
trix, which can be analyzed to determine a consistent set of discrete
correspondences. This polynomial-time algorithm is (theoretically,
in the smooth case) guaranteed to find the optimal set of correspon-
dences for perfect isometries and extends well to near isometries.

Implementing this algorithm requires addressing three non-trivial
issues. The first is computing Möbius transformations. Given three
points directly on two meshes, it is not clear how to calculate the
Möbius transformation defined by them. So, we need to map the
meshes to a canonical domain where the Möbius transformation
have a simple closed-form formula. For this step, we employ a
mid-edge Conformal Flattening (Uniformization) based on Pinkall

1For two surfaces with disc topology, the Möbius group has three de-
grees of freedom, and so only one corresponding point and a direction are
required.



and Polthier’s non-conforming conjugate harmonic maps [Pinkall
and Polthier 1993; Polthier 2005]. This mid-edge mapping scheme
has a zero discrete-conformal error, maps the mesh onto a 2D do-
main, and provides a way to compute Möbius transformations from
three point pairs in a closed form, as rational linear functions in the
complex plane (Section 5).

The second issue is how to measure deformation errors between
two discrete point sets for a given triplet of correspondences. If
indeed the triplet are true correspondences and the point sets are
truly isometric, then the Möbius transformation that aligns the three
points will also align every other point with its true correspondence
in the canonical domain. However, if the points are not true corre-
spondences, or if the surfaces are only approximately or partially
isometric, then we need a quick-to-compute measure of the defor-
mation error that grows continuously as the meshes deviate from
perfect isometry. For this, we utilize a transportation-type distance
based on Euclidean distances between mutually closest point in the
canonical domain (Section 7).

The third issue is to devise a search procedure that finds partial and
approximate correspondences robustly. Since the Möbius group
has low-dimensionality, several common approaches are possible.
For this project, we implemented an algorithm based on the Gen-
eralized Hough Transform [Ballard 1981]. It samples triplets of
point correspondences from two discrete point sets, computes the
Möbius transformation that aligns them in the canonical flattened
space, computes the deformation error for all other mutually clos-
est points, and accumulates “votes” for correspondences between
mutually closest points based on the deformation error. In order to
avoid issues of biased sampling and clustering, we employ a variant
that votes for correspondences rather than transformations, building
a “fuzzy correspondence matrix” that models the probability that
two points correspond (Section 6). After many votes are cast, this
continuous-valued matrix is converted to a binary permutation ma-
trix using a greedy max-row-column algorithm, which provides the
final set of predicted point correspondences with confidence values
(Section 8).

Details of the algorithms for each step of the process appear in the
following five sections. Section 9 presents results of experiments
aimed at testing how well the algorithms perform for a variety of
object types, and Section 10 provides discussion of conclusions,
limitations, and topics for future work.

4 Point samples

Given two meshes, M1 and M2, our first step is to sample a discrete
set of N points from each one, Σ1 ⊂M1, Σ2 ⊂M2. Since these
points sets provide the candidates for potential correspondences,
they should be invariant to isometries and sampled from “consis-
tent” regions of the surface (e.g., tips of noses, toes, etc.). Also,
since the points will be used to vote for correspondences, each point
should carry the same “importance.”

To construct such a point-sample set, we first take all points p`
that are local maxima of Gauss curvature. These points form a
discrete set, invariant to isometries, and therefore often have cor-
respondences in other objects of the same type. Then we spread the
rest of the N sample points Σ1 uniformly such that each of these
points pk represents a cell Ωk, and all the cells have approximately
the same area (area(Ωk1) = area(Ωk2),k1 6= k2). For this end we
take a spread of points with the Farthest Point Algorithm (FPS)
[Eldar et al. 1997]. Starting from the set of Gauss local maxima,
we repeatedly add the most distant (geodesically) point from all the
points we have collected so far. In case no Gauss maxima is taken
this process provides an approximately uniform sampling where
each point represents a surface patch of approximately equal size,

and where there are upper and lower bounds on the maximal empty
geodesic disc and closest distance between two samples. In our
current implementation, we use an approximate algorithm based on
Dijkstra’s Shortest path algorithm to compute geodesic distances,
and a smoothed version of the angle-deficit formula [Desbrun et al.
2002] to approximate Gauss curvature. In all the examples of this
work we used around 100 sample points.

5 Mid-edge Uniformization

Our second step is to map each mesh (and its associated point set)
into a domain where computing the Möbius transformation defined
by three point correspondences is efficient. While in the smooth
case the Uniformization (or conformal flattening) of a surface is
always possible, this is not the case in the discrete case. That is,
it is not generally possible to flatten a mesh such that each trian-
gle undergoes exact similarity. Previous methods that have mapped
meshes to spheres [Praun and Hoppe 2003; Sheffer et al. 2004] or
planes [Hormann et al. 2007] introduce error in the sense that each
triangle is flattened by a near-similarity. Since we are not aiming to
solve the parameterization problem and our main goal is getting a
representation which preserves the conformal structure of the mesh,
we consider the more flexible mid-edge structure. That is, we em-
ploy a mid-edge Conformal Flattening (Uniformization) based on
Pinkall and Polthier’s non-conforming conjugate harmonic maps
[Pinkall and Polthier 1993]. This mid-edge flattening transforms
each triangle (face) by an exact similarity and is only continuous
at the mid-edges. Therefore, it can be seen as a flattening of the
mid-edge mesh (to be defined shortly) onto a 2D domain. This pro-
vides a way to compute Möbius transformations from three point
pairs in a closed form. Besides that it has a nice theoretic property
regarding boundaries (and holes) of the original mesh.

Our description of this mapping
begins with a definition of a mid-
edge mesh. Denote a triangular
mesh by M = (V,E,F), where
V = {vi}, E = {ei, j}, F = { fi, j,k}
denote the vertices, edges and
faces respectively. Then the mid-
edge mesh M = (V,E,F) is defined
as follows: The vertices of M, that
is V = {vr}, are defined as the
mid-edge points of the mesh M .
So, for each edge ei, j ∈ E corre-
sponds a vertex vr ∈ V. Next, for
each face fi, j,k ∈ F corresponds a unique face fr,s,t which consists
of mid-edge points of fi, j,k with the same orientation. We further
denote by esr the edge in the mid-edge mesh between vs and vr. It
should be noted that the mid-edge mesh is not a manifold mesh in
the sense that each edge has only one face touching it. See the im-
age on the right for a mesh patch (black vertices and edges) and its
corresponding mid-edge mesh (mid-edge vertices in red, and faces
in purple).

The most important property of the mid-edge mesh in our con-
text is that it has more flexibility than the original mesh and can
be flattened easily onto the plane with zero discrete conformal er-
ror (Algorithm 1). That is, each of its faces undergos a similar-
ity transformation. This is done by defining two piecewise linear
discrete conjugate harmonic functions on the mesh: u(·) which is
continuous along the edges of the mesh and u∗(·) which is only
continuous through the mid-edges of the mesh. Then, the mapping
of each mid-edge vertex vr into the complex plane is defined by
Φ(vr) = u(vr)+ iu∗(vr) ∈ C, See Figure 4. This construction can
be understood from the work of Pinkall and Polthier [1993], and
later work by Polthier [2005] as follows. Let us define discrete har-



u u∗ Φ = u+ iu∗

Figure 4: The mid-edge flattening based on Pinkall and Polthier’s
discrete harmonic function and its conjugate. The mid-edge flatten-
ing is done by defining two scalar functions over the mesh, drawn
here as a 2D wireframe: u which is a discrete harmonic piecewise-
linear function and its conjugate u∗. Each mid-edge vertex vr is
mapped to the plane via Φ(vr) = u(vr) + iu∗(vr). The mid-edge
mesh is shown in yellow.

monic map on the mesh M using the cotangent-formula. That is,
consider a continuous piecewise linear function u(·) = ∑i uiφi(·),
where φi(·) is the linear hat function on the mesh which is one at
vi and zero on v j, j 6= i, and ui are the function values at the ver-
tices vi. Then u(·) is defined as discrete harmonic if it satisfies the
following set of linear equations:

∑
j∈N (i)

(ui−u j)(cotαi j + cotβi j) = 0 , for all vi ∈V (1)

where N (i) denotes the indices of the neighboring vertices of i and
the angles αi j , βi j are the angles supporting the edge ei, j in the two
faces meeting at this edge.

Pinkall and Polthier define the conjugate discrete harmonic function
u∗, by observing that there exists a function that is linear on each
face, continuous through the mid-edge points and in each face it is
the conjugation (in the complex-analytic sense) of u. Furthermore,
it is discrete harmonic in the space of non-conforming piecewise
linear finite-element, and it is fixed up to a constant factor. Given
the above observations, it is rather simple to calculate the conjugate
function u∗ by integrating its gradient, defined by (positive) rotation
of π/2 of the gradient of u on each triangle [Polthier 2005]:

u∗r −u∗s =
1
2
(
(ui−u j)cotθk +(uk−u j)cotθi

)
, (2)

where u∗r ,u
∗
s are the values of u∗ on the

mid-edge vertices vr,vs located at the edges
ei, j,e j,k (respectively), and θk is the angle at
vertex vk, and similarly θi, as depicted in the
image to the right.

So, setting one value u∗r arbitrarily and
traversing the mesh using the above formula
results in the conjugate discrete harmonic
function u∗ on the mid-edges, then defined
linearly in each face of the mesh M .

Since our mesh has sphere topology, when flattened to the complex
plane one point should go to infinity. We denote the complex plane
with infinity added to it as a point to be the extended complex plane
and mark it by Ĉ. So, we need to pick a point which goes to infin-
ity. We will take that point to be inside a face which we will cut off
from the mesh. This face is defined by having a vertex which has
minimal average geodesic distance measured to all the other ver-
tices. Choosing different cut-face would lead to flattening which

a b c

Figure 5: Invariance of the flattening to the choice of cut-face:
(a) and (c) are two different mid-edge flattening of the same mesh
based on different choices of poles/cut-faces (black points). (a) and
(c) are connected by a Möbius transformation: (b) depicts (a) after
appropriate Möbius transformation applied to it. Note the resem-
blance between (b) and (c).

is approximately a Möbius transformation of the former one, see
Figure 5. The linear system (1) which defines u, has only the con-
stant solution in its kernel, so to produce a non-constant u we set
its value to zero and one at two of the vertices of the cut-face, and
delete their corresponding equations from that system (Algorithm
1).

Meshes with holes/boundaries. The mid-edge flattening has an in-
teresting property (proved in the appendix) which allows flattening
of meshes with holes and/or boundaries (see Figure 6):

Theorem 5.1 When mapping the mid-edge mesh M of a mesh M
with boundaries using a discrete harmonic and conjugate harmonic
pair, the mid-edge vertices of each connected boundary part are
mapped exactly onto a line segment parallel to the real axis.

This result, which is proved in the Appendix, is unique to the mid-
edge construction. Furthermore, this result is an exact analog of
the situation in the smooth case, see [Springer 1981]. Later on, we
will employ one-to-one and onto mappings of the extended com-
plex plane (flattened space) into itself. This property ensures that
holes in the meshes are closed in the flattened space so the corre-
sponding mappings between the mid-edge meshes can be thought
of as one-to-one and onto.

Figure 6: Mid-edge uniformization of a disc type hand model. Note
the boundary mid-edge vertices lies exactly on a horizontal seg-
ment, and the three unconnected mid-edge vertices - these are con-
necting the missing mid-edge face which has infinity in its interior.

6 Möbius Voting

Our third step takes as input two point sets, Σ1 and Σ2, and a
flattening map for each into the complex plane, Φ1 : M1 → Ĉ

and Φ2 : M2 → Ĉ, and it outputs a fuzzy correspondence matrix,
C = (Ck,`), where the value Ck,` indicates the confidence of the k-
th point sample in Σ1 being in correspondence with the `-th point
sample in Σ2.



Input: mesh (V,E,F)
Corresponding mid-edge mesh (V,E,F)
A face to cut fc = {ic, jc,kc} ∈ F

Output: Planar embedding of mid-edge vertices Φ : V→ Ĉ

/* Discrete harmonic function u(·) */
Solve the sparse linear system: uic =−1,u jc = 1,

∑
j∈N (i)

(ui−u j)(cotαi j + cotβi j) = 0 , vi ∈V \ vic ,v jc .

/* Conjugate harmonic function u∗(·) */
Set arbitrary value (zero) at one mid-edge vertex: u∗0 = 0
Traverse the mid-edge mesh and for each visited edge esr in
face fi, j,k set the value u∗r by:

u∗r −u∗s =
1
2
(
(ui−u j)cotθk +(uk−u j)cotθi

)
/* The planar embedding */

For mid-edge vertex vr = vi+v j
2 Set Φ(vr) = ui+u j

2 + iu∗r .

Algorithm 1: Mid-edge flattening based on Pinkall and Polth-
ier’s discrete harmonic and conjugate harmonic functions. See
Section 5 for notation explanation.

The algorithm is quite simple (pseudo-code is shown in Algorithm
2). It first projects every point of Σ1 = {pk}, Σ2 = {q`} onto the
complex plane (using closest mid-edge vertex) to form the planar
point samples zk := Φ1(pk) and w` := Φ2(q`), respectively. We
will denote these planar sets also as Σ1 and Σ2. Then, it iteratively
samples random triplets of points from each of Σ1 and Σ2, computes
the interpolating Möbius transformations that align those triplets in
a common domain, transforms all other points of Σ1 and Σ2 into
that domain, and then computes a deformation error based on how
well mutually closest points align in that domain (Section 7). Each
such iteration produces “votes” for correspondences with magni-
tude based on the inverse of the deformation error, which are accu-
mulated in a fuzzy correspondence matrix, C.

This algorithm is efficient for two reasons. First, there is a closed
form solution for the unique Möbius transformation that interpo-
lates two triplets of points in the flattened space. A Möbius trans-
formation is a one-to-one and onto map of the extended complex
plane Ĉ (or equivalently the sphere) to itself defined as the follow-
ing linear fractional function in the complex variable z ∈ Ĉ:

m(z) =
az+b
cz+d

, (3)

where a,b,c,d ∈C,ad−bc 6= 0. It can be shown that Möbius trans-
formations form a group under composition and that they consist of
all one-to-one and onto mapping of Ĉ (or the sphere) to itself. A
Möbius transformation can be represented by the 2x2 matrix of its

coefficients
(

a b
c d

)
with non vanishing determinant.

The coefficients of the composition of two Möbius transformations
can be calculated by regular matrix multiplication of the corre-
sponding coefficient matrices.

Another interesting property of the Möbius group is that it is 3-
transitive, that is, it can interpolate three distinct points uniquely:
Indeed, given two triplets z1,z2,z3 ∈ Ĉ and y1,y2,y3 ∈ Ĉ we look
for a,b,c,d ∈ C such that y j = m(z j) , j = 1,2,3. This can be

Input: points Σ1 = {zk} and Σ2 = {w`}
number of iterations I
minimal subset size K

Output: correspondence matrix C = (Ck,`).

/* Möbius voting */
while number of iterations < I do

Random z1,z2,z3 ∈ Σ1.
Random w1,w2,w3 ∈ Σ2.
Find the Möbius transformations m1,m2 s.t.

m1(z j) = y j, m2(w j) = y j, j = 1,2,3.
Apply m1 on Σ1 to get z̄k = m1(zk).
Apply m2 on Σ2 to get w̄` = m2(w`).

Find mutually nearest-neighbors (z̄k, w̄`) to formulate
candidate correspondence c.
if number of mutually closest pairs ≥ K then

Calculate the deformation energy E(c)

/* Vote in correspondence matrix
*/

foreach (z̄k, w̄`) mutually nearest-neighbors do
Ck,`←Ck,` + 1

ε+E(c)/n .
end

end
end

Algorithm 2: Möbius Voting for point correpondences.

achieved by taking:(
a b
c d

)
=
(

y2− y3 y1y3− y1y2
y2− y1 y1y3− y3y2

)−1(z2− z3 z1z3− z1z2
z2− z1 z1z3− z3z2

)
,

(4)
which is merely composition of two Möbius transforma-
tions. Note that the transformation which corresponds to(

z2− z3 z1z3− z1z2
z2− z1 z1z3− z3z2

)
takes z1,z2,z3 to 0,1,∞ (respectively).

Second, Eq. (3) can be used as a closed-form formula for the
Möbius transformation of any other point in the flattened space,
z ∈ Ĉ , to its image, y = m(z) ∈ Ĉ.

With these two equations and a suitable deformation error measure,
the basic components of the algorithm are in place. However, there
are three interesting aspects of our implementation that are worth
noting.

First, rather than map Σ1 to Σ2 directly, we map both to a canon-
ical domain. This means that we set three constant points in the
extended complex plane which form an equilateral (scale and posi-
tion do not matter), for example set y j = ei 2π

3 j, j = 1,2,3. Then, we
transform each randomized triplet z1,z2,z3 ∈ Σ1 and w1,w2,w3 ∈
Σ2 to these three constant points y1,y2,y3 using Eq. (3),(4). The ad-
vantage in doing so rather than mapping directly z1 to w1, z2 to w2
and z3 to w3 is that mapping to a fixed canonical domain produce
an invariant setting which does not depend on the specific initial
flattenings Φ2,Φ1 of the surfaces. Let us also note that this choice
of constant points y1,y2,y3 is arbitrary and taking other points will
also work. Note for example, that choosing the triplet 0,1,∞ is
equivalent to taking the cross-ratio (z− y2)(y1− y3)/(z− y3)(y1−
y2).

Second, rather than voting for transformations, we vote for cor-
respondences. That is, we maintain a non-negative real matrix
C = (Ck,`) with dimensions |Σ1|× |Σ2|. During each iteration, af-
ter two point sets, Σ1 and Σ2, are mapped into the canonical do-



main by the Möbius transformation defined by z1,z2,z3 ∈ Σ1 and
w1,w2,w3 ∈ Σ2, we find mutually closest point correspondences
and add them to a set of candidate correspondences c. Note that the
pairs of points used to define the Möbius transformations for this
iteration, (z1,w1),(z2,w2),(z3,w3), are always in this set (since we
defined the Möbius Transformation to take these points to a fixed set
of positions, y1,y2,y3). If this corresponding set (number of pairs
found) is larger than a threshold K, that is if n > K, where n is the
number of correspondences in c, we compute the averaged cost of
that correspondence E(c)/n (Section 7), and add 1/(ε +E(c)/n),
where ε is some small number, to all entries belonging to pairs of
corresponding points in c. That is, Ck,` =Ck,` +1/(ε +E(c)/n) for
all (zk,w`) in c.

Third, we accumulate votes only for samples where the size of the
corresponding set (number of mutually closest pairs found) is larger
than a threshold K. This check assures that we only consider sets
of corresponding points that both represent large fractions of the
surfaces, and thus guarantees that the candidate correspondences c
capture metric features (clusters) well and do not miss any signifi-
cant parts (e.g., with large area). In all our experiments, we set K to
be 40% of the number of points samples.

The advantage of voting for correspondences (in comparison to
voting for transformations, which is the usual approach for Gen-
eralized Hough Transformations) is that it avoids the problems that
arise when uniform sampling of points leads to non-uniform sam-
pling of the transformation space. Also, it discovers partial sets of
correspondences automatically – there is no need to devise an algo-
rithm to group correspondences based on clusters of votes in trans-
formation space. Rather, the fuzzy correspondence matrix reveals
isometric part structure of the two meshes directly.

7 Measuring Intrinsic Deformation Error

This section defines a deformation error that can be used to provide
a magnitude for votes when building the fuzzy correspondence ma-
trix. In essence, it provides the tool to distinguish between Möbius
transformations which are close to isometries and those which are
general conformal mappings.

At this stage of the Möbius Voting algorithm, we are given two flat-
tened point samples Σ1 and Σ2, aligned in the canonical domain
by the Möbius transformations m1,m2 defined by a triplet of corre-
spondences, and a candidate correspondence c : Σ1 → Σ2 (defined
by mutually closest points). The correspondence c can be seen as
(possibly local) deformation of one surface onto the other, and our
goal is to measure the deviation of this deformation from identity
(as we factored out isometry, if it existed, by moving to the canoni-
cal domain). In this Section we will define the intrinsic deformation
error formula E(c) used to score the correspondence c.

In the continuous setting, given a conformal flattening Φ1 : M1→
Ĉ of a smooth surface M1, scaling is introduced and is coded in the
so-called conformal factors. These are scaling of the area element
induced by the conformal flattening Φ1. We denote the conformal
factors by a non-negative function κ1. Similarly, denote by κ2 the
conformal factors induced by the flattening Φ2 of surface M2. Let
us also refer to κ1 and κ2 as densities. κ1 and κ2 in addition to the
unifomizations Φ1 and Φ2 encapsulate the entire intrinsic geome-
try.

There are several ways to define an intrinsic distortion measure be-
tween the surfaces M1 and M2 based on the conformal factors. For
example, Jin et al.[2004] and Zeng et al.[2008] define the distortion
as the L2 difference of the conformal factors. However, in our case
the distance measure should not be a “regular” Lp norm. The reason
is that measuring the difference between densities in Lp norm does

not consider spatial-neighboring relations between points, instead
it only compares the density point-wise [Rubner et al. 2000].

Instead, we suggest computing a “transportation-type” cost func-
tion. Let us first explain this suggested deformation error in the
continuous setting and afterwards give the discretization we actu-
ally use. Assume we are given two surfaces M1 and M2, their con-
formal flattening maps Φ1,Φ2 and their corresponding conformal
factors κ1(z),κ2(z), z ∈ Ĉ. We want to score a potential correspon-
dence (deformation) c̃ : Ĉ→ Ĉ which takes density κ1 onto density
κ2 by asking how much work does this correspondence put in order
to move density κ1 to density κ2. That is c̃∗(κ1) = κ2, where c̃∗
is the push forward of density which means that for every subset
D⊂ Ĉ there exists

∫
c̃−1(D) κ1(z)dxdy =

∫
D κ2(w)dxdy, where dxdy

is the standard area element in the plane. Then the transportation
effort of c̃ in taking κ1 to κ2 is defined by

E(c̃) =
∫
Ĉ

dist (z, c̃(z))κ1(z)dxdy, (5)

where dist is a distance measure between two points in the com-
plex plane. The actual choice of the distance measure dist(·, ·) de-
serves an explanation. There are two simple choices for a distance
measures: the standard Euclidean distance in C: dist(z, c̃(z)) =
|z− c̃(z)| and the spherical distance (measuring distance on the
sphere): dist(z, c̃(z)) = |z−c̃(z)|

|1+z̄c̃(z)| . However, none of these is a nat-
ural distance measure on the flattened space. Nevertheless, since
after factoring out the nearly isometric Möbius transformations we
expect small distances we believe these choices to be practically
equivalent to any other choice. We have experimented with both
and since they did not seem to give different results we eventually
used the slightly simpler Euclidean distance.

Let us now discretize (5) for
our needs. As shown in the
image on the right, we de-
fine the transportation cost
of a candidate discrete cor-
respondence set c : Σ1→ Σ2
(created by taking mutually
closest points after Möbius
normalization) by summing
the cost of each pair (zk,c(zk) = w`). The cost of a pair (zk,w`) is
defined as the work needed to take zk to w` which is the distance be-
tween the points dist(zk,w`) times the ”mass” of the point moved.

In our case, every point zk represents a cell Ωk in a partition of the
surface (M1 = ∪kΩk). Since area(Ωk) =

∫
Φ1(Ωk) κ1dxdy, the total

work of a candidate discrete correspondence c would be, following
a piecewise constant discretization of the continuous energy (5):∫
Ĉ

dist(z, c̃(z))κ1(z)dxdy =

∑
k

dist(zk,c(zk))
∫

Φ1(Ωk)
κ1(z)dxdy = ∑

k
dist(zk,c(zk))area(Ωk),

However, by construction (Section 4), every cell has equal area (im-
portance), and thus the constant area(Ωk) can be dropped to get:

E(c) = ∑
k

dist(zk,c(zk)) = ∑
k
|zk− c(zk)|, (6)

and the average of this cost, that is E(c) divided by the number of
pairs defined by c is the value of our deformation error.



8 Correspondence matrix processing

The final stage in our algorithm is the processing of the fuzzy cor-
respondence matrix C to produce a discrete set of correspondences
(z j,w j) with a confidence score S j ≥ 0 for each one. Let us nor-
malize C by its maximal value to have all its values in [0,1]. One
natural option would be to solve this problem globally, that is solv-
ing a linear assignment problem which finds a maximal assignment.
However, since it solves the problem globally, it optimize over all
possible correspondences including bad ones. Since we cannot ex-
pect to have all (or even most of) the points in Σ1, Σ2 to correspond,
this method is less reasonable in our context.

Instead, we suggest a greedy algorithm that iteratively looks for the
maximal entry greater than zero in the matrix C, say Ci, j , then adds
the correspondence pair (zi,w j) to the list of correspondences and
gives it the cost S j := Ci, j. Then the algorithm zero out the row and
column of that element, that is the i-th row and j-th column, and
repeats. The algorithm stops when there are no values in C greater
than zero. Let us call this algorithm max-row-column algorithm. A
user desired value of confidence S ∈ [0,1] is then used for taking
all correspondences with confidence equal or higher than S. Denote
this set by (z j,w j), where j = 1,2, ...,Q.

Usually high confidence values indicates high quality correpon-
dences. However, it is possible that there will be good pairs of
correpondences with low confidence score. This is mainly due to
the fact that the amount of voting each isometric patch receives is
directly related to its area on the surface mesh. Therefore, it is
worthwhile to further search the correspondence list for good pairs
with low confidence values. For that end we use the correspon-
dences with high confidence value to further search the list of cor-
respondences outputted from the max-row-column algorithm. Let
us assume from this point that the list of correspondences (z j,w j)
is sorted by the confidence values S j, such that S1 ≥ S2 ≥ ... Then,
the search is done in the following way: for each pair (z j,w j) with
confidence lower than the desired threshold, we represent z j and w j
as feature vectors of the normalized geodesic distances to the set
of good correspondences. That is, denote by g(p j, pi) the geodesic
distance on mesh M1 of the points p j, pi ∈ Σ1 (remember that z j =
Φ1(p j)). Then we define a j =

(
g(p j, p1),g(p j, p2), ...,g(p j, pQ)

)
,

and then set the feature vector of z j to be a(z j) := a j/median(a j),
that is the normalized geodesic distances to the “good set” normal-
ized by the median of this vector. The average is taken so to be
robust to surfaces which are not purely isometric. Similarly, we de-
fine the feature vector b(w j) using geodesic distances on M2. Then
we look for closest feature vector b(w`) to the vector a(z j) using a

relative L2 distance, that is ‖a(z j)− b(w`)‖2 =
‖a(z j)−b(w`)‖2

L2
‖a(z j)‖L2‖b(w`)‖L2

,

where ‖ · ‖L2 is the usual L2 norm. If g(w`,w j) < δ where δ is a
small parameter (say around 0.05 of the surface diameter) and also
in a symmetric manner also g(zk,z j) < δ where zk is closest in fea-
ture space to w j then we add the pair (z j,w j) to our list of final
correspondences.

9 Results

In this section, we present results of experiments with the algo-
rithms described in the preceding sections. Our goal is to investi-
gate the range of inputs for which they are able to find good point
correspondences, and thus our discussion starts with easier cases
and ends with harder ones. All experiments were run on a 2.2GHz
Opteron 275 processor.

Non-Rigid World Benchmark: For our first experiment, we
tested our methods on a set of 3D models that are part of a Non-
Rigid World Benchmark soon to be distributed by Bronstein, Bron-

Figure 7: Two examples from the Non-Rigid World Benchmark by
Bronstein, Bronstein, & Kimmel [2008].

stein, & Kimmel [2008]. This data set contains several examples
where meshes with the same topology are available for the same
object in multiple poses (Figure 7), making it possible to predict
point correspondences with an automatic algorithm and then mea-
sure how close they are to “ground truth”. Figure 8 shows our re-
sults for processing one cat vs. all other cats, one dog vs. all other
dogs, and one wolf vs. all other wolves. Roughly speaking, if we
consider less than 3% error acceptable for an application (e.g., mor-
phing), then all first 45 good correspondences are found in all but
two examples. If higher error is acceptable (e.g., for similar shape
matching), then perhaps 50 or more correspondences are within tol-
erance. Note that all the correspondences shown in Figure 8,9 are
direct output of the voting algorithm without the further correspon-
dence matrix processing described in the last paragraph of Section 8
(except where indicated explicitly in Figure 9).

SCAPE Data Set: In a second experiment, we tested our algo-
rithm on the SCAPE data set [Anguelov et al. 2005], which con-
tains meshes of a single person in different poses reconstructed
from range images. This data set is slightly harder than the pre-
vious one because the meshes are reconstructed from scans, and
thus different instances do not have exactly the same local shape
features. However, the reconstructions are derived from a template,
and thus provide consistent topology, making quantitative compari-
son of predicted correspondences to ground truth possible. Figure 9
shows the results of finding correspondences between one person
(shown in the top left) and all the others. In this case, all of the
top 15 correspondences have less than 3% error in all but five of
the examples, and many have more than 30 such correspondences.
One failure case is shown in the bottom-right of the figure (its row
is marked by a orange square in the colored error matrix) – in this
case, the front of one person was mapped onto the back of the other.

SHREC 2007 Watertight Benchmark: The third experiment
tests our algorithms on meshes of different objects within the same
semantic class. For this test, we used the SHREC 2007 Watertight
Benchmark Data Set [Giorgi et al. 2007], which contains watertight
meshes for 20 different objects with 20 different object classes. Fig-
ures 13 and 11 show representative results for the “Human” and
“Four-Legged” classes. For these cases, ground truth correspon-
dences are not available, and thus we show only visualizations of
correspondences predicted with the highest confidence. For exam-
ple, looking at the bulldog↔cow in the top-left of Figure 11, we see
that correspondences are found at the tips of the noses, throughout
the torso, on the “knees” of the legs, etc. Similarly, looking at Fig-
ure 13, we see that many good correspondences are found between
people with very different body shapes and in different poses. In
particular, note that good correspondences are found even in the
cases where an input mesh has genus three (i.e., the hands and the
legs are joined in the sitting woman fifth from the left in the top
row). There are some poor correspondences (e.g., on the legs of the
cow↔horse), but they are usually the ones with least confidence.
There are also some extreme failure cases (e.g., cow↔giraffe).
However, overall, the results are quite positive – similarities in the
the global intrinsic structures of the surfaces guide the algorithm to



Figure 8: Results of finding corresponding points in the cats, dogs
and wolves meshes of the Non-Rigid World Benchmark [Bronstein
et al. 2007]. The images on the bottom of the figure show an ex-
ample result of our algorithm for the cat in two different poses. In
the top of the figure there is a colored error matrix, where each row
represents a pair of meshes (the example pair of cats appear in the
row indicated by a purple square), and each column represents a
point correspondence, sorted left-to-right by predicted confidence.
The color of each matrix element indicates error from ground truth,
reported as geodesic distance between predicted and actual corre-
spondences normalized by the geodesic diameter of the mesh. A
plot of this error (mean in blue curve and median in red curve) for
the most confident 60 correspondences and a histogram of its dis-
tribution are shown at the bottom of the figure.

establish good correspondences between meshes with significantly
different global and local shapes. This result is consistent across
several other sets of models. For example, Figure 10.

Different Object Types: The next case shows results for the
particularly hard case of matching a man to a gorilla, motivated by
the example in Figure 12.2 of [Bronstein et al. 2008] (Figure 12).
Even though the two surfaces are very far from isometric, and no
landmarks are used to guide the search for correspondences, the
algorithm is able to match many semantic features correctly (e.g.,
nose to nose, ears to ears, fingers to fingers, etc.).

Partial Matching Example: In another experiment, we
demonstrate that the algorithm is able to establish correspondences
between surfaces that are only partially and approximately iso-
metric. Figure 12 shows images of correspondences found for
horse↔centaur. This result is possible with direct application of
our algorithm because we accumulate votes for correspondences
rather than for aligning transformations – the piecewise nature of
the correspondence matrix is discovered automatically during the
voting stage, without a separate step for transformation clustering.

Figure 9: Results of finding corresponding points between one
mesh (shown in the top-left) and all others in the SCAPE database.
The layout and color-coding of this figure is similar to Figure 8 –
please refer to its caption for details.



Figure 13: Correspondences found on human models from the SHREC 2007 Watertight Benchmark.

Figure 10: Example of comparing a wolf to itself and to other four
legged animal models in different poses.

Comparison to Previous Work: In a final experiment, we
compare our method to the related work [Zhang et al. 2008] (Fig-
ure 14). In this case, we find sixty “good”correspondences, while
Zhang et al. find five and mismatch the arms. The reasons
are mainly that their algorithm searches for correspondences only
amongst a sparse set of points, due to the complexity of combinato-
rial search, while we consider a larger set of points and have a more
flexible deformation error.

Computational Complexity and Running Time: Our sys-
tem has two stages, mid-edge uniformization and Möbius Voting.
The first stage is relatively simple – it is equivalent to solving a
sparse linear (Laplacian) system. During this stage, we currently
calculate the cutting face via an average geodesic distance calcula-
tion at each vertex, which is relatively slow (O(n2 log(n)) for n ver-
tices). However, this is an implementation detail, and we believe
that much faster methods can be chosen for this relatively simple
step, which has little or no affect on the quality of the results.

The main complexity of our algorithm is in the Möbius Voting
stage. It has expected computational complexity of O(N4 log(N)),
where N is the number of points in each point set. For each

Figure 11: Correspondences found on four legged animals from the
SHREC 2007 Watertight Benchmark.

Figure 12: Correspondences found automatically between meshes
of a gorilla and a man (left), and meshes of a centaur and a horse
(right).

of O(N3) random triplets, computing the Möbius transformations
takes constant time, and computing the deformation error takes
O(N log(N)) (it depends on finding O(N) closest points, each of
which can be found in O(log(N)) with a kd-tree or other spatial
indexing structure). Note that this running time is polynomial in
the size of the point set, N, and it is independent of the number of
vertices in the mesh.

Of course, in practice, the running time depends linearly on the
number of iterations. In order to acquire strong evidence for “cor-
rect” correspondences, we generally aim to cast ∼ 10 votes for
each “correct” triplet of correspondences, which means that the to-



Figure 14: Comparison with the method of [Zhang et al. 2008].
On the left: our Möbius voting result where 61 correspondences
found. On the right: Zhang et al. method is applied to five points.
Note that sparse sampling is not always enough to find the correct
matches.

tal number of iterations should be approximately ∼ 10×N3 (one
out of every N3 triplets of correspondences is “correct”, on aver-
age). In all the examples in the paper, we took 80− 120 sampled
points (N) and randomized between 5M and 20M triplets. The em-
pirical running times are 70 seconds per 1M votes for N = 80, and
160 seconds per 1M votes for N = 120.

10 Discussion

The main contribution of this paper is the idea of leveraging the
low-dimensionality of the Möbius group in a voting algorithm
that finds correspondences automatically. Our results suggest that
it is able to find dozens of good correspondences not only be-
tween meshes that are nearly isometric (the same object in differ-
ent poses), but also between different objects (dog↔wolf), partial
matches (horse↔centaur), and even between meshes that are not
locally similar at all (man↔gorilla).

This paper represents just a first step, and there are many limitations
that suggest directions for future work.

First, the main drawbacks of our current implementation are: 1) the
use of a linear flattening technique, which, although fast and simple
to compute, suffers from bad artifacts when the meshes in consid-
eration have bad triangles; and 2) the use of a average geodesic
distance calculation to find a cutting face for mid-edge uniformiza-
tion, which although robust, is far too slow for this simple task. We
believe that the quality and/or timing of our results could improve
with selections of different algorithms for these components.

Second, the algorithm is designed only for topological spheres with
holes. Interestingly, good correspondences can be found even when
one or both meshes have handles (such an example appeared in the
SHREC watertight set). However, this is not guaranteed. Extending
the theory behind the method to higher genus objects is a topic for
future work.

Third, our algorithm tends to find more correspondences in larger
regions of the surfaces (e.g., on the body) – this is because the to-
tal magnitude of votes for a correspondence is related to the size
of the corresponding surface patch within which it resides and our
selection of a setting for the parameter K, the number of mutu-
ally closest correspondences needed to log a vote (usually 40% in
our examples). To overcome this problem, we believe it would be
possible to implement an adaptive, hierarchical algorithm, where
spatial relationships to high confidence votes found early in the pro-
cess are used to corroborate votes for lower confidence ones, and/or
where the process proceeds coarse-to-fine by recursively breaking
the problem into smaller and smaller surface patches.

Finally, there are a number of applications that might benefit from
the correspondences generated by the algorithm. While some of the
correspondences are not perfect (average errors are shown in Fig-
ures 8 and 9), they are probably good enough to be used directly for
shape matching, morphing, symmetry analysis, statistical analysis,
and so on. Studying how the needs of these applications interact
with the capabilities of automatic correspondence finding and out-
lier rejection is an interesting topic for further work.

Proof of the mid-edge boundaries property. Let us prove Theo-
rem 5.1. We make use of notations introduced in Section 5. Given a
discrete harmonic piecewise linear and continuous function on the
mesh u = ∑i uiφi(·), for each vertex vi ∈ V excluding those of the
face we cut out there exists∫

Di

〈∇φi,∇u〉dvol = 0, (7)

where Di is the 1-ring of vertex i. This can be seen by differentiat-
ing the discrete Dirichlet integral ED(u) = ∑ f∈F

∫
f |∇u|2dvol with

respect to u j.

Next, consider a boundary vertex v j of the mesh M . Denote by
vr,vs the mid-edge vertices on the two boundary edges touching
vertex v j. We will show that u∗(vr) = u∗(vs) and this will imply
the theorem since u∗ is defined as the Y-coordinate embedding of
the mid-edge vertices (see Figure 4). From the integrability prop-
erty of the conjugate gradient field ∇u∗ = J∇u (see [Polthier 2005],
Proposition 35), it is known that u∗(vr)−u∗(vs) =∫

γ

du∗ =− ∑
f⊂D j

〈∇
∣∣ f u,∇

∣∣ f φ j〉area( f ) =−
∫

D j

〈∇u,∇φ j〉dvol,

(8)
where γ is the piecewise linear path starting at vr and passing
through the mid-edge vertices of the 1-ring neighborhood of v j end-
ing at vs, and f ⊂D j means traversing all the faces touching vertex
v j. Now from Eq. (7) it is clear that the last term on (8) equals zero,
completing the proof.
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