
Abstract

Immersive virtual environments require large-scale
high resolution displays to match the human visual acuity.
This drives the need to study scalability issues related to
display wall systems. This paper reports our experiences
in scaling up the display wall system at Princeton Univer-
sity from 8 to 24 projectors. We discuss scalability tech-
niques for automatic projector calibration, cluster
management, data distribution for still images, motion
video, and multi-channel audio.

1. Introduction 

An immersive virtual environment calls for scalable
large-scale display surface with high resolution to match
the large field of view and high acuity of the human visual
system. In recent years, there have been many multi-pro-
jector display wall projects. These include the Power Wall
at University of Minnesota [29], the Office of the Future
project at University of North Carolina [22], the Interac-
tive Workspaces Project at Stanford University [14], and
display wall projects in various national laboratories such
as Argonne [12], Lawrence Livermore [24], Sandia [10],
and National Center for Supercomputing Applications
[20], etc. However none of these systems address scalabil-
ity issues in the following areas: automatic projector cali-
bration, cluster management, still image viewer, motion
video player, and multi-channel audio system. In this
paper, we present our experiences in these aspects of scal-
ing our display wall system.

In March 1998, Princeton built its first display wall
with an  rear projection screen and 8 Proxima LCD
commodity projectors, see Figure 1 left. This system had a
resolution of  pixels and was driven by a net-
work of 8 Pentium II PCs running Windows NT [17]. 

In November 2000, we scaled the display up with 24
Compaq MP1800 DLP projectors and a network of 24
Pentium III PCs running Windows 2000, see Figure 1
right. There are also computers for various inputs, includ-
ing mouse, camera, HDTV, etc. as shown in Figure 2. The
resolution of our new system is .  

Figure 1: Projector Setups of the Princeton Display Wall. 
Left: First Generation System with 8 Projectors

Right: Second Generation System with 24 Projectors

In our scaling efforts, we found that the techniques that
were sufficient for 8 projectors became excessively time
consuming and labor intensive for 24 projectors. Projector
geometric calibration was the first stumbling block we
encountered. It took six hours to do an initial manual
alignment of the projectors to  a one to two pixel accuracy.
Afterwards time intensive weekly adjustments were still
needed. Our automatic alignment system designed for the
first generation display wall was also too time consuming
to be practical. Next we found our previously developed
methods of displaying content stretched to their limit - it
took ten seconds to show an high quality 18-million-pixel
image (5MB JPEG). And throughout there was the need to
maintain the machines, update drivers, manipulate dialog
boxes and present an intuitive and simple interface to the
daily user. 

Figure 2: Architecture of Princeton Display Wall

18' 8'×

4096 1536×

6144 3072×

Sound

HDTV

High-Speed
Network

Console

Input

Wireless Mic

Video Camera

PDA

Gyromouse

Display           Cluster

…
Amps + Speakers

…

Antenna

Experiences with Scalability of Display Walls

Han Chen, Grant Wallace, Anoop Gupta§, Kai Li, Tom Funkhouser, Perry Cook
Computer Science Department, Princeton University

{chenhan, gwallace, li, funk, prc}@cs.princeton.edu, §anoopg@microsoft.com



The rest of the paper is organized as follows. The first
two sections deal with hardware related issues: first we
discuss scalable automatic projector calibration methods,
and then scalable control and administration interfaces for
display walls. The next three sections deal with scalable
content distribution. These include methods for distribut-
ing still images, motion videos and multi-channel audios.
Finally we conclude with a summary of what we learned
in the process of scaling our display wall and directions
for future work.

2. Multi-Projector Calibration

Projector calibration is the key to turning individual
projectors into one cohesive display. The most obvious
and time consuming part of it is geometric alignment.
Vibration, heat expansion, and projector power-on-and-off
can cause several pixels of drift per week even with
clamped projectors. With a 6-degree-of-freedom projector
mount, we can manually align the projectors. This process
is laborious and yet does not yield precise alignments (1 or
2 pixels average discontinuity).

Several automatic projector geometric alignment sys-
tems [23][27] have been described; for instance, Chen et
al. developed an automatic alignment system [6] for our
first generation display wall. It uses a pan-tilt camera
mounted in front of the screen to acquire point and line
correspondences between adjacent projectors. This infor-
mation is then used to form a global optimization problem
and Simulated Annealing (SA) is used to solve for the pro-
jective transformation matrix for each projector. The trans-
formation matrices are used to pre-warp images so that the
projected results look seamless. This approach achieves
better results than manual alignment and it takes about one
hour to complete for the 8-projector system. 

Figure 3: Homographies between Various Elements: 
Screen, Camera Views, and Projectors

When we scaled our wall to 24 projectors, we found
that neither the manual nor the simulated annealing
method was practical; it took six hours to manually align
the projectors or about three hours for the automatic align-
ment system using simulated annealing. Thus, we devel-
oped a new method called Homography Tree Optimization
(HTO) [5] based on the Smarter Presentation system [26].
It extends the idea of PixelFlex [31] to scales beyond the
scope of a single camera. In our system, we use a pan-tilt
camera to detect feature points on each of the projector
screen by displaying geometric patterns. The camera's
field of view covers a 2x2 subset of the projectors. We
allow for a 50% overlap between adjacent camera views
and use 15 camera views to cover our 4x6 projector array.
Based on the common features points between adjacent
camera views, a homography can be calculated. A tree
based homography optimization algorithm is then used to
fine tune the homographies to make them consistent. This
is conceptually equivalent to stitching the 15 camera
images to form a 2D mosaic; however, our algorithm is
able to achieve much better accuracy. The feature points in
this virtual camera frame are then warped to make them
rectilinear. Finally, a projective transformation matrix can
be extracted for each projector from the locations of its
feature points. Figure 3 shows the homographies between
the various elements in the system.

Table 1: Comparison of Different Alignment Methods 

1. SA may produce better results with signficantly longer run time.
2. Data collection time: 33 min, SA runtime: 36 min with 20K steps [6].
3. Data collection time: 90 min, SA runtime: 91 min with 50K steps.
4. Results were obtained by using a 2x4 subset of the new display wall.

Figure 4: Grid Patterns Shown on Unaligned (left) and 
Aligned (right) Display Wall

The new system can calibrate our 24-projector display
wall in 12 minutes, while achieving satisfactory align-
ments (0.8 pixel average discontinuity), see Figure 4. We
also evaluated the new system on different size display
walls, and found that the data collection and computation

Projectors

Display Surface

Camera Views

Method
 Display Wall  Display Wall

Time(min) Error(pixel) Time(min) Error(pixel)
Manual 120 1-2 360 2-3

SA1 692 1.42 1813 23

HTO 44 0.84 12 0.8

2 4× 4 6×



time increases linearly with display size, while maintain-
ing a constant average local discontinuity. Table 1 shows a
comparison of different alignment methods on our two
generations of display wall. It is clear that our new method
is fast, accurate and scalable.

3. Display Wall Management

Using a display wall incorporates the management of
multiple resources including computers, projectors, soft-
ware and user input. Coordinating the use of all these
resources can be confusing to an inexperienced user, and
time consuming to an administrator unless adequate man-
agement facilities exist.

The two main properties we wanted in a management
facility were ease of use, and speed of common operations.
Ease of use is important for inexperienced users. We have
about 20 new students every semester who use the display
wall regularly as part of their class work. The time con-
sumed in common operations is important to administra-
tors. Upgrading a device driver on a Windows computer
involves interacting with several dialog boxes and hitting
many OK buttons.

When the number of resources is relatively small, the
difficulties are less acute. When we had an 8 node display
wall running Windows NT, we used a remote control to
control the projectors, a Keyboard-Video-Mouse (KVM)
switch to access the computers, and a set of command line
scripts to start and stop processes. When we upgraded to
24 projectors and 24 Windows 2000 workstations, the old
systems became more difficult to wield. Everyone
becomes tired quickly of trying to turn on 24 projectors
with a remote, installing a device driver 24 times and typ-
ing out long parameter lists on command line scripts.

Figure 5: Display Wall Control GUI

Our solution to these issues was to incorporate all con-
trol functionality in one central place. We developed a
Graphical User Interface (GUI) called DwallGUI to do
this, see Figure 5. The DwallGUI brings together the con-

trol of three main components: projectors, computers and
software; with ease of use as a goal.

The first component is the projectors. Our projectors do
not provide an interface for computer control because they
are portable units (but they have other good characteristics
such as small, inexpensive and lightweight). They are also
intended to be unplugged after every use. To get around
these negatives we built an analog multiplexer which can
be controlled from the parallel port of a computer. We con-
nected a computer controlled IR sender to the multiplexer
and strung IR emitters to each projector. This gives us
complete control of the projectors individually or in
groups. We added to this a set of Ethernet based power
controllers so that we could remotely toggle the power to
projectors.

The next component of DwallGUI is cluster manage-
ment, which typically involves process control, monitor-
ing and rebooting computers [3][25]. Because in a display
cluster each computer is connected to a projector, we can
avoid using KVM switches by sending keyboard and
mouse commands in the DwallGUI. It is more powerful
than using KVM switches in that we can see all displays
and work on all computers or any subset simultaneously.
This makes installing a Windows device driver on the
cluster as easy as installing it on one computer.

This cluster management functionality is implemented
on the display nodes through a Windows Service we
developed called DwallRunner. This is a server that runs
on each display node and is part of a multicast group. All
control messages are multicast to the display cluster and
selectively processed or ignored. DwallRunner is con-
trolled by the DwallGUI and incorporates functionality for
process control, monitoring, rebooting, and sending
mouse/keyboard events.

Finally, the DwallGUI allows easy access to some of
the most frequently used software on the cluster. This is
especially important to new and casual users. They can
select "show image" from the menu and browse for the
image to show on the wall. They can run multimedia pre-
sentations, demos and other tools just as easily. In our
experience, having a centralized control GUI has
increased the user base of the display wall system.

4. Image Viewer

One of the most commonly used functionalities of a
large scale display wall is to show high resolution images
on it. Regardless of the actual system setup, in order to
display an image on a cluster based display wall, one must
first distribute the image data from one location, (e.g. file
server, satellite receiver, etc.) to a cluster of computers,
each of which will in turn decode/decompress the image



and display a proper portion of the image on its attached
projector. The image might also be pre-warped with a pro-
jective transformation to create a seamless image across
the display surface.

Because of the sheer number of pixels on a large scale
display wall, e.g. 18 million pixels on the Princeton setup,
storing or transferring images in uncompressed format is
not practical. We use JPEG as our compression method.
With JPEG compression, a typical image can be reduced
to less than 10% of its original size even with the highest
quality setting. 

In a naïve implementation of image viewer, such as
those using texture mapping with WireGL [7][13], a client
program reads an image file from disk upon user request,
decodes it in local memory, and then sends the decoded
pixels to the display servers. This is easy to implement but
doesn't scale well: the client becomes a bottleneck in terms
of both computation and network bandwidth when the dis-
play wall size increases. For example, just sending 18 mil-
lion pixels in RGB color (54MB of data) over a fully
utilized fast Ethernet will take over five seconds. 

In contrast to this client centric system, a distributed
system ameliorates these problems by deferring the decod-
ing process to the server side and transferring only the
compressed images over the network. In such a system,
the client simply sends a show-this-image command to
decode/display servers, which then read the image file
from file server, decode and show it. To avoid decoding
the whole image while only a small portion of it is needed
as in the case of the decode/display server, a technique of
Region-of-Interest (ROI) decoding can be used to save
computation requirement, such as that provided in the
Intel JPEG Library (IJL) [15]. 

In our first generation of the display wall system, we
used the aforementioned system and found the results to
be satisfactory. However, as we scaled the system up to 24
projectors and PCs, we found that this technique became
inadequate. The file server becomes a bottleneck because
it has to send a copy of the whole image file to each
decode/display server. IJL's ROI decoding routine has to
parse the whole JPEG file even though it only needs to
decode a portion of it. Because the Minimum Coded Units
(MCU) in a JPEG image are dependent on the previous
ones [21], one cannot decode an MCU without first decod-
ing the immediately preceding one, see Figure 6 left. 

To overcome this limit, we augmented the JPEG format
with an index file, which saves the MCUs' DC predictors
and position in file at regular intervals, thus breaking the
dependency chain. We created a custom decoder that can
recognize and utilize this index. When a decoder needs to
skip a number of blocks, it can consult the index file to
find out where the next closest indexed block starts in the
bit stream, and what the DC coefficient predictors are, thus

completely avoiding touching unused bits, as illustrated in
Figure 6 right. We choose the indexing interval to match
the operating system block caching size for network
mounted file system, for example, 4KB is used for Win-
dows 2000. Five short integers (10 bytes) are needed for
every indexed block; therefore, the index file is only about
1/400 of the original JPEG file size. 

Figure 6: ROI JPEG Decoding with and without Index

We developed a multimedia presentation system based
on the image viewer. It preloads all images before starting
the sequence. We measured the load time of several pre-
sentations with and without the index to evaluate its per-
formance, see Table 2. The speed-up is much less than the
ideal number of 24, because the load time also includes
JPEG decoding time and the block caching of operating
system increases the amount of data transfer, as illustrated
in the right side of Figure 6.

Table 2: Load Time of Multimedia Presentations

5. Parallel MPEG-2 Decoder

Video is a powerful way of visualizing complex data. It
is highly desirable to have the capability to show real time
video at or close to the native resolution of the display
wall. Because of the vast amount the data involved, storing
and transferring video data uncompressed is not feasible.
MPEG-2 is one of the most widely used video compres-
sion standards [8]. There are quick and naïve ways to
bring MPEG-2 video to a cluster based display wall. One
method is to decode a video stream in one node and send
the decoded pixels to the display servers. Clearly, the per-
formance of the system is limited to the computation
power and network bandwidth of the decoding node. It
will work, but only for video with relatively low resolu-
tion. Another method is to decode a video stream, split it
into several sub-streams, re-encode them, distribute the
sub-streams to the decode/display servers' local storage,
and then decode and play these sub-streams in synchroni-

No. # Images (Size) w/o Index w/ Index Speed Up
1 294 (167MB) 358 155 2.3
2 113 (110MB) 248 90 2.8
3 73 (77.4MB) 165 61 2.7

DecodedParsed Skipped Indexed

Regular ROI JPEG Decoding ROI JPEG Decoding with Index



zation. This method works for higher resolution videos but
it requires tremendous amount of offline computation,
which can not be done in real-time. Also, the re-encoding
process introduces additional quantization error and limits
the ranges of motion vectors, thus reducing the video qual-
ity. There are also parallel MPEG-2 video decoders [1][2]
for tightly coupled SMP machines. They don’t scale on a
cluster. To address these problems, we designed a cluster-
based parallel MPEG-2 decoder system [4].

Figure 7: Macroblock-Level Parallel MPEG-2 Decoder

In the 8-node display wall system, we used a macrob-
lock level parallel MPEG-2 decoder. As shown in Figure
7, there are three major components working together to
decode a video stream: a splitter divides the input stream
into macroblocks and sends them to the appropriate decod-
ers. The decoders need to communicate with each other
when the motion vector of a macroblocks references data
not present in the local node. Finally, the decoded pixels
are sent to the displays and might be pre-warped to correct
for perspective distortion. In this system, the communica-
tion requirement is very low - the splitter sends out com-
pressed bit streams; the decoders send and receive a small
amount of pixel data, which are distributed in nature; no
pixels need to be reshuffled before being displayed. The
system can play 1080i HDTV at more than 30 frames per
second.

When we scaled the display wall system up to 24 nodes
and tried to play higher resolution video, e.g. near-IMAX
quality ( ), we noticed that the splitter became
a bottleneck. This is because splitting an MPEG-2 video
stream at macroblock level requires parsing the entire bit
stream. A highly optimized MPEG-2 parser can only pro-
cess about 40Mbps with our hardware setup, whereas the
video itself is about 120Mbps. 

To achieve scalable high resolution decoding, we intro-
duced a hierarchical decoding system, see Figure 8. It con-
sists of two levels of splitters and a set of decode/display
servers. A root splitter (P-Splitter) reads in an input bit
stream, scans it to find out where a picture starts and ends,
copies the picture data to an output buffer, and then sends
it to one of the k second-level splitters (M-Splitters) in a
round-robin fashion to balance the workload. The second-

level splitter parses the picture into macroblocks, and sorts
them into one or more output buffers to make  sub-
pictures, which are not necessarily MPEG-2 conforming.
Because there is no inter-picture dependency in splitting a
picture at macroblock level, each second-level splitter can
process the picture it receives independently. The splitter
then sends the sub-picture data to the corresponding
decoding servers. The decode/display servers work in the
same way as in the original system. We call this decoding
method 1-k-(m,n) system. The original macroblock level
parallel decoder can be viewed as a special case of this
hierarchical system where k=1.

Figure 8: Hierarchical Parallel MPEG-2 Decoder

We used MPEG-2 video streams with resolution rang-
ing from  to  to test the performance
and scalability of the system. Figure 9 shows the frame
rate of one-level and two-level decoders playing DVD and
HDTV contents with varying size of display wall. We
notice that the performance of a one-level system flattens
out after a certain screen size indicating that the splitter
becomes a bottleneck. However, a two-level system is able
to scale. Figure 10 shows the number of pixels decoded
per second versus the number of nodes ( ) in a
two-level decoder. Video size is chosen to match the
screen size, where the highest resolution is 
shown on a  subset of the screen. It is clear that a
two-level decoder achieves near linear acceleration.

 
Figure 9: Frame Rate of Parallel MPEG-2 Decoders

0101101…1101

S
pl

itt
er

 

Decoder Display

Display

Display

Decoder

Decoder

 

Bitstream

M
ac

ro
bl

oc
ks

C
om

m
un

ic
at

io
n

 

3840 2800×

m n×

0101101…1101

P
-S

pl
itt

er
 

M-Splitter Decoder

Decoder

Decoder

M-Splitter

M-Splitter

Bitstream

P
ic

tu
re

s

M
ac

ro
bl

oc
ks

sa
m

e 
as

 b
ef

or
e

720 480× 3840 2800×

1 k m n×+ +

3840 2800×
4 4×

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

HDTV (two-level) HDTV (one-level)
DVD (two-level) DVD (one-level)

fps



 
Figure 10: Pixel Decoding Rate of Two-Level Decoder

6. Parallel Sound Server

To provide a truely immersive experience, we need
both a high resolution large scale visual display and a
multi-channel spatialized audio system. In our first gener-
ation display wall system, a PC with multiple sounds cards
supported up to 16 speakers; 10 surrounding the display, 4
in the back of the room, and 2 subwoofers. Besides having
a limited number of sound channels, this single PC sound
system was prone to failure due either to hardware or
driver dependencies. So we designed and built a scalable
distributed multi-channel parallel sound server [11].

Our display cluster workstations each came with an
integrated sound card and this hardware gave us the base
for a distributed parallel multi-channel sound system. The
goal of our distributed sound system was that it should
scale with the size of the cluster and networking band-
width, and that it should be flexible.

The system we built satisfies these goals by streaming
sound sources from a distributor computer to the cluster
nodes (each running a program called soundlet) and syn-
chronizing the sound cards on the cluster. The main obsta-
cle in this approach is the synchronization of the sound
cards. The ear is sensitive to timing variations of less than
1 ms. This is on the order of the latency of a network
packet, and some operating systems have timing granular-
ity as high as 10ms. The other problem is that the sound
card crystals all have a slightly different frequency (which
is also different from the computer timing crystal). As a
result the sound cards tend to drift apart over time.

To solve the synchronization problem, we employed
two techniques. First we require the distributor computer
to have a sound card; this then serves as the master clock.
Second we provide a jitter buffer on each of the soundlets.
Each data packet sent out doubles as a network synch mes-
sage. If at a network synch point the jitter buffer on a
soundlet doesn't match, then we slow down or speed up
the playback timing by locally re-sampling the sound in

real-time. This results in each of the soundlets tracking the
distributor's notion of time. Figure 11 depicts the architec-
ture of such a distributed sound system.

 
Figure 11: Distributed Parallel Sound Server Architecture

The final system is highly flexible. It allows us to
change the number of channels of sound, location of a
streamed channel, delay time, playback rate, synchroniza-
tion rate, compression, and the distribution method of the
streamed audio, all in a matter of a few keystrokes. In our
current system all of this works together to give us a 48
channel spatialized sound system.

7. Conclusion and Future Work

Building larger scale display walls is important as we
push to achieve resolutions approaching the visual acuity
of human eyes. This brings new challenges in the areas of
scalable projector calibration, data distribution/synchroni-
zation and cluster management. To summarize our conclu-
sion:

We found that it is possible and desirable to use roughly
aligned inexpensive portable projectors and perform auto-
matic on-the-fly projective corrections to produce a seam-
less image. As long as the projectors do not exhibit any
major pincushion or barrel distortion this correction can be
done on commodity graphics cards (such as the GeForce2)
at very little cost. Portable projectors have the benefit of
being lightweight and inexpensive however may have to
be augmented for computerized control.

We also found that, in order to distribute data effi-
ciently across the cluster, we need to transmit the data in
compressed form, and avoid unnecessary transfer of data.
To achieve this, we designed parallel decoding systems for
image and video. Sometimes we needed to augment exist-
ing file formats for data indexing.

Synchronization is a critical issue in any distributed
systems. For image, video or 3D rendering, it is adequate
to synchronize the frame buffer swapping of all graphics
cards by exchanging short messages. For distributed
audio, we must employ more sophisticated sychronization
methods to compensate for the fact that different sound

Pixel Rate (Million Pixels Per Second)

0
50

100
150
200
250
300
350
400
450

0 5 10 15 20 25

Distributor

Soundlet

Soundlet

Soundlet

Audio Data
Clock Info

Resampler

Clock Diff

Sound Card
Soundlet

Multi-Channel
Audio Stream



cards have slightly different clock rates. We solve this
problem by doing real-time audio stream re-sampling at
each soundlet.

Finally, scaling a Windows cluster requires the capabil-
ities to manipulate user interface elements in parallel. This
is accomplished by multicasting events including mouse
and keyboard, and allows for simultaneous cluster man-
agement. 

While our  display wall has been operational for
over 12 months now, there are still several issues remained
to be addressed in future work:

• Distributed Intelligent Storage: As a cluster grows
in scale, a centralized storage system becomes a bottle-
neck. Distributed file system, such as xFS [30] and Frangi-
pani [28], and disk-directed I/O [16] were proposed to
address this issue. Ideally, we would want to have a dis-
tributed storage system that utilizes the idle capacity and
bandwidth of hard disks in all display nodes. This storage
system should also be intelligent in that it can performan
content-specific transformations on the data. For example,
MCUs in an JPEG image will be stored in the nodes where
it is most likely to be displayed, and the storage system
can provide application pixels instead of just compressed
bits of an MCU.

• Scalable 2D content creation tools: So far there is no
tool specifically designed for creating and manipulating
large format images or video content. It is extremely hard
to do this with current desktop applications because a sin-
gle PC’s computing power is very limited and the screen
size is too small to visualize the results. To solve this prob-
lem will call for parallelized versions of content creation
tools that run directly on the display wall system.

• Scalable virtual desktop environments: It’s desir-
able to run desktop applications direct on a display wall
system as if it is one large virtual desktop. VNC wall [19]
and Xplit [9] are two examples of attempts to provide such
a solution. We plan to implement a Virtual Display Driver
for Windows system and a distributed X server with built-
in warping support for arbitrarily overlapped projectors.

As displays become ubiquitous through OLED and
other new technologies on the horizon, continuing to push
the envelop of using and building large displays will pro-
vide valuable insight into the future infrastructure and
usage paradigm of high resolution displays.

8. Acknowledgements

This project is supported in part by Department of
Energy under grant ANI-9906704, grant DE-FC02-
01ER25456 and grant DE-FC02-99ER25387, by Intel
Research Council and Intel Technology 2000 equipment

grant, and by National Science Foundation under grant
CDA-9624099 and grant EIA-9975011. Han Chen is sup-
ported in part by a Wu Fellowship.

9. References

[1] A. Bala, D. Shah, U. Feng, and D.K. Panda. Experience with
software MPEG-2 video decompression on an smp pc. In Pro-
ceedings of the 1998 ICPP Workshop on Architectural and OS
Support for Multimedia Applications/Flexible Communication
Systems/Wireless Networks and Mobile Computing, pp. 29–36,
1998.

[2] A. Bilas, J. Fritts, and J.P. Singh. Real-time parallel MPEG-2
decoding in software. In Proceedings of the 11th International
Parallel Processing Symposium, April 1997.

[3] M. Brim, R. Flanery, A. Geist, B. Luethke, and S. Scott. Clus-
ter Command & Control (C3) Tool Suite. Computer Science &
Mathematics Division, Oak Ridge National Laboratory, 
http://www.epm.ornl.gov/torc/C3/Papers/pdcp-v2.0.pdf

[4] H. Chen, K. Li, and B. Wei. A Parallel Ultra-High Resolution
MPEG-2 Video Decoder For PC Cluster Based Tiled Display
System. To Appear In Proceedings of the International Parallel
and Distributed Processing Symposium, April 2002

[5] H. Chen, R. Sukthankar, G. Wallace, and T.-J. Cham. Accu-
rate calculation of camera homography trees for calibration of
scalable multi-projector displays. Technical Report TR-639-01,
Princeton University, September 2001.

[6] Y. Chen, D.W. Clark, A. Finkelstein, T. Housel, and K. Li.
Automatic Alignment Of High-Resolution Multi-Projector Dis-
plays Using An Un-Calibrated Camera. Proceedings of IEEE
Visualization 2000, Salt Lake City, Utah, October 2000.

[7] Chromium Project, 
http://sourceforge.net/projects/chromium/

[8] S. Eckart and C. E. Fogg. ISO/IEC MPEG-2 software video
codec. Proc. Digital Video Compression: Algorithms and Tech-
nologies 1995, 100-109, SPIE, 1995.

[9] S. Feng. Xplit Research Report. Argonne National Labora-
tory, July, 2001. http://people.cs.uchicago.edu/~songyanf/code/
papers/Xplit%20Research%20Report%201.doc

[10] J.A. Friesen and T.D. Tarman, Remote High-Performance
Visualization and Collaboration. IEEE Computer Graphics and
Applications, Vol. 20, No. 4, pp. 45-49, July/August 2000.

[11] A. Gupta, P. Cook. Parallel Distributed Multi-Channel
Sound Server. Princeton University, Spring 2001. http://
www.cs.princeton.edu/ugprojects/anoopg/senior/Fianl%20Write-
UP.doc

4 6×



[12] M. Hereld, I.R. Judson, J. Paris, and R.L. Stevens. Develop-
ing Tiled Projection Display Systems. Proceedings of Fourth
Immersive Projection Technology Workshop, 2000

[13] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. WireGL: A Scalable Graphics System for Clus-
ters. Proceedings of SIGGRAPH 2001, 2001.

[14] G. Humphreys and P. Hanrahan. A Distributed Graphics
System for Large Tiled Displays, Proceedings of IEEE Visualiza-
tion, 1999.

[15] Intel Corp. Intel JPEG Library, 
http://www.intel.com/software/products/perflib/ijl/

[16] D. Kotz. Disk-directed I/O for MIMD multiprocessors. Pro-
ceedings of First Symposium on Operating System Design and
Implementation, pp. 61-74, 1994.

[17] K. Li, H. Chen, Y. Chen, D.W. Clark, P. Cook, S. Dami-
anakis, G. Essl, A. Finkelstein, T. Funkhouser, A. Klein, Z. Liu,
E. Praun, R. Samanta, B. Shedd, J.P. Singh, G. Tzanetakis and J.
Zheng. Building and Using A Scalable Display Wall System.
IEEE Computer Graphics and Applications, 20(4): 671-680,
July/August 2000.

[18] A. Majumder, Z. He, H. Towles, G. Welch. Color Matching
of Projectors for Multi-Projector Displays. In Proceedings of
EUROGRAPHICS '2000, Volume 19, 2000.

[19] National Center for Supercomputing Applications. VNC-
Wall. http://www.ncsa.uiuc.edu/TechFocus/Deployment/DBox/
Doc/vnc.html

[20] NCSA's Visualization and Virtual Environments group.
http://www.ncsa.uiuc.edu/Divisions/DMV/Vis/Projects/Tiled-
Wall/

[21] W.B. Pennebaker, J.L. Mitchell. Jpeg: Still Image Data
Compression Standard. Kluwer Academic Publishers, ISBN:
044201272

[22] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, H. Fuchs.
The Office of the Future: A Unified Approach to Image-Based
Modeling and Spatially Immersive Displays. Proceedings of
ACM SIGGRAPH, 1998.

[23] R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch, H.
Towles, B. Seales, and H. Fuchs. Multi-projector displays using
camera-based registration. In Proceedings of IEEE Visualization,
1999.

[24] D.R. Schikore, R.A. Fischer, R. Frank, R. Gaunt, J. Hobson,
and B. Whitlock. High-resolution multi-projector display walls
and applications. IEEE Computer Graphics Applications, July/
August 2000.

[25] SCMS - Smile Cluster Management System 1.2.2. 
http://smile.cpe.ku.ac.th/research/scms1.2.2/

[26] R. Sukthankar, R. Stockton, and M. Mullin. Smarter presen-
tations: Exploiting homography in camera-projector systems. In
Proceedings of International Conference on Computer Vision,
2001.

[27] R. Surati. A Scalable Self-Calibrating Technology for Seam-
less Large-Scale Displays. PhD thesis, Department of Electrical
Engineering and Computer Sceince, Massachussetts Institute of
Technology, 1999.

[28] C.A. Thekkath, T. Mann, and E.K. Lee. Frangipani: A Scal-
able Distributed File System. Proceedings of the ACM Sympo-
sium on Operating Systems Principles, pp. 224-237, Dec. 1997.

[29] The University of Minnesota. Power Wall. 
http://www.lcse.umn.edu/research/powerwall/powerwall.html

[30] R. Y. Wang, T. E. Anderson. xFS: A Wide Area Mass Stor-
age File System. Proceedings of Fourth Workshop on Worksta-
tion Operating Systems, pp. 71-78, October 1993.

[31] R. Yang, D. Gotz, J. Hensley, H. Towles, and M.S. Brown.
PixelFlex: A Reconfigurable Multi-Projector Display System. In
Proceedings of IEEE Visualization, 2001.


	1. Introduction
	Figure 1: Projector Setups of the Princeton Display Wall. Left: First Generation System with 8 Pr...
	Figure 2: Architecture of Princeton Display Wall

	2. Multi-Projector Calibration
	Figure 3: Homographies between Various Elements: Screen, Camera Views, and Projectors
	Table 1: Comparison of Different Alignment Methods
	Figure 4: Grid Patterns Shown on Unaligned (left) and Aligned (right) Display Wall

	3. Display Wall Management
	Figure 5: Display Wall Control GUI

	4. Image Viewer
	Figure 6: ROI JPEG Decoding with and without Index
	Table 2: Load Time of Multimedia Presentations

	5. Parallel MPEG-2 Decoder
	Figure 7: Macroblock-Level Parallel MPEG-2 Decoder
	Figure 8: Hierarchical Parallel MPEG-2 Decoder
	Figure 9: Frame Rate of Parallel MPEG-2 Decoders
	Figure 10: Pixel Decoding Rate of Two-Level Decoder

	6. Parallel Sound Server
	Figure 11: Distributed Parallel Sound Server Architecture

	7. Conclusion and Future Work
	8. Acknowledgements
	9. References

