Applications of Large Displays

Tools and
Applications for
Large-Scale Display
Walls

In the last two decades, compute power,
storage density, and network bandwidth
have improved by more than three orders of magnitude.
In this same time period, however, display resolution
has merely doubled. The increased processor and stor-

age capacities have supported the

To create a scalable and
easy-to-use large-format
display system for
collaborative visualization,
the authors have developed
various techniques, software

tools, and applications.

1 Architecture
of Princeton’s
second-genera-
tion display
wall.

24

computational sciences, but have
simultaneously unleashed a data
avalanche on the scientific commu-
nity. As aresult, scientific research is
limited by data analysis and visual-
ization capabilities. These new bot-
tlenecks have been the driving
motivation behind the Princeton
scalable display wall project. The
project started in 1998 with the goal
of building a large-format, high-res-
olution display system with inex-
pensive commodity components.
Our first-generation display wall,

Amps + speakers

-

Wireless
microphone

Gyromouse

=

N e:,fzgtﬁ)

s

July/August 2005

Published by the IEEE Computer Society

Grant Wallace, Otto J. Anshus, Peng Bi, Han Chen,
Yuqun Chen, Douglas Clark, Perry Cook,

Adam Finkelstein, Thomas Funkhouser,

Anoop Gupta, Matthew Hibbs, Kai Li, Zhiyan Liu,
Rudrajit Samanta, Rahul Sukthankar, and

Olga Troyanskaya

Princeton University

built in March 1998, used an 18 x 8 foot rear projection
screen and eight Proxima LCD commodity projectors.*
This system had a resolution of 4,096 x 1,536 pixels and
was driven by a network of eight Pentium I PCs running
Windows NT.

In November 2000, we scaled the display up with 24
Compaq MP1800 digital light-processing (DLP) projec-
tors and a network of 24 Pentium III PCs running Win-
dows 2000. The system resolution is 6,144 x 3,072
pixels. The system also connects to I/O devices includ-
ing mouse, PDA wireless inputs, video cameras, high-
definition television (HDTV), and a distributed sound
server, as Figure 1 shows. In our scaling efforts, we
found that some previous techniques (such as geomet-
ric alignment) that were sufficient for eight projectors
were excessively time consuming for 24 projectors and
that some tools (such as an MPEG decoder) could no
longer handle the system resolution. As a result of these
findings, we’ve focused our research efforts on making
display walls more scalable, usable, and useful for col-

laborative research.

Managing tiled displays

To make the 24-projector display
system easy to use, we've developed
tools to align, color balance, and
manage tiled display systems. The
goal is to provide a large-format
tiled display system with the look
and feel of a large single display with
accurate geometric alignment and
good color balance.

Users

Screen

Scalable automatic geometric
alignment

Manual geometric alignment is
impractical for large-scale tiled dis-
play systems: The process is time
consuming and the alignment error
tends to propagate and increase as
the system grows. The research

0272-1716/05/$20.00 © 2005 IEEE

challenge is to develop a scalable, automatic alignment
method that lets computers warp images to achieve sub-
pixel accuracy for a large array of commodity projectors.

Our approach uses an inexpensive, uncalibrated pan-
tilt-zoom camera, which we can program to zoom into
small sections of the display wall to detect feature points.
This lets us align displays with orders of magnitude high-
er resolution than the camera’s resolution, while still
achieving subpixel accuracy. Our previous automatic
alignment method achieved subpixel accuracy for an
eight-projector system but didn’t work well for our 24-
projector system, taking over two hours to align a 24-
projector system while achieving an accuracy of about
two pixels.

Our new alignment research focuses on efficiency,
accuracy, and scalability.2 To achieve these require-
ments, we collect multiple zoomed-in camera views of
feature points projected on the display wall. These
detailed views let us determine with great precision the
feature point positions in the camera’s coordinate sys-
tem. We significantly overlap the camera views to cal-
culate transformations that map one view’s coordinate
system to its neighboring views. These camera views
and transformations form the vertices and edges of a
homography graph. We use a spanning tree of the
homography graph to warp and merge all camera views
into a mosaic view represented by the tree’s root, as Fig-
ure 2 illustrates. However, we lose valuable feature cor-
respondence information in forming the spanning tree,
resulting in increased error in the feature point estima-
tion and ultimately lower alignment accuracy of the dis-
play wall. To address this problem, we’ve developed an
optimization algorithm that recaptures all of a homog-
raphy graph’s correspondence information in a tree.

First, we select a spanning tree that minimizes the
path length between any pair of adjacent camera views.
Next, we run a minimization algorithm that iteratively
refines the homography associated with each edge in
the tree by traversing all paths between the two sets of
camera views separated by the edge. The process con-
tinues until the feature point location variance in the
mosaic view is below a set threshold.

Using the refined homography tree, we can accurately
create a mosaic view, in which we can locate all feature
points in a global coordinate system. We then extrapo-
late and derive each projector’s corner positions in the

Camera views

cam; cam;

Dis :'=1C/ 2la)

Display surface LJ_,I I.III -
v

LFIS|F >PIay

<R—H1 \\I-'I - n\':L”.

Projectors

2 Diagram of the alignment process showing relations among camera

views, projectors, and display screen.

global frame. From the relative positions of projector
corners, we can find a set of projective transformations,
one per projector, that when preapplied to imagery will
minimize the alignment discontinuities seen on the dis-
play wall.

Using this algorithm, we align the 24-projector dis-
play system in under 10 minutes. The system reliably
achieves an average alignment error of 0.55 pixels. We
calculate this error by displaying a grid pattern and mea-
suring the projected discrepancies between grid points
in overlapping projector regions. Figure 3 shows an
example of an arbitrarily misaligned projector image
before and after the alignment.

We've also scaled the system down to a few projec-
tors driven by a single PC. This lets us create inexpen-
sive installations, eliminates the compute cluster, and
lets us use unmodified desktop applications.

The challenge when automatically aligning a single-
PC tiled display is intercepting the pixels and warping
them before they’re displayed. Typically, the operating
system handles the rendering from the desktop through
to the graphics card. Some researchers are investigat-
ing smart projectors® to achieve pixel warping; howev-
er, few commodity projectors currently support this.

IEEE Computer Graphics and Applications

3 Grid pattern
shown on the
display wall (a)
before and (b)
after automatic
alignment.

25

Applications of Large Displays

4 Automatic
alignment result
of a two-projec-
tor display
system running
from a single
PC.

5 The color gamut of a typical single-chip DLP projector plotted in CIE XYZ

space.

26

To access the pixels, we pair graphics pipelines on
multiheaded graphics cards, letting the Windows OS
render desktop content normally to each pair’s first
frame buffer. We then copy the pixels to texture memo-
ry and warp them to the second frame buffer. Projectors
are connected to the second set of frame buffers only,
so they display just the transformed imagery.

Using this technique, we run an automatically
aligned tiled desktop from a single PC. The alignment
has subpixel accuracy. Refreshing the aligned screen at
30 Hz consumes about 10 percent of an 866-MHz
processor’s time.

Figure 4 shows before and after photos of the auto-
matic alignment of a two-projector display system at the
Princeton Plasma Physics Laboratory control room.

Color balance for tiled DLP projectors

Balancing a large projector array’s color and lumi-
nance is a challenging problem in the calibration process.
RGB channel balancing is a technique that has been
employed successfully for LCD projectors,* but the emer-
gence of DLP projectors has made this process more dif-
ficult. DLP projectors use a white enhancement
technique, which produces a higher contrast ratio in sin-
gle-chip DLP projectors by using a four-component color

July/August 2005

wheel with red, green, blue, and clear filters. The clear
filter increases the luminance for less saturated colors.
Unfortunately, this produces a nonadditive color space
that’s difficult to model, as Figure 5 demonstrates.

Our color-mapping algorithm operates across the full
color gamut® as opposed to individual color channels.
We first subsample each projector’s color space using an
inexpensive colorimeter. Next, we calculate the inter-
section of all of the projector gamuts, which gives us a
common gamut. The algorithm then produces a color
mapping for each projector that translates its native
gamut into this common gamut. We apply this mapping
in real time on commodity graphics cards by loading the
map as a volume texture. Our results show that we can
achieve good color balance with a 1.47-percent variance
between projectors.

Tiled display-management tools

Managing a large-scale display wall built with com-
modity components can be time consuming because it
involves many resources, including numerous projectors,
computers, and software tools. The challenge is to make
the large-scale display system have the feel of a single
computer so an inexperienced user, such as a visual arts
student, can use it easily and without extensive training.

Our tiled-display management tools, which we call
DwallGUL® coordinate all resources in a display wall
system. DwallGUI consists of a server running on each
of the display cluster nodes and a client running on the
console PC.

DwallGUI lets users manage a selected set of projec-
tors and their driving PCs. Users can power on or off sets
of projectors or access the projectors’ internal menus.
Using the same method, users can issue commands to
show images or movies or run certain applications. In
addition, DwallGUI helps with process control, moni-
toring, and installations. Instead of using a keyboard-
video-mouse switch to manage individual computers in
a cluster, DwallGUI lets users broadcast the keyboard
and mouse commands and simultaneously see the
results on the display wall. For example, if a user needs
to install a device driver on certain PCs in the cluster, he
or she can use DwallGUI to select the desired PCs and
perform the installation procedure while monitoring the
progress on the display wall screen. The user need only
issue the installation commands once for all selected PCs.

Rendering information

The main challenge to rendering information such as
pixels and sound in a large-scale multiprojector system
is delivering scalable performance with minimal com-
munication requirements. We’ve developed an IMAX-
quality parallel MPEG decoder, a parallel 3D rendering
system, and a spatialized sound server.

Parallel MPEG decoder

A large-scale multiprojector display system creates
the possibility of showing high-resolution and high-qual-
ity video. This is especially desirable for the playback of
detailed scientific visualization and simulation results,
immersive telepresence, VR, digital cinema, and other
entertainment applications. Although for some appli-
cations, a multistream, multiresolution approach might
be adequate or even desirable, others, such as simula-
tion playback, demand efficient decoding of high reso-
lution compressed video streams.

Today’s PC hardware can decode HDTV-resolution
video streams in real time. However, tackling an IMAX-
quality MPEG stream (for example, 4,000 x 3,000 pix-
els) is still an extremely challenging task requiring an
order of magnitude more compute power. One possible,
but undesirable, way to achieve this is through prepro-
cessing. Preprocessing could be used to split a high-res-
olution video into multiple lower-resolution streams,
re-encode and distribute them to the PC cluster nodes
for playback in real time. But this process is time con-
suming, not flexible, and it reduces the video quality
during re-encoding.

Data-driven parallelization techniques seek to avoid
the decode-encode cycle by working directly on the com-
pressed bitstream domain. Picture or slice-level paral-
lelization works on shared memory symmetric
multiprocessing machines, but not on PC clusters
because of the high network bandwidth requirement for
redistributing pixel data. Our previously reported
approach parallelizes an MPEG decoder at macroblock
level with minimal network traffic, making it suitable
for cluster systems.! Unfortunately, this method does-
n’t scale well because of the high computational require-
ment of parsing an MPEG stream into macroblocks.

To address the computation bottleneck and achieve
scalable high-resolution decoding, we use a hierarchi-
cal parallel decoding system, shown in Figure 6.” It con-
sists of two levels of splitters and a set of decode and
display servers. A root-level picture splitter scans the
input bitstream and turns it into a sequence of pictures,
which is a simple and fast operation. It sends the pic-
tures to several second-level macroblock splitters in a
round-robin fashion. The macroblock splitters parse
the pictures into macroblocks, which they direct to
appropriate macroblock decoders. The macroblock
splitters also provide macroblock reference informa-
tion so the decoders know how to exchange data with
each other when a macroblock’s motion vector refer-
ences data not on the local node. The macroblock
decoders then decode the macroblocks and display
results on the projectors.

Because this approach only transfers encoded mac-
roblocks and reference information between PCs, the

PC [— Projector
PC
IMAX PC [— Projector
MPEG —! pC :
stream
Picture
splitter
P PC
Macroblock PC | Projector
splitters
Macroblock
decoders

6 Architecture of a two-level parallel MPEG decoder. A PC splits a high-

resolution MPEG stream at picture level and then several PCs split the result

into macroblocks.

7 Playback of Orion flythrough video stream (3,840 x 2,800 resolution) at
38.9 frames per second.

network bandwidth requirement is much lower than for
previous approaches.

Figure 7 shows the result of running such a decoder
system with one picture splitter, four macroblock split-
ters, and a 4 x 4 tiled portion of our display wall as
decoder and display servers. The implementation
achieves 38.9 frames per second on the Orion fly-
through MPEG video stream with 3,840 x 2,800 reso-
lution. The maximum communication bandwidth
requirement for any node in the PC cluster is less than
50 Mbits per second.

Parallel rendering with k-way replication

A high-resolution display wall introduces new chal-
lenges in parallel rendering of images using a PC cluster.
The goal is to develop parallel rendering algorithms that
achieve high utilization of hardware resources such as

IEEE Computer Graphics and Applications

27

Applications of Large Displays

8 Parallel ren-
dering with
k-way
replication.

28

3D model
+ — | Scene graph
A Q construction
g
= + E— Object
o replication
\j . .
i Objects + tiles +— Traversals and
ﬁ; assignments
+ — | Renderand
composite
[}
i
c
O @ h
Y + Display

Final pixels

CPUs, graphics cards, and memories while requiring
minimal network bandwidth.

A parallel rendering algorithm’s performance
depends mainly on how it partitions and distributes
graphics primitives among rendering PCs. Chromium,
for example, supports a sort-first partitioning algorithm
that distributes OpenGL graphics primitives among the
rendering servers in real time as the application gener-
ates them.® This approach is flexible and requires mini-
mal memory on each PC, but requires a high-bandwidth
network to keep up with the graphics hardware on the
rendering PCs. To overcome this problem, it’s usually
possible to replicate static graphics primitives in a scene
graph on the rendering PCs and transmit only a set of
object IDs to inform a rendering PC to render part of the
scene graph. Although this approach requires a lower
network bandwidth, it usually requires every PC to have
enough memory space to hold the entire scene graph.

We propose a k-way replication strategy to overcome
the limitations of both of these approaches.’ The strat-
egy replicates the graphics primitives of each scene
graph object on k of the n rendering PCs (k << n),
which avoids full replication of the scene graph, but still
allows efficient, view-dependent partitioning of the
objects during interactive parallel rendering. With
dynamic load-balancing algorithms, a system employ-
ing k-way replication can achieve rendering perfor-
mance and network bandwidths close to full replication,
while incurring storage costs closer to 1-way replication.

Our investigation has focused on k-way partitioning
strategies and dynamic load-balancing algorithms. Dur-
ing the offline phase (top of Figure 8), we organize the

July/August 2005

input 3D model into a multiresolution hierarchy of objects
and choose k rendering PCs to store each object. This
phase aims to distribute copies of the objects such that a
later load-balancing algorithm can perform an effective
view-dependent partition, while avoiding starvation of
any server as the user zooms in to view a subset of the
scene. During a later online phase (bottom of Figure 8),
we perform a dynamic, view-dependent partition of the
objects, selecting exactly one out of k servers to render
each object so as to balance the load among the render-
ing servers and minimize network transmission costs. We
use a peer-to-peer, sort-last communication strategy to
composite the rendered images into the final image.

We've investigated the tradeoffs of various choices at
each stage of the process using an 800-Mbyte scanned-
in 3D model of Michelangelo’s David. We rendered the
model on a 24-node PC cluster in which each node has
256 Mbytes of memory. For object replication, we’ve
experimented with various granularities of k. For
dynamic object assignments, we’ve tried several algo-
rithms, such as assigning objects to the least loaded serv-
er first, or optimizing assignments to minimize pixel
redistribution and composition overheads.

We've learned from our experiments that with a small
k (for example, k = 4), efficiency improves quickly,
approaching n-way (full) replication. Choosing k is a
tradeoff between communication and memory usage.
A simple method for dynamic screen partitioning based
on proximity to dots representing servers performs quite
well. Our rendering pipeline from client to display can
render Michelangelo’s David at about 40 million poly-
gons per second with 65-percent efficiency. This shows
that we can indeed support 3D models larger than any
single PC’s memory capacity while retaining the reduced
communication overheads of dynamic view-dependent
partitioning.

Distributed sound server

Providing a truly immersive and informative experi-
ence requires both a high-resolution, large-scale visual
display and a multichannel spatialized audio system.
Our distributed sound server aims to scale with the clus-
ter’s size and networking bandwidth, thus providing
flexibility in audio rendering. The old adage of “sound
guides the eyes” is certainly true in our system, as we
can use spatially targeted auditory events to draw atten-
tion to important aspects of visualizations that might lie
outside the visual field.'® Also, combined with multi-
channel audio, the large visual display can be useful for
browsing large collections of sound effects and music.

Our system streams sound sources from a distribu-
tor computer to the display-cluster computers, each of
which runs a soundlet program. The main obstacle is
that because the soundlets play on different PCs, they
must be synchronized. The human ear is sensitive to tim-
ing variations of less than 1 ms. Network packet laten-
cy is less than this threshold, letting our data packets
double as synchronization markers. This is important
because the sound card crystals all have slightly differ-
ent frequencies, causing them to drift apart over time.

To synchronize the sound cards we first require the
distributor computer to have a sound card; it then serves

as the master clock. Second, we provide a jitter buffer
for each soundlet. If, at a network-synchronization
point, the jitter buffer on a soundlet doesn’t match, we
slow down or speed up the playback timing by locally
resampling the sound in real time. This results in each
of the soundlets tracking the distributor’s notion of time.
Figure 9 depicts the architecture of such a distributed
sound system.

The final system is highly flexible. It lets us change the
number of channels of sound, location of a streamed
channel, delay time, playback rate, synchronization rate,
compression, and distribution method of the streamed
audio. In our current system, all of this works together
to give us a 48-channel spatialized sound system.

Applications using tiled displays

Scientific visualization and collaboration have driven
the development of display walls. We’ve been working
with scientists to develop software tools for genomic
data visualization, isosurface extraction, and collabo-
rative control rooms. We’ve also developed a synchro-
nized programming environment to help scientists bring
legacy applications to display walls.

Genomics data visualization

We’ve been working with genomic scientists on visu-
alizing large-scale microarray data to facilitate analysis
and discovery of biological information. Biologists cre-
ate microarray data sets by measuring the activity level
of genes in an organism under various conditions. This
results in matrices containing hundreds of measure-
ments for each gene in the genome. Simple organisms
such as yeast have about 6,000 genes, whereas humans
have about 30,000. Biologists analyze this data to iden-
tify genes’ biological functions, searching for patterns
that imply that a group of genes behave together to per-
form a task. Although biologists use many purely numer-
ical methods for this analysis, the high level of noise in
the data and the lack of a gold standard for verifying
results cause data visualization to be a key component
of analysis. However, normal desktop resolutions let
researchers view detailed data for only about 100 genes
simultaneously. This seriously hampers efforts to find
correlations across disparate genes, as well as the abil-
ity to analyze multiple aspects of the data concurrently.

To address this problem, we’ve developed applica-
tions that let researchers view genomic data on large
high-resolution displays. The 24-node display wall pro-
vides 24 times the information of a normal desktop, or
raw data for about 2,400 genes. Using the display wall’s
large scale and high resolution lets us look at multiple
views of each microarray data set, enabling more
detailed analysis of relationships between genes and
groups of genes. For example, using principal compo-
nent analysis (PCA), we define a 3D space that we pro-
ject the data onto. This projection groups genes with
similar measurements near each other. These group-
ings, which can be dense and hard to distinguish on a
desktop display, become easier to distinguish when
viewed on a large display.

We’ve deployed a display wall at the Lewis-Sigler
Institute for Integrative Genomics. Figure 10 shows our

Multichannel :...; Soundlet
audio stream !
Distributor .
AN > @ —_-[--—-p| Soundlet
E Soundlet , o
i Sound card - Soundlet
——» Resampler -

—— Audio data
» Clock info

9 Architecture of a distributed sound server that renders multichannel

audio.

10 Visualizing genomics data sets on a tiled display system.

system displaying a yeast cell cycle data set on a tiled
display. On the left is a display of raw data measure-
ments and on the right is our PCA projection. The dis-
play’s large format creates an environment in which
multiple researchers can interact collaboratively. Such
collaborations are especially critical in fields like
genomics, where computational and biological
researchers work side by side, analyzing and interpret-
ing the data.

Scalable isosurface extraction

Applications such as large-scale simulations typical-
ly generate scalar fields and store them as volumetric
data sets. A known method for visualizing the scalar
field is to display isosurfaces where F(x, y, z) =v for a
given threshold v. Visualizing the isosurfaces of massive
data sets on a scalable display system requires an algo-
rithm that can be efficiently parallelized using limited
network bandwidth.

We’ve developed a hybrid isosurface extraction algo-
rithm that shares several features with existing accelera-
tion methods. The algorithm casts rays into an octree to
identify visible seed cells and then uses propagation to
extend the isosurface from the seed cells. Unlike previ-
ous propagation methods that propagate to the whole

IEEE Computer Graphics and Applications

29

Applications of Large Displays

30

11 We achieve fast isosurface extraction by casting
rays into the data set and propagating. (a) After 1
second, 85 percent of the surface is extracted, and (b)
after 2 seconds it’s 99.5-percent extracted. Extracting
the remaining 0.5 percent takes 16 seconds.

isosurface, our method uses distance and viewing crite-
ria to decide where to stop propagation, and thus gener-
ates only a small piece of the isosurface connected to each
seed cell.! We patch these pieces together to form a view-
dependent region of the isosurface, which includes all
visible triangles as well as a small number of occluded tri-
angles near the visible surface (see Figure 11).

Because the isosurface extraction from each seed is
independent of the others, this method is natural as the
base method for building a parallel isosurface visual-
ization system. We’ve built such a system for our tiled
display. The user selects viewing parameters from the
console computer. Based on these parameters, the sys-
tem calculates an individual viewport for each display
tile. The display computers load the data set and per-
form the isosurface extraction based on their viewport
setting. The user can choose between local and remote
display options. When the system displays the data
locally, the display wall computers can provide high-res-
olution visualization. When it displays the data remote-
ly, the display wall computers send extracted triangles
to another computer console for progressive display.
This enables visualization on a desktop computer of lim-
ited computation power. In both scenarios, changing
viewing parameters serves as a synchronization signal
to interrupt computation for the previous frame, clear
the screen, and start the new frame.

Synchronized programming environment

There are many existing closed- and open-source
applications that users want to bring to a tiled display.
Running such applications from a PC cluster can be chal-
lenging without proper tools.

One way to run an application on a tiled display wall
is to use a synchronized program execution model. In
this model, each server runs a duplicate instance of the
application, similar to techniques used in the fault-tol-
erant community. However, we change the environment
information for each instance, such as which tile in the
display they represent. This model aims to minimize
communication over the network. The system need send
only control messages such as user input and synchro-
nization, which tend to require little bandwidth.

July/August 2005

In the synchronization model, we establish a syn-
chronization boundary such that within this boundary
all instances assume identical behavior. We’ve experi-
mented with having this boundary at both the system
level and the application level. With the synchronization
boundary at the system level, each server produces iden-
tical graphics primitives and the graphics accelerator
performs tile-specific culling such that each display-tile
renders only the primitives falling within its server’s
screen area (see Figure 12). This technique is especially
useful if the application’s source code isn’t available.
Moving the synchronization boundary to the application
level enables more optimizations. A view-dependent
software layer can restrict itself to generating tile-spe-
cific primitives (rather than generating all of the primi-
tives for the scene). An example would be a scene graph
render program that organizes the scene data in a hier-
archy of objects. Given a tile-specific view frustum, the
program can remove objects falling completely outside
the frustum. Such an approach can improve processing
performance as well as data transfer performance.

We’ve implemented a synchronization framework for
both system and application levels.!? The framework
consists of barrier synchronizations set up on certain
function calls. One server acts as a coordinator and
broadcasts the result of the function call to all other
servers. At the system level, we use dynamic linked
library replacement to intercept and synchronize on
frame buffer swaps, timer calls, and I/O operations. At
the application level, we’ve implemented a simple API
including calls such as SynchronizeResult (),
which synchronizes a barrier and distributes results.

Our results show that the synchronization commu-
nication overhead is small, less than 500 bytes per
frame. For immediate-mode 3D graphics applications,
we’ve achieved speedups of 1.2 to 4.2 times that of a
client-server approach (such as distributing primitives).
In general, the synchronization model performs better
when there are many primitives and the per-primitive
computation time is low.

Multiuser shared display system

Alarge-format display system for a collaborative envi-
ronment should virtually connect displays such that
users can move display information seamlessly from one
display to another. Ideally this will provide support for
collaboration independent of the platforms, operating
systems, and applications used. Such a system should
also let multiple users work within the shared display
space simultaneously.

Existing tools that support display sharing are either
platform dependent (HP SharedX, for example) or too
coarse grained (such as virtual network computer, or
VNC, which shares the entire desktop).

To accommodate cross-platform display sharing with
finer-grained control, we extended the VNC protocol.
We added a ShareWindows message, which only sends
the pixels of selected windows. The modified VNC serv-
er runs on a collaborator’s PC and lets collaborators
share or unshare selected windows to a group display.

The system should also let multiple users simultane-
ously interact with the shared display. Existing window-

ing systems assume a single-user

Operating environment

Operating environment

model with a single cursor, keyboard,

\

[

and input focus. Our multicursor X \
window manager®® provides for mul-
tiple simultaneous cursors at the
desktop level and lets multiple users

Scene management
scene description

]
y 1

Scene management
scene description

4

concurrently interact with all com-
ponents on a shared display, includ-
ing applications, system menus, and

Scene rendering

Y AN vl v

Synchronization level

Scene rendering

window positioning.
We've deployed an initial version

Graphics primitives
Y Y

Graphics primitives

of the multiuser shared display sys-
tem in the control room at the
Princeton Plasma Physics Lab, as Fig-
ure 13 shows. The shared display

A

~

system incorporates the multicursor

Y {

window manager with application
sharing. Feedback from control

[Graphics subsystem]

[Graphics subsystem

room users has been positive, and
the system has quickly become a nec-

To the projector

\i

To the projector

essary collaborative mural for the

lab’s experimental fusion research.

Future work
During the development of our

&

second-generation display wall sys-
tem, we focused on usability, scala-
bility, and application impact.
Large-scale, high-resolution display
systems can significantly impact dig-
ital design, scientific data visualiza-
tion, collaboration, and other
disciplines. The key to achieving
such impact, however, is to work
closely with researchers in other dis-
ciplines to identify key problems.

Display walls are still difficult to
use. To convince real users to use
them, we must continue making dis-
play systems more usable. Managing
component failures is a significant
challenge in scaling display walls.
When we scaled from eight to 24
projectors, we purchased additional
components to prepare for compo-
nent failures. However, the failure
rates exceeded our anticipation. Since November 2000,
our average annual component failure rate has been six
projectors, three graphics cards, two fans, and one PC
power supply. This averages to about one component fail-
ure a month for a 24-projector tiled display wall driven
by a 24-PC cluster. We found that automatic calibration
and cluster-management tools are extremely helpful for
quick recalibration and reconfiguration after compo-
nent failures, especially when digital design classes and
student labs are using the display wall system. Howev-
er, challenges remain in failure detection, correction,
and tolerance for display walls. Tools providing reduced
resolution or performance modes to tolerate component
failures would reduce ownership costs and increase the
reliability of heavily used display wall systems.

As we’ve shown, we can achieve high parallel ren-

12 Synchronized application execution with tile-specific clipping.

dering performance with relatively low network band-
width requirements by carefully designing algorithms
with replicated data on a cluster. However, we’ve only
considered cases in which data structures fit in main
memory. The next challenge is to develop out-of-core
algorithms to deal with massive amounts of data.

We were pleasantly surprised by the positive feed-
back from the shared display system at Princeton Plas-
ma Physics Lab and suspect that such a system is an
important use case for the display wall. Our work on a
multicursor X window manager is a first step toward pro-
viding systems software support for a shared display sys-
tem. Ultimately, we want to let users with heterogeneous
computing devices communicate with each other and
visualize each other’s information effortlessly and
seamlessly. [|

IEEE Computer Graphics and Applications

13 Shared
display using
multicursor X
and application
sharing in the
control room of
Princeton Plas-
ma Physics Lab.

31

Applications of Large Displays

32

Acknowledgments

US Department of Energy grants DE-FC02-
01ER25456 and B543440 and US National Science
Foundation grants CNS-0406415 and EIA-0101247 sup-
ported this work in part.

References

1. K. Liet al., “Building and Using A Scalable Display Wall
System,” IEEE CG&A, vol. 20, no. 4, 2000, pp. 671-680.

2. H. Chenetal., “Scalable Alignment of Large-Format Mul-
tiprojector Displays Using Camera Homography Trees,”
Proc. IEEE Visualization, IEEE CS Press, 2002, pp. 339-346.

3. R.Raskar et al., “iLamps: Geometrically Aware and Self-
Configuring Projectors,” Proc. ACM Siggraph, ACM Press,
2003, pp. 809-818.

4. A.Majumder and R. Stevens, “LAM: Luminance Attenua-
tion Map for Photometric Uniformity across a Projection
Based Display,” Proc. ACM Virtual Reality and Software
Technology, ACM Press, 2002, pp. 147-154.

5. G.Wallace, H. Chen, and K. Li, “Color Gamut Matching for
Tiled Display Walls,” Proc. Immersive Projection Technolo-
gy Symp., ACM Press, 2003, pp. 293-302.

6. G.Wallace, “Display Wall Cluster Management,” Workshop
on Commodity-Based Visualization Clusters, IEEE Visual-
ization, 2002; http:/cs.princeton.edu/omnimedia/papers/
Display%20Cluster%20Management.doc.

7. H. Chen, K. Li, and B. Wei, “A Parallel Ultra-High Resolu-
tion MPEG-2 Video Decoder for PC Cluster Based Tiled Dis-
play System,” Proc. Int’l Parallel and Distributed Processing
Symp. (IPDPS), IEEE CS Press, 2002, p. 30.

8. G. Humphreys et al., “Chromium: A Stream Processing
Framework for Interactive Graphics on Clusters,” Proc. Sig-
graph, ACM Press, 2002, pp. 693-702.

9. R. Samanta et al., “Parallel Rendering with K-Way Repli-
cation,” IEEE 2001 Symp. Parallel and Large-Data Visual-
ization and Graphics, IEEE Press, 2001, pp. 75-84.

10. P. Cook et al., “N>>2: Multi-Speaker Display Systems for
Virtual Reality and Spatial Audio Projection,” Proc. Int’l Conf.
on Auditory Display (ICAD), 1998; http://www.icad.org/
websiteV2.0/Conferences/ICAD98/papers/Cook/Cook.pdf.

11. Z.Liu, A. Finkelstein, and K. Li, “Progressive View-Depen-
dent Isosurface Propagation,” Computers & Graphics, vol.
26, no. 2, 2002, pp. 209-218.

12. Y. Chen et al., “Software Environments for Cluster-Based
Display Systems,” Proc. Symp. Cluster Computing and the
Grid, IEEE CS Press, 2001, p. 202.

13. G. Wallace et al., A Multicursor X Window Manager Sup-
porting Control Room Collaboration, tech. report TR-707-
04, Dept. of Computer Science, Princeton Univ., 2004.

Grant Wallace is a research staff
member in the Department of Com-
puter Science at Princeton University.
His research interests include collab-
orative software environments and
L & ; scalable display systems. Wallace has

s : an MS in computer science from Rut-
gers University. Contact him at gwallace@cs.princeton.edu.

July/August 2005

Otto J. Anshus is a professor in the
Department of Computer Science at
the University of Tromsg, Norway.
His research interests include oper-
ating systems and cluster and Grid
computing. Anshus has a PhD in
computer science from the University
of Tromsg, Norway. He is a member of the IEEE Computer
Society, the ACM, and the Norwegian Computer Society.
Contact him at otto@cs.uit.no.

Peng Bi has an MS in computer science from Princeton
University. Her research interests include security, operat-
ing systems, and large displays. Contact her at pbi@cs.
princeton.edu.

Han Chen is a research staff mem-
ber in the IBM T.J. Watson Research
Center. His research interests include
distributed computing systems, scal-
able display systems, and multime-
dia. Chen has a PhD in computer
science from Princeton University. He
is a member of the IEEE Computer Society. Contact him at
chenhan@us.ibm.com.

Yuqun Chen is a researcher at Microsoft Research. His
research interests include software protection, computer
security, operating systems, and large displays. Chen has a
PhD in computer science from Princeton University.
Contact him at yuqunc@microsoft.com.

Douglas Clark is a professor of
computer science at Princeton Uni-
versity. His research interests include
computer architecture, low-power
techniques, and clocking and timing
indigital systems. Clark has a PhD in
computer science from Carnegie Mel-
lon University. Contact him at doug@cs.princeton.edu.

Perry Cook is a professor of com-
puter science, with a joint appoint-
ment in music, at Princeton
University. His research interests
include music synthesis and model-
ing, animation, and music percep-
tion and cognition. Cook has a PhD
in electrical engineering from Stanford University. He is a
member of the IEEE, the ACM, and president of the Inter-
national Computer Music Association. Contact him at
prc@cs.princeton.edu.

Adam Finkelstein is an associate
professorin the Department of Com-
puter Science at Princeton Universi-
ty. His research interests include
computer graphics, with a recent
emphasis on nonphotorealistic ren-
dering and animation. Finkelstein
has a PhD in computer science from the University of Wash-
ington. Contact him at af@cs.princeton.edu.

Thomas Funkhouser is an asso-
ciate professor in the Department of
Computer Science at Princeton Uni-
versity. His research interests include
computer graphics, geometric model-
ing, and shape analysis. Funkhouser

: has PhD in computer science from the
Umverstty of California, Berkeley. Contact him at
funk@cs.princeton.edu.

Anoop Gupta has a BSE in computer science from
Princeton University.

Matthew Hibbs is a graduate stu-
dent at Princeton University. His
research interests include visualizing
and analyzing genomic data to iden-
tify gene and protein functions. Con-
tact him at mhibbs@cs.princeton.
edu.

Kai Li is a Charles Fitzmorris Pro-
fessor in the Department of Comput-
er Science at Princeton University.
His research interests include oper-
ating systems, parallel architecture,
scalable display systems, and data
exploration. Li has a PhD in com-

puter science from Yale University. He is a senior member
of the IEEE Computer Society and a Fellow of the ACM.
Contact him at li@cs.princeton.edu.

Zhiyan Liu is a PhD candidate in the
Department of Computer Science at
Princeton University and a software
engineer at Google. Her research
interests include large scale data. Con-
tact her at zhiyan@google.com.

Rudrajit Samanta is a Studio Tools software engineer
at Pixar Animation Studios. His research interests include
computer graphics, large-scale displays, and parallel com-
puting. Samanta has a PhD in computer science from
Princeton University. Contact him at rudro@pixar.com.

Rahul Sukthankar is a principal
research scientist at Intel Research
and adjunct research professor at
Carnegie Mellon University. His
research interests include computer
vision and machine learning. Suk-
thankar received a PhD in robotics
from Carnegie Mellon. Contact him at rahuls@cs.cmu.edu.

Olga Troyanskaya is an assistant
professorin the Department of Com-
puter Science and the Lewis-Sigler
Institute for Integrative Genomics at
Princeton University, where she leads
m a bioinformatics and functional
i ﬂ!‘f‘. genomics group. Her research inter-
ests include biological data integration, visualization of
genomic data, microarray analysis, and prediction of pro-
tein function and biological pathways. Troyanskaya
received a PhD in biomedical informatics from Stanford
University. Contact her at ogt@cs.princeton.edu.

Computer Society,
you do.

Join a standards working group at
www.computer.org/standards/

IEEE Computer Graphics and Applications

33

