Sort-Twice Algorithms for Polygon Rendering with PC Clusters

Thomas Funkhouser, Kai Li, and Rudrgjit Samanta
Princeton University

1 Introduction

The objective of our research is to investigate how to con-
struct a high-performance and inexpensive parallel ren-
dering system leveraging the aggregate performance of
multiple commodity graphics accelerators in PCs con-
nected by a system area network.

The main challenge is to develop efficient partition-
ing and load balancing algorithms that scale well within
the processing, storage, and communication characteris-
tics of a PC cluster. As compared to traditional, tightly-
integrated parallel computers, the relevant limitations of a
PC cluster are that the processors (PCs) do not have fast
access to a shared virtual address space, and the band-
widths and latencies of inter-processor communication
are significantly inferior. Moreover, commodity graphics
accelerators usually do not allow efficient access through
standard APIs to intermediate rendering data (e.g., frag-
ments), and thus the design space of practical parallel
rendering strategies is severely limited. The challenge is
to develop algorithms that partition the workload evenly
among PCs, minimize extra work due to parallelization,
scale as more PCs are added to the system, run at interac-
tive frame rates (30 fps), and work efficiently within the
constraints of commodity components.

Over the last four years, we have developed several al-
gorithms and systems for parallel rendering on PC clus-
ters. Our initial system was built to drive a multi-projector
display wall [8] — there we used a sort-first strategy with
dynamic coarse-grained load balancing algorithms. More
recently, we have investigated how to use a PC cluster to
drive a single display without using special purpose hard-
ware [5, 6, 7]. This paper reviews some of the main ideas
behind this recent work: sort-twice partitioning [6] and
k-way replication [5]. The following two sections de-
scribe these two approaches and analyze how well they
work. The final two sections summarize experimental re-
sults achieved with a working prototype system and dis-
cuss future research directions.

2 Sort-Twice Partitioning

Parallel rendering algorithms can be classified by the
stage at which data is sorted [3]. Recent work in clus-

ter rendering has generally focused on sort-first and sort-
last approaches. For instance, WireGL [1] uses a sort-first
strategy to distribute rendering primitives simultaneously
from multiple clients to multiple servers. Although this
approach supports immediate-mode APIs (OpenGL), its
efficiency (utilization of the graphics hardware) is poor
because the bandwidth of cluster networks is at least an
order of magnitude less than that of graphics cards. Also,
the scalability of sort-first systems is limited by the in-
creasing overheads of redundant rendering when primi-
tives overlap multiple tiles. Alternatively, sort-last sys-
tems have been built for PC clusters [10], but they have
high pixel composition bandwidth overheads that limit the
frame rate and/or resolution of the system.

Our approach is to use a hybrid parallel rendering algo-
rithm that combines features of both sort-first and sort-last
strategies [6]. We call this approach “sort-twice.” Like a
pure sort-last system, we partition the 3D model into dis-
joint groups of polygons, render each group on a different
PC, and use depth compositing to merge the resulting par-
tial images into a final image for display. As in any sort-
last system, each primitive is rendered exactly once, and
there are no overheads due to redundant rendering. How-
ever, like a sort-first system, we partition the 3D model
dynamically for each frame using a view-dependent algo-
rithm that minimizes screen-space overlaps of primitives
rendered on different PCs. After each server has rendered
its primitives, we employ a peer-to-peer networking phase
in which each server is responsible for compositing pixels
for separate tiles of the screen. Since both 2D screen and
3D scene partitions are created together dynamically in a
view-dependent context for every frame, the hybrid load
balancing algorithm can create 2D tiles and 3D groups
such that the region of the screen covered by any group of
3D polygons is closely correlated with the 2D tile of pix-
els assigned to the same PC. In this case, less processing
and network bandwidth is required to transfer and com-
posite pixels during each frame.

The advantage of this hybrid sort-twice approach over
pure sort-first and pure sort-last is motivated by the exam-
ple in Figure 1, which shows visualizations of the over-
heads incurred by different parallel rendering strategies
while rendering a 3D model of a hand (more light gray
roughly corresponds to greater overheads). Figure 1(a)

(a) Sort-first

(b) Sort-last

(c) Hybrid

Figure 1: Visualizations of overheads during parallel rendering of hand with different algorithms. In (a), highlighted
object bounding boxes span multiple tiles and must be rendered redundantly. In (b) and (c), brighter pixel intensities

represent more image compaosition overheads.

shows a pure sort-first partition of pixels into tiles (white
lines), with primitive groups overlapping multiple screen
tiles highlighted in gray. Figure 1(b) shows a pure sort-last
partition of primitives, with pixels requiring composition
highlighted in gray. Finally, Figure 1(c) shows a hybrid
sort-first and sort-last partition. Note that primitives are
rendered only once and pixel composition is required only
for thin swaths of pixels at the boundaries of tiles.

During simulations with varying system parameters, we
find that the sort-twice algorithm outperforms sort-first
and sort-last algorithms in almost all tests, including ones
with larger numbers of processors and higher screen res-
olutions. Figure 2 shows sample breakdowns of server
processing times for each algorithm. On the leftmost set
of bars (“Sort-First”), note the the dark bands (“Overlap
Render”) representing overheads due to redundant render-
ing of objects overlapping multiple tiles. On the right-
most set of bars (“Sort-Last”), note the light colored bands
(“Pixel Read” and “Pixel Write”) representing overheads
due to pixel composition. In both cases, the overheads be-
come a larger percentage of the total server time with in-
creasing numbers of processors, which indicates limited
scalability. The sort-twice algorithm (“Hybrid”) largely
avoids both types of overheads, thereby providing much
better efficiency and scalability.

3 K-way Replication

Although communication overheads can be reduced by
partitioning the workload in a view-dependent manner, a
direct implementation of the sort-twice approach requires
either replicating the entire 3D scene on every PC [6, 7] or
dynamically re-distributing primitives in real-time as the
user’s viewpoint changes [4]. Unfortunately, neither ap-
proach is practical for a PC cluster, since the memory of
each PC is usually too small to store all the data for a very
large model, and the network is too slow to transmit 3D
primitives between PCs in real-time.

400

350
300 4
B Imbalance
& 2507 OFinal Read
£ 0] OPixel Write
g B u OPixel Read
= 150 4 M Overlap Render
H Dideal Render
100 1 u
I] il
8 16 32 64 8 16 32 64 8 16 32 64
Sort First Hybrid Sort Last

Figure 2: Server time breakdowns for sort-first, sort-last,
and the hybrid algorithms for screen resolution 1280x960.
The height of each bar represents the time required for
processing in the server.

Our approach is based on k-way replication of the scene
data [5]. During an off-line phase, we organize the in-
put 3D model into a multiresolution hierarchy of ob-
jects and replicate each object on k& out of n server PCs
(k << m). Then, during an on-line phase, we perform
a view-dependent partition of the objects (as described in
the previous section), selecting exactly 1 out of & servers
to render each object. The key idea is to avoid replicat-
ing the entire 3D model on every PC and to avoid real-
time transmission of 3D primitives, while achieving re-
duced communication overheads due to dynamic view-
dependent partitioning.

The motivations for this k-way replication strategy are
evident in Figure 3. The image on the left (Figure 3(a))
shows the partition for a pure sort-last system with 1-way
replication (no copies)— it must composite nearly full-
screen images if the primitives assigned to each proces-
sor are distributed uniformly throughout the model (pro-
cessor assignments are indicated by color). Alternatively,

@k=1

(pure sort-last)

(b) k=4

(partial replication)

() k=16

(full replication)

Figure 3: K-way replication (k = 4) enables view depen-
dent partitioning without full replication. Color of each
bounding box indicates which server renders its enclosed
triangles.

a system with n-way replication (full replication) can re-
duce the image composition overheads by assigning prim-
itives to processors dynamically for each view in order to
minimize the size of screen regions rendered by different
processors [6]. For instance, in Figure 3(c)), image com-
position is required only for the thin swaths at the seams
between primitives of different colors. Unfortunately, this
purely view-dependent partitioning approach requires the
entire scene to be replicated on every processor. The k-
way replication approach avoids full replication of the
scene data but still can employ a view-dependent load
balancing algorithm, since every primitive is available on
more than one processor. With k-way replication, we are
able to construct partitions similar to those of n-way repli-
cation but with storage costs closer to 1-way replication
(see Figure 3(b)).

Figure 4 shows results of simulations aimed at evalu-
ating the trade-offs of k-way replication in a sort-twice
parallel rendering system. As the replication factor (k)
increases, the system’s efficiency increases, but so too
do the storage requirements. However, note that the ef-
ficiency improvement is non-linear, with most of the ben-
efits of replication occurring for small values of k. As
a result, we find that moderate replication factors (e.g.,
k < 4) provide almost all the benefit of full replication
without all the cost.

4 Experimental Results

We have developed a prototype system that implements
the methods described in this paper, and we use it to
conduct experiments to evaluate performance. We use
the system’s efficiency (useful polygon rendering time di-
vided by total frame time) at interactive frame rates (15

85
2

80 |

75

70

65

60 | /

55 4

Efficiency (%)

50

0 2 4 6 8 10 12 14 16

K (replication factor)

Figure 4: Plot of parallel rendering efficiency with varying
replication factors (k). Note that the Y-axis begins at 50%.

frames/second) as our primary metric for success.

Our experimentation platform is a PC cluster with a
client PC, 24 server PCs, and a display PC. Each PC is
a Dell Precision Workstation 420 with a 733Mhz Pen-
tium 111 CPU, an Intel 840 chipset with 133Mhz front-
side bus, 256MB of dual-channel RDRAM memory, and
a nVidia GeForce-Il chip based graphics card. Each PC
runs Microsoft Windows 2000. The communication net-
work is Myrinet. Each PC uses a previous-generation,
32-bit 33Mhz PCI network interface card that has 2MB
of SDRAM and a 33Mhz LANai-4 network processor.
The 26 PCs are networked together with a 32-port switch
which is implemented with eight 8-port crossbar switches.
We have used the GM driver for Windows 2000 provided
by Myricom. The total cost of the system is around $50K.

We report results of experiments with the three test
models shown in Figure 5. They were selected based
on their complexities and details. Each one contains too
much data to fit into the memory of a single PC, and they
have surface details that motivate a user to zoom in and
examine the models closely.

In every experiment, we logged performance statistics
while the system rendered images for a camera moving
along a simulated user’s viewing path. Each path started
with the camera framing the 3D model. It rotated around
the model (1/2), zoomed up close to the surface, panned
for a while (1/2), and then zoomed back out. Except for
our final speedup results (in the last subsection), the mul-
tiresolution scene graph traversal was set to render around
100,000 polygons per frame on each server.

Figure 6 shows the results of an experiment testing the
scalability of our system as we add more servers. We see
that the system is able to achieve between 30M and 48M
triangles/sec for the three test models in our maximum test
configuration (¢ = 6 and n = 24). The performance in-
cludes the overhead of software image composition and

(a) Michelangelo’s “David” [2]
(8,254,150 triangles, ~800MB)

(b) Face of Michelangelo’s “St. Matthew” [2] (c) Visible Man Skeleton (without feet) [9]
(6,755,412 triangles, ~700MB)

(2,432,525 triangles, ~250MB)

Figure 5: Test models used in our experiments.

the overhead to send result pixels to the display. This
performance represents about 52.1%, 65.3%, and 73.9%
efficiencies for St. Matthew, David, and Visible Man, re-
spectively, while executing at 12.9, 16.25, 20.0 frames per
second.

50

5 —e—Bone "
—— David

B 40 —— St.Matthew
3
& 35
g
2 30 A
s
o 25
=
=}
2 20 A
5
2 15
S
3 10 A

5

0 T T T T

0 5 10 15 20 25

Servers

Figure 6: Plot of millions of polygons per second rendered
by our real system during tests with three large models.

5 Conclusion

This paper describes sort-twice and k-way replication
strategies for parallel rendering with a PC cluster. The
key ideas behind sort-twice is to perform view-dependent
partitions of both the 3D model and 2D screen space in
order to reduce the overheads of pixel composition in a
sort-last system. The key idea behind k-way replication is
to provide a dynamic load balancing algorithm some abil-
ity to perform view-dependent partitioning while avoiding
full replication of the scene data on every PC.

While these ideas may be promising, many problems

remain open for future study and discussion. First, the
methods proposed work only for static scenes. Second,
the network requirements are currently suitable only for
single screen resolutions. Third, the k-way replication
strategy has not yet been implement for out-of-core ren-
dering. Extending the proposed methods to handle these
more difficult situations is a topic for future research.

References

[1] Greg Humphreys, Mathew Eldridge, lan Buck, Gordon Stoll,
Matthew Everett, and Pat Hanrahan. Wiregl: A scalable graphics
system for clusters. In Computer Graphics (SIGGRAPH 2001),
August 2001.

[2] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz,
David Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James
Davis, Jeremy Ginsberg, Jonathan Shade, and Duane Fulk. The
digital michelangelo project: 3D scanning of large statues. In Kurt
Akeley, editor, SIGGRAPH 2000, Computer Graphics Proceed-
ings, pages 131-144, 2000.

[3] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A
sorting classification of parallel rendering. IEEE Computer Graph-
ics and Applications, 14(4):23-32, 1994.

[4] Carl Mueller. Hierarchical graphics databases in sort-first. In Pro-
ceedings of the IEEE Symposium on Parallel rendering, pages 49—
57,1997.

[5] Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Parallel ren-
dering with k-way replication. IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, October 2001.

[6] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal
Singh. Hybrid sort-first and sort-last parallel rendering with a clus-
ter of pcs. In Eurographics/SIGGRAPH workshop on Graphics
hardware, pages 99-108. ACM Press, August 2000.

[7] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and Jaswinder Pal
Singh. Sort-first parallel rendering with a cluster of pcs. In SIG-
GRAPH 2000 Technical sketches, August 2000.

[8] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li,
and Jaswinder Pal Singh. Load balancing for multi-projector ren-
dering systems. In SIGGRAPH *99. Proceedings 1999 Eurograph-
ics/SIGGRAPH workshop on Graphics hardware, Aug. 8-9, 1999,
Los Angeles, CA, pages 107-116. ACM Press, 1999.

[9] Greg Turk. Large geometric models archive. www.cc.gatech.edu,

00
[10] Brian Wylie, Constantine Pavlakos, Vasily Lewis, and Ken More-
land. Scalable rendering on pc clusters. IEEE Computer Graphics
and Applications, 21(4):62-69, July 2001.

