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Abstract

The dynamic membrane potential threshold, as one of the essential properties of a
biological neuron, is a spontaneous regulation mechanism that maintains neuronal
homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the
neuron firing rate is regulated by a dynamic spiking threshold, which has been
extensively studied in biology. Existing work in the machine learning commu-
nity does not employ bioinspired spiking threshold schemes. This work aims at
bridging this gap by introducing a novel bioinspired dynamic energy-temporal
threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed
BDETT scheme mirrors two bioplausible observations: a dynamic threshold has
1) a positive correlation with the average membrane potential and 2) a negative
correlation with the preceding rate of depolarization. We validate the effectiveness
of the proposed BDETT on robot obstacle avoidance and continuous control tasks
under both normal conditions and various degraded conditions, including noisy
observations, weights, and dynamic environments. We find that the BDETT out-
performs existing static and heuristic threshold approaches by significant margins
in all tested conditions, and we confirm that the proposed bioinspired dynamic
threshold scheme offers homeostasis to SNNs in complex real-world tasks.

1 Introduction
A spiking neural network (SNN) is a bioinspired neural network. Each spiking neuron is a mathe-
matical model abstracted from the properties of a biological neuron. Spiking neurons communicate
with each other through spike trains, mimicking the information transfer process of biological neu-
rons [1; 2; 3]. Similar to how biological action potentials are all-or-none impulses, the spikes of SNNs
are commonly binary voltage pulses. Leveraging this binary representation, specifically designed
neuromorphic hardware [4; 5; 6], e.g., TrueNorth [7] and Loihi [8], can run SNNs at extremely low
power levels; they are 75 times more energy-efficient than their deep neural network counterparts on
low-power GPU platforms [9]. As such, recently, SNNs have rapidly emerged as effective models for
robotic control tasks, especially in mobile robots that demand low power consumption [10; 11].

However, existing SNNs suffer from poor generalizability, unlike their biological counterparts.
Biologically, a neuron leverages a spontaneous regulation mechanism to maintain neuronal home-
ostasis [12]—the stable overall spiking firing rate or excitability within a network [13]—to robustly
adapt to different external conditions and offer strong generalization. A dynamic threshold, one
type of regulatory mechanism, plays an essential role in maintaining neuronal homeostasis by reg-
ulating the action potential firing rate; such thresholds are widely observed in different nervous
systems [14; 15; 16; 17; 18; 19; 20; 21; 22; 23]. This threshold can be regarded as an adaptation to
membrane potentials at short timescales [16], and it influences how the received signals of a neuron
are encoded into a spike.
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Even though different dynamic threshold schemes have been observed and extensively studied in
neuroscience, only a handful of existing works investigate bioinspired dynamic threshold rules to
improve the generalization of SNNs. Hao et al. [24] proposed a dynamic threshold method that
relies on a heuristic dynamic scaling factor to gradually slow the growth of a threshold. Conversely,
instead of controlling threshold growth, Shaban et al. [25] leveraged double exponential functions
to manage the threshold decay. Kim et al. [26] used a predefined target firing count to adjust their
threshold but did not define the optimal target firing count. No existing work has demonstrated that a
bioinspired dynamic threshold scheme can achieve homeostasis in real-world tasks. More importantly,
the existing work only validates the proposed dynamic threshold rules under ideal normal conditions
without testing generalization to degraded conditions, which we argue is essential to validate whether
homeostasis is achieved or not.

The direct use of bioplausible models in SNNs remains challenging, as most of these models are
based on single cells in the nervous system and contain many optimized constants. In this work, we
lift this limitation and introduce a novel dynamic energy-temporal threshold (BDETT) scheme for
SNNs; the scheme comprises two components: a dynamic energy threshold and a dynamic temporal
threshold schema. The two components reflect the following two biological observations: in vivo, the
dynamic threshold exhibits a positive correlation with the average membrane potential and a negative
correlation with the preceding rate of depolarization (i.e., the excitatory status) [16]. The dynamic
energy threshold is inspired by a biological predictive model which can predict the occurrences of
spikes based on the previous membrane potential in the inferior colliculus of a barn owl [16]. The
proposed dynamic temporal threshold component is inspired by the fact that a monoexponential
function can effectively present a negative correlation [17; 22]. Notably, we provide an analysis of the
original biological models and propose layerwise statistical cues for SNNs to replace the constants in
the two original biological models.

We integrate the proposed BDETT into two widely used SNN models: a spike response model
(SRM) [27] and a leaky integrate-and-fire (LIF) model [28]. The effectiveness of BDETT is validated
with these two SNN models for autonomous robotic obstacle avoidance, continuous control and image
classification tasks under normal and various degraded conditions, e.g., dynamic obstacles, noisy
inputs, and weight uncertainty. Extensive experimental results validate that the SNNs equipped with
the proposed BDETT offer the strongest generalization across all tested scenarios. More importantly,
we quantitatively validate that BDETT can significantly increase the homeostasis of the host SNN for
robotic control tasks. This is the first work to demonstrate that dynamic threshold schemes can offer
bioplausible homeostasis to SNNs in robotic real-world tasks under normal and degraded conditions,
dramatically enhancing the generalizability and adaptability of the host SNNs.

In particular, we make the following contributions in this work:

• We introduce a bioinspired dynamic threshold scheme for SNNs that increases their general-
izability.

• We devise a method that uses layerwise statistical cues of SNNs to set the parameters of our
bioinspired threshold method.

• We validate that the proposed threshold scheme achieves bioplausible homeostasis, dramati-
cally enhancing the generalizability across tasks, including obstacle avoidance and robotic
control, and in normal and degraded conditions.

Scope We propose a novel approach to setting the parameters of our threshold scheme using layerwise
statistical cues of an SNN. Although this is essential for the proposed method to be effective,
implementing these statitical blocks directly in neuromorphic hardware may require extra engineering
efforts, which is out of the scope of this work.

2 Background and Related Work
2.1 Spiking Neural Networks (SNNs)
Various models for spiking neurons have been described to mathematically describe the properties of
a nervous neuron. Typically, three conditions are considered by these models: resting, depolarization,
and hyperpolarization. When a neuron is resting, it maintains a constant membrane potential. The
change in membrane potential can be either a decrease or an increase relative to the resting potential.
An increase in the membrane potential is called depolarization, which enhances the ability of a cell to
generate an action potential; it is excitatory. In contrast, hyperpolarization describes a reduction in
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the membrane potential, which makes the associated cell less likely to generate an action potential,
and, as such, is inhibitory. All inputs and outputs of a spiking neuron model are sequences of spikes.
A sequence of spikes is called a spike train and is defined as s(t) = Σt(f)∈Fδ(t − t(f)), where F
represents the set of times at which the individual spikes occur [29]. Typical spiking neuron models
set the resting potential as 0. However, existing models achieve depolarization and hyperpolarization
in substantially different ways. In the following, we briefly review two commonly used models: the
spike response model (SRM) [27] and leaky integrate-and-fire (LIF) model [28]. More details about
these two models are provided in Supplementary Note 1.

Spike Response Model (SRM) An SRM first converts an incoming spike train si(t) into a spike
response signal as (ε ∗ si)(t), where ε(·) is a spike response kernel. Then, the generated spike
response signal is scaled by a synaptic weight wi. Depolarization is achieved by summing all the
scaled spike response signals: Σiwi(ε ∗ si)(t). When incoming spike trains trigger a spike s(t),
the SRM models hyperpolarization by defining a refractory potential as (ζ ∗ s)(t), where ζ(·) is a
refractory kernel.

Leaky Integrate-and-Fire (LIF) An LIF model is a simplified variant of an SRM. This scheme
directly processes incoming spike trains and ignores the spike response kernel. Hyperpolarization is
achieved by a simplified step decay function, fd(s(t)) = D for s(t) = 0; 0 for s(t) = 1.

2.2 Spiking Neural Networks for Robot Control
Biological neural circuits have an impressive ability to avoid obstacles robustly in complex dynamical
environments, e.g., as in dragonfly flight trajectories. Inspired by this observation, recently, re-
searchers have explored SNNs for obstacle avoidance [30; 31; 32; 33]. For example, Tang et al. [33]
devised an SNN to mimic a neurophysiologically plausible connectome of the brain’s navigational
system without assuming all-to-all connectivity. Following the path, Tang et al. [9] proposed a
spiking deep deterministic policy gradient (SDDPG) method to train a LIF-based spiking actor-
network (SAN) for mapless navigation. They show that SNNs can robustly control a robot in mapping
tasks while being able to explore an unknown environment. SNNs have also been proposed for
continuous robot control tasks. Patel et al. [34] proposed to combine SNNs with a Deep Q-network
algorithm, improving the robustness to occlusion in the input image. Tang et al. [35] proposed a
population-coded spiking actor network (PopSAN) to solve high-dimensional continuous control
problems, trained using deep reinforcement learning algorithms. Recently, modern neuromorphic
hardware has made it possible to deploy SNNs on neuromorphic processors in ultra-low power
envelopes [9; 36; 37; 38]. Compared to existing convolutional deep policy networks [39] on the
mobile-GPUs such as the Nvidia Jetson TX2, SAN and PopSAN on Loihi neuromorphic processor
consume 75 and 140 times less energy per inferences, respectively. All SNN-based models discussed
above only consider static spiking thresholds. More importantly, experiments show that they suffer
from poor generalization and fail in realistic degraded conditions. In this work, we use both SAN and
PopSAN as testbeds and baseline methods to validate the effectiveness of the proposed bioinspired
dynamic threshold scheme, BDETT.

3 Bioinspired Dynamic Energy-Temporal Threshold (BDETT)
Motivated by the behavior of spiking threshold dynamics in biological nervous systems, we propose
a model with dynamic thresholds that exhibit positive and negative correlations with the average
membrane potential and the preceding rate of depolarization, respectively. To achieve this behavior in
the proposed scheme, given the i-th neuron in the l-th layer at timestamp t+ 1, we define a dynamic
threshold Θl

i(t+ 1) as
Θl
i(t+ 1) =

1

2
(Eli(t) + Tli(t+ 1)), (1)

where Eli(t) is the dynamic energy threshold (DET) of the neuron for ensuring a positive correlation,
and T li (t+ 1) is the dynamic temporal threshold (DTT), which ensures a negative correlation; see
Figure 5a. Note that each neuron has a different dynamic threshold at timestamp t+ 1 based on the
proposed DET and DTT, which we describe below.

Dynamic Energy Threshold (DET) Positive correlations between dynamic thresholds and average
membrane potentials have been observed in several areas of diverse biological nervous systems, such
as the visual cortex and auditory midbrain [17; 21; 22]. With sufficient voltage measurements at
spike onsets, one can fit a model to directly predict the voltage of a threshold [40]. However, the
fitted biological model is only meaningful to a specific nervous system, and stimulus or measurement
uncertainty can significantly impact the model accuracy. Fontaine et al. [16] proposed a biological
predictive approach to assess the occurrence of spikes based on the previous membrane potential; this
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Figure 1: An illustration of the proposed BDETT scheme. a. We demonstrate the intuitive idea
of our BDETT scheme for the i-th neuron in the l-th layer at timestamp t+ 1 from the perspective of
an SRM-based SNN model; Θl

i(t) and vli(t) are the dynamic threshold and postsynaptic membrane
potential of the i-th neuron in the l-th layer at timestamp t, respectively. b & c. Two example DET
and DTT graphs, respectively.
method does not rely on voltage measurements at spike onsets. Even though the model was based on
a barn owl’s inferior colliculus, it exhibits great generality in terms of threshold variability statistics
with other nervous systems (e.g., cortical neurons) [16]. The proposed dynamic energy threshold
is inspired by this biological predictive model but includes several changes that are critical for the
model to be effective in SNNs. For the i-th neuron in the l-th layer at timestamp t, we define

Eli(t) = η(vli(t)− V lm(t)) + V lθ (t) + ln(1 + e
vli(t)−V

l
m(t)

ψ ), (2)

V lm(t) = µ(vli(t))− 0.2(max(vli(t))−min(vli(t))) for i = 1, 2, ..., nl, (3)

V lθ (t) = µ(Θl
i(t))− 0.2(max(Θl

i(t))−min(Θl
i(t))) for i = 1, 2, ..., nl, (4)

where vli(t) is the neuron postsynaptic membrane potential at timestamp t; µ is the mean operator; nl
is the total number of neurons in the l-th layer; and η and ψ are two hyperparameters, which are set
empirically. Figure 5b shows two example graphs for Eq. 2; η controls the shallow slope, and 1

ψ + η

defines the slope of the steep part.

Intuitively, V lθ (t) and V lm(t) define a critical region. When the membrane potential vli(t) is smaller
than V lm(t), the function has a shallower slope, and the threshold value is dominated by V lθ (t). In the
opposite case, the energy threshold has a higher rate of increase to inhibit a high spiking firing rate.
In the biological predictive model proposed by Fontaine et al. [16], V lm(t) and V lθ (t) are the constants
to be optimized during the model fitting process. However, we find that directly adopting these two
fitted constants in an SNN does not result in generalization; see section 4.4. To tackle this challenge,
we leverage the statistical cues of SNN layers to adjust these two important parameters, as defined in
Eqs. 3 and 4. Specifically, we model V lm(t) as the mean of the membrane potentials of the neurons
in the layer l. The mean value is shifted by a bias, 0.2(max(vli(t))−min(vli(t))), which is based on
the range of the potentials; see Eq. 3. The motivation behind this formulation is that we aim to couple
the DET and the potentials of all other neurons in the same layer. Furthermore, we leverage the bias
term to adjust the DET sensitivity to the layerwise potential range. Here, V lθ (t) is modeled based on
similar insights, where we use threshold potentials (i.e., Θl

i(t)) instead of membrane potentials; see
Eq. 4. We note that the performance of the proposed BDETT is not sensitive to the constant value
0.2; see Supplementary Note 7 for details.

Dynamic Temporal Threshold (DTT) We propose a DTT scheme to address the observed negative
correlation between the spiking threshold and the preceding rate of depolarization. Azouz et al.
[17; 22] discovered that a monoexponential function y = a + be−V/C can effectively capture the
negative correlation of a biological neuron, where V = dVm/dt; C is a decay constant; and a, b,
and C are parameters to optimize. The authors applied this function to 42 cortical neurons and
found significant correlations in 92% of the trials [17]. We propose a variant of this mechanism. In
particular, we replace the constant a with an exponential decay function, and we base the decay rate
on the mean of the dynamic thresholds of all neurons in the l-th layer at the previous timestamp t; b
is set to 1. Additionally, we empirically set the delay constant C. Mathematically, for the i-th neuron
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in the l-th layer, the DTT at timestamp t+ 1 is defined as

Tli(t+ 1) = a+ e
−(vli(t+1)−vli(t))

C , (5)

a = −e−|µ(Θli(t))| for i = 1, 2, ..., nl. (6)

Figure 5c shows two example graphs for Eq. 5. These plots highlight that higher depolarization
(i.e., vli(t+ 1)− vli(t) > 0) leads to a lower temporal threshold, while higher hyperpolarization (i.e.,
vli(t+ 1)− vli(t) < 0) significantly increases the temporal threshold. We propose modeling a similar
to how V lm(t) is modeled in the DET, that is, by coupling the DTT value and the layerwise dynamic
thresholds at the previous timestamp t (i.e., Θl

i(t)). The delay constant C adjusts the sensitivity of
the DTT to changes in the temporal potential of a neuron. As shown in Figure 5c, a lower C value
results in a substantially faster drop in the DTT value (i.e., the black curve) than that provided by a
higher C value (i.e., the blue curve).

Interaction of DET and DTT A critical difference between DET and DTT lies in the drivers of
the two threshold schemes. DET leverages the magnitude of the membrane potential to estimate
a threshold, while the DTT based on the preceding rate of depolarization. Therefore, they may be
counteracting or helping each other to achieve an optimal threshold. One example is that when noise
causes low potential fluctuations, the overall threshold should increase to suppress the noise. In this
case, the DET increases as the noise increases the membrane potential. However, DTT remains at a
relatively constant threshold (i.e., a+ 1) as the preceding rate of depolarization caused by the noise
is close to 0. When a neuron experiences a fast membrane potential drop, e.g., during the relative
refractory period, we expect the overall threshold to increase. In this scenario, even though DET
decreases with the reduced membrane potential, DTT increases faster. Hence, the proposed method
increases the overall threshold in this case. Please see Supplementary Note 10 for details.

4 Experiments
We assess the effectiveness of BDETT on three different tasks: robot obstacle avoidance, robotic
continuous control and image classification. In the robot obstacle avoidance task, a robot aims to
reach a randomly chosen destination without touching any obstacle within 1000 steps, counted as a
“pass”. For this task, we assess methods by measuring success rate (SR), the percentage of successful
passes out of 200 trials. As continuous control tasks, we evaluate the HalfCheetah-v3 and Ant-v3
control outputs (see Figure 3a) from the OpenAI gym [41]. In these two continuous control tasks, an
agent relies on a learned SNN-based control policy to decide the next action based on the current
observation (i.e., state), and each action is associated with a reward; see Figure 3a. We assess control
policies with the total sum of the rewards. Note that the Ant-v3 control task is more challenging than
HalfCheetah-v3, with significantly large state and action spaces. Top-1 classification accuracy is used
to assess image classification.

For the robotic control tasks, in addition to evaluating the control output, i.e., SR and total reward, we
also measure the homeostasis of the host SNNs. In particular, we use three statistical metrics, FRm,
FRmstd, and FRsstd, to quantify the homeostasis of an SNN; these metrics are based on the neuron
firing rate. FRm is the mean neuron firing rate of an SNN across all P trials; FRmstd is the average
of P standard deviations, and each of them is the standard deviation of the neuron firing rates of an
SNN during a single trial; FRsstd denotes the standard deviation of the P standard deviations. FRsstd
represents the standard deviation across all P trials, while FRmstd denotes the mean of these standard
deviations. Details on these three metrics can be found in Supplementary Note 2.

Experimental Setup For robot obstacle avoidance tasks, the we use variants of the spiking actor
network (SAN) [9] as host SNN. The original SAN uses LIF as its neuron model, but it resets the
membrane potentials of all neurons to zero for each robot state. The resting operation is contradictory
to the leaky function of LIF. Therefore, we modify the SAN by removing the resting operation, which
is dubbed SAN-NR. To validate the effectiveness of the proposed BDETT, we integrate it into both
LIF-based and SRM-based SAN-NR models and compare them with their original static threshold
and two heuristic dynamic threshold schemes, DT1 [24] and DT2 [26]. See Supplementary Note
2 for details on the DT1 and DT2 schemes. We set the batch size to 256 and the learning rate to
0.00001 for both the actor and critic networks during the training process. In addition, we use the
following hyperparameter settings for the proposed BDETT: η = 0.01 and ψ = 4.0 for the DET and
C = 3.0 for the DTT. For estimating homeostasis, we set P = 200. See Supplementary Notes 4 for
further training details.
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For robot continuous control, we adopt the population-coded SAN (PopSAN) [35] as our baseline
model; it is a modified version of SAN [9] with a specifically designed encoder and decoder for
accommodating high-dimensional control tasks. Note that PopSAN does not rest the membrane
potentials as the encoder leverages soft-reset IF neurons. Hence, PopSAN is the counterpart of the
SAN-NR used in the obstacle avoidance tasks. We integrate BDETT into both LIF- and SRM-based
PopSAN models and compare them with their original static threshold schemes and the two heuristic
dynamic schemes, DT1 and DT2. Following the evaluation settings of PopSAN [35], we train ten
models corresponding to ten random seeds, and the best-performing model is used for our assessment
conducted under different degraded conditions. In particular, the best-performing model is evaluated
ten times under each experimental condition, and the mean reward of the ten evaluations represents the
model performance. Each evaluation consists of ten episodes, and each episode lasts for a maximum
of 1000 execution steps. Hence, the P value used for estimating homeostasis is set to 100, i.e., 10
episodes × 10 evaluations. PopSAN and its variants are trained by using the twin-delayed deep
deterministic policy gradient off-policy algorithm [42]. The hyperparameter settings of BDETT is the
same as the ones used for obstacle avoidance tasks, except the ψ for the DET is set to 6.0. Following
the training protocol of PopSAN [35], we set the batch size to 100 and the learning rate to 0.0001 for
both the actor and critic networks. The reward discount factor is set to 0.99, and the maximum length
of the replay buffer is set to 1 million. See Supplementary Notes 5 for training details.

For the SRM-based baseline methods, the spike response kernel and refractory kernel of the SRM
are adopted from [27; 29], and they are defined as ε(t) = te1−t and ζ(t) = −2Θ(t)e−t, respectively.
For all tasks, each dimension of a robot state is encoded into a spike train with T timesteps. All
experimental results are obtained with T = 5. For a demonstration of the generalization provided by
the BDETT, we provide the experimental results obtained with T = 25 in Supplementary Notes 4, 5,
6 for the obstacle avoidance, HalfCheetah-v3, and Ant-v3 tasks, respectively.
4.1 Robot Obstacle Avoidance with BDETT
We evaluate the proposed method for robot obstacle avoidance tasks with one standard condition,
i.e., static obstacles, and three specifically designed adverse conditions: dynamic obstacles, degraded
inputs, and weight uncertainty. For the dynamic obstacle experiments, we introduce 11 dynamically
moving cylinders in a static testing environment, and each repeatedly wanders between two points;
see Figure 2a. The wandering distance and speed are designed to provide sufficient space and time
to allow possible passes. The robot utilizes a Robo Peak light detection and ranging (RPLIDAR)
system as its sensing device to detect obstacles, offering a field of view of 180 degrees with 18 range
measurements, as shown in Figure 2b.

In our degraded input scenario, we disturb the obtained range measurements in three different ways:
“0.2": We set the range of the 3rd, 9th, and 15th lasers to 0.2 m, always reporting obstacles even when
none occur; “6.0": This is similar to the “0.2" setting, but we set the three lasers’ ranges to 6.0 m,
which is the average visible range in the test environment and means that the three lasers cannot
perceive any obstacles; “GN": We add Gaussian noise [43] to each of the 18 range measurements.
The three proposed degraded input settings are illustrated in Figure 2c.

In the weight uncertainty experiments, as illustrated in Figure 2d, the learned synaptic weights
of the host SNNs are also disturbed in three different ways. “8-bit Loihi weight": Neuromorphic
hardware (e.g., Loihi) achieves computing efficiency by sacrificing the weight precision. Therefore,
when deploying an SNN on neuromorphic hardware, one needs to scale and round up the learned
floating-point synaptic weights to low-precision weights. “GN weight": We add Gaussian noise,
N (0, 0.05), to all synaptic weights. “30% zero weight": Among the synaptic weights between every
two adjacent layers, we randomly set 30% of them to 0. To reduce the impact of the randomness
introduced in the “GN weight" and “30% zero weight" experiments, we report the average success
rates (SRs) and standard deviation of 5-round tests.

Success Rate The SRs of the competing LIF- and SRM-based approaches across all experimental
settings are reported in Figure 2e and Table 1. For the “GN weight" and “30% zero weight"
experiments, the standard deviations of the 5-round SRs are also reported. The proposed BDETT
achieves the highest SRs in all experiments, demonstrating its effectiveness. Notably, under dynamic
obstacle conditions, the BDETT outperforms the runners-up by significant margins (9% versus the
LIF and 12% versus the SRM). Under degraded input conditions, the BDETT yields at least 10%
more successful passes than other competing methods. In the weight uncertainty experiments, our
BDETT increases the SRs of the baseline SAN-NR model by at least 10.5%, 24.6%, and 15.6%
under “8-bit Loihi weight", “GN weight", and “30% zero weight" settings, respectively. We observe
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that our BDETT can help the robots effectively avoid both static and dynamic obstacles under all
three adverse conditions; see Supplementary Tables 2, 3, and 4 for details.

Figure 2: Proposed method for robot obstacle avoidance. a. The static and dynamic testing
environments of the obstacle avoidance tasks. b. The control loop of a robot. c. The three specifically
designed degraded input conditions. d. A demonstration of the three weight uncertainty experimental
settings. e. The SRs of obstacle avoidance under all experimental settings. ‘SO’ and ‘DO’ indicate
the testing environments with static and dynamic obstacles, respectively; ‘30%’ and ‘GNW’ denote
the “30% zero weight" and “GN weight" conditions. f & g show the LIF- and SRM-based SNNs’
homeostasis changes with respect to the base condition (i.e., DO) in terms of three metrics. e-h use
the same color codes as shown in f.

Table 1: Quantitative performance of obstacle avoidance under degraded conditions. Here, σ
is the standard deviations of the 5-round SRs.

LIF SRM LIF SRM LIF SRM

Type Name SR↑ SR↑ Type Name SR↑ SR↑ Type Name SR↑ SR↑

0.2

SAN 78.5% 68%

6.0

SAN 71% 70%

GN

SAN 71.5% 57%
SAN-NR 80% 59% SAN-NR 70% 61.5% SAN-NR 72% 65.5%
DT1 [24] 65.5% 64% DT1 [24] 62% 67% DT1 [24] 60.5% 58%
DT2 [26] 78% 53.5% DT2 [26] 61.5% 55% DT2 [26] 71.5% 61.5%
BDETT 90% 79.5% BDETT 84.5% 83% BDETT 84.5% 82.5%

8-bit
Loihi

weight

SAN 78.5% 77%
GN

weight
(5 rounds)

SAN 51.3% (σ-6.8) 0% (σ-0)
30%
Zero

weight
(5 rounds)

SAN 59.3% (σ-10.5) 0% (σ-0)
SAN-NR 79.5% 76.5% SAN-NR 52.5% (σ-7.1) 37.2% (σ-7.6) SAN-NR 61.6% (σ-7.5) 46.5% (σ-12.4)
DT1 [24] 70% 67% DT1 [24] 54.6% (σ-7.9) 44.9% (σ-11.4) DT1 [24] 41.2% (σ-7.7) 44.3% (σ-11.7)
DT2 [26] 78.5% 67.5% DT2 [26] 73.2% (σ-7.4) 43.6% (σ-4.4) DT2 [26] 55.6% (σ-9.3) 49.1% (σ-10.8)
BDETT 90% 88.5% BDETT 87.7% (σ-3.3) 61.8% (σ-2.9) BDETT 77.2% (σ-3.6) 65.2% (σ-2.7)

Homeostatic Evaluation When an SNN is in homeostasis, all neurons are expected to have similar
and sparse firing patterns under different conditions [44; 45]. Therefore, when transferring from one
condition to another, the SNNs with stronger homeostasis are expected to induce fewer changes in
all three metrics. The changes induced in all successful trials involving the LIF- and SRM-based
host SNNs under different experimental settings are illustrated in Figures 2f and g, respectively.
The changes (i.e., in ∆FRm, ∆FRmstd, and ∆FRsstd) are estimated with respect to the corresponding
homeostasis achieved in the dynamic obstacle experiments, i.e., under the base condition. The
proposed BDETT scheme yields minimal changes in all three metrics when transferring from the base
condition to all other experimental settings, except for the ∆FRsstd estimated based on the SRM-based
8-bit Loihi weight experiment. The figures highlight that the proposed BDETT significantly improves
on the baseline SAN-NR model, as evidenced by the remarkable drops in these three statistical
metrics. For example, as shown in the “6.0" section of the ∆FRm in Figure 2f, our dynamic threshold
scheme reduces the ∆FRm from 0.043 to 0.001. In the “0.2" section of the ∆FRsstd in Figure 2g, the
∆FRsstd is decreased to 1.7% of its original value (from 0.0058 to 0.0001). We also witness that the
DT1 and DT2 schemes significantly weaken the baseline model’s homeostasis, as shown in Figure 2f
in the “0.2" section of the ∆FRmstd and the “6.0" section of the ∆FRsstd.

The goal of homeostasis to enhance the host SNN generalization. Therefore, we expect SNNs with
stronger homeostasis (i.e., smaller ∆FRm, ∆FRmstd, and ∆FRsstd values) to outperform those with
weaker homeostasis. Our experimental results confirm this, validating that the strong homeostasis
provided by our BDETT can improve the generalization capabilities of SNNs to different degraded
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Figure 3: Proposed method for continuous robot control. a. The control loops of HalfCheetah-v3
and Ant-v3. b. Examples of the three specifically designed degraded input conditions, where the
red dots and curved arrows indicate the disturbed joint positions and velocities, respectively. c. The
three specifically designed weight uncertainty conditions. d & e. The rewards of the HalfCheetah-
v3 and Ant-v3 tasks across all experimental conditions, respectively. ‘Base’ indicates the normal
base condition; ‘RP’ and ‘RV’ denote ‘Random joint position’ and ‘Random joint velocity’. f & g.
The LIF- and SRM-based SNNs’ homeostasis changes with respect to the ‘Base’ condition in the
HalfCheetah-v3 tasks. h & i. The LIF- and SRM-based SNNs’ homeostasis changes with respect to
the ‘Base’ condition in the Ant-v3 tasks. d-i use the same color codes shown in e.

conditions. We argue that this is a highly desired capability not only for mobile robotics but also for
broader machine learning. See Supplementary Note 4 for more experimental results and analysis.

4.2 Continuous Robot Control with BDETT
For the HalfCheetah-v3 and Ant-v3 tasks, similar to the robot obstacle avoidance tasks, we evaluate on
one standard and two specifically designed degraded inputs and weight uncertainty adverse conditions
to demonstrate the strong generalization enabled by our BDETT. In this context, for the degraded
input conditions, we disturb the observations of these two control tasks in three ways. “Random joint
position": For each episode, one of the joint positions is randomly selected, and its original position
is replaced by a random number sampled from a Gaussian distribution N (0, 0.1). “Random joint
velocity": We randomly select one of the joint velocities in each episode and change its observed
velocity to a random number sampled from a Gaussian distribution N (0, 10.0). “GN": In each
episode, we add Gaussian noise sampled from the distributionN (0, 1.0) to each dimension of a state;
see Figure 3b. The weight uncertainty conditions of the control tasks are the same as those used in
the robot obstacle avoidance tasks, as illustrated in Figure 3c.
Rewards As shown in Figures 3d, e and Table 2, under all experimental settings, the proposed
BDETT offers the host SNNs the highest rewards, significantly improving upon the rewards of
the baseline PopSAN model by at least 438 (i.e., the SRM-based PopSAN model under the “GN"
setting) for the HalfCheetah-v3 tasks and 213 (i.e., the LIF-based PopSAN model under the “Random
joint velocity" setting) for the Ant-v3 tasks. Notably, under weight uncertainty conditions with a
HalfCheetah-v3 agent, even with low-precision 8-bit weights, the proposed BDETT helps the SRM-
based host SNN achieve a higher reward than that obtained with high-precision floating-point weights
(11767 vs. 11268); see Supplementary Tables 7 and 9. With an Ant-v3 agent, the proposed BDETT
helps both the LIF- and SRM-based host SNNs achieve higher rewards, even with low-precision
weights, i.e., 5570 vs. 5526 and 5648 vs. 5643, respectively. See Supplementary Notes 5 and 6
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Table 2: Quantitative performance of continuous robot control tasks under degraded condi-
tions. For each cell, we report the estimated rewards for both HalfCheetah-v3 and Ant-v3 tasks in
the format of HalfCheetah-v3/Ant-v3.

LIF SRM LIF SRM LIF SRM

Type Name Reward↑ Reward↑ Type Name Reward↑ Reward↑ Type Name Reward↑ Reward↑

Random
joint

position

PopSAN 7832/2503 7120/3004 Random
joint

velocity

PopSAN 7020/2890 6576/2372

GN

PopSAN 2440/977 3457/1031
DT1 [24] 3923/1435 6830/1333 DT1 [24] 3187/2628 3836/2508 DT1 [24] 2790/922 2210/958
DT2 [26] 3750/1280 3230/1330 DT2 [26] 3395/1579 3031/1025 DT2 [26] 1994/560 2307/583
BDETT 8465/3339 7883/3450 BDETT 8302/3103 7116/2984 BDETT 3909/1269 3895/1559

8-bit
Loihi

weight

PopSAN 10728/5347 10802/5285
GN

weight

PopSAN 4640/637 3583/467
30%
Zero

weight

PopSAN 5020/287 3233/372
DT1 [24] 6026/5004 6569/4889 DT1 [24] 4483/221 4128/-57 DT1 [24] 3995/1247 3503/1450
DT2 [26] 4372/3122 4629/3463 DT2 [26] 1334/-265 2028/-173 DT2 [26] 2721/-548 3056/-203
BDETT 10823/5570 11767/5648 BDETT 6928/2782 8381/1658 BDETT 6551/2931 5386/3046

for additional experimental results and analysis related to the HalfCheetah-v3 and Ant-v3 tasks,
respectively.
Homeostatic Evaluation In Figures 3f-i, we show the changes induced in these three metrics when
shifting from normal conditions (i.e., the base conditions) to all other experimental settings. The
proposed BDETT offers the strongest homeostasis to the host SNNs among all competing approaches
for both the HalfCheetah-v3 and Ant-v3 control tasks. In particular, for the HalfCheetah-v3 control
task, as shown in the “30% zero weight" section of the ∆FRm in Figure 3f, our dynamic threshold
scheme reduces the ∆FRm of the baseline PopSAN model from 0.069 to 0.006. In the “GN weight"
section of the ∆FRsstd in Figure 3g, the proposed BDETT decreases the ∆FRsstd of the SRM-based
PopSAN to 8.3% of its original value (from 0.0012 to 0.0001); see Supplementary Table 10 for
details. For the Ant-v3 control task, as shown in the “GN weight" section of the ∆FRm in Figure 3h,
our dynamic threshold scheme reduces the ∆FRm of the LIF-based baseline model from 0.041
to 0.003. In the “Random joint position" section of the ∆FRsstd in Figure 3h, the ∆FRsstd of the
LIF-based baseline model is decreased to 10% of its original value (from 0.0010 to 0.0001); see
Supplementary Table 15 for details. As in the obstacle avoidance tasks, the DT1 and DT2 schemes
significantly decrease the homeostasis of both the LIF- and SRM-based baseline models in both
continuous control tasks. Some extreme cases are shown in the “Random joint velocity" section of
the ∆FRmstd in Figure 3f, and the “GN weight" section of the ∆FRm in Figure 3i.

These experimental results obtained for the two continuous control tasks support the observations
obtained in the obstacle avoidance tasks. More importantly, we witness that the strong homeostasis
provided by our BDETT improves generalization to severely degraded conditions.
4.3 Image Classification with BDETT
We assess the proposed SNN-based learning method on image classification as a relevant vision task.
In particular, to measure the generalization of the proposed BDETTscheme, we conduct additional
image classification experiments under normal and degraded conditions. To this end, we simulate
degraded inputs similar to the robotic control tasks; see the weight uncertainty degraded settings
illustrated in Figure 4d. In addition, we test on degradations that are tailored to classification from
two adversarial attack methods; the fast gradient sign method (FGSM) [46] and projected gradient
descent (PGD) [47]; see Figure 4c.

Specifically, we train the SCNN model [48] on the MNIST dataset [49] as our baseline model. Each
pixel of an MNIST image is encoded into 30 Poisson spikes as inputs to SCNN for training and
testing. As shown in Figure 4e and Table 3, directly applying the proposed approach without any
changes to image classification in degraded conditions compares favorably across all experimental
settings and in terms of generalization. For stronger degradations, the Top-1 classification accuracy
of both the baseline and our approach decreases, but the proposed method is less affected. Note that
the SCNN model contains CNN layers, blocking us from estimating homeostasis.

4.4 BDETT without Statistical Parameter Adjustment
We found it essential to replace the constants in the two biological models we base our approach
on with layerwise statistical cues. Here, we report the performance of the BDETT with the original
constants of the fitted biological models, demonstrating the effectiveness of the proposed layerwise
statistical parameter settings. In particular, we first use the corresponding constants of the fitted
adaptive threshold model [16] and replaced the V lm(t) and V lθ (t), i.e., Eq. 3 and Eq. 4, with 3 and 7,
respectively. These two constants are obtained by shifting the originally fitted constants−67 and−63
by 70 to compensate for the difference of the rest potentials; −70 mV in the original model but 0 mV
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Figure 4: Proposed method for image classification. a. The examples of MNIST dataset. b. The
forward pass of SCNN model [48]. c. Examples of the two adversarial samples as degraded
input conditions. d. The three specifically designed weight uncertainty conditions. e. The Top-1
accuracy(AC) of image classification under all condition settings. ‘20%’ and ‘30%’ denote the “20%
zero weight" and “30% zero weight" condition, respectively; ‘GN(x)’ denotes the Gaussian noise,
N (0, x), in “GN Weight" settings.

Table 3: Quantitative performance of image classification tasks in Top-1 accuracy (AC). For
FGSM, we set ε = 0.2. For PGD, we set ε = 0.01 and run 20 iterations. GN(x) indicate Gasussian
noise, N (0, x).

LIF SRM LIF SRM LIF SRM LIF SRM

Type Name AC↑ AC↑ Type Name AC↑ AC↑ Type Name AC↑ AC↑ Type Name AC↑ AC↑

Normal

SCNN 99.42% 99.13%

FGSM

SCNN 66.33% 56.85%

PGD

SCNN 84.31% 67.53% 8-bit
Loihi

weight

SCNN 98.86% 98.05%
DT1 [24] 99.40% 99.05% DT1 [24] 43.70% 43.19% DT1 [24] 77.32% 61.82% DT1 [24] 98.75% 98.69%
DT2 [26] 98.24% 98.13% DT2 [26] 36.48% 37.90% DT2 [26] 78.25% 60.44% DT2 [26] 97.17% 96.68%
BDETT 99.45% 99.15% BDETT 69.14% 57.01% BDETT 85.74% 68.06% BDETT 98.86% 98.22%

GN
(0, 0.3)

SCNN 81.98% 78.24%
GN

(0, 0.5)

SCNN 39.84% 45.32% 20%
Zero

weight

SCNN 90.52% 95.10% 30%
Zero

weight

SCNN 84.37% 89.75%
DT1 [24] 56.19% 54.38% DT1 [24] 39.92% 41.13% DT1 [24] 87.20% 93.58% DT1 [24] 80.25% 83.09%
DT2 [26] 33.80% 26.23% DT2 [26] 14.35% 9.81% DT2 [26] 79.43% 83.00% DT2 [26] 66.77% 70.19%
BDETT 85.09% 78.68% BDETT 47.74% 46.34% BDETT 96.37% 96.59% BDETT 90.68% 91.02%

for LIF and SRM models. Furthermore, we use the original fitted parameters in our DTT, and Eq. 5

becomes Tli(t + 1) = 1.0 + 10e
−(vli(t+1)−vli(t))

3 . For obstacle avoidance, with the originally fitted
constants, the LIF-based policy cannot produce any successful pass even under the standard testing
condition; SR drops from 92.5% to 0%. For the HalfCheetah-v3 and Ant-v3 tasks, with the originally
fitted constants, the rewards achieved by a LIF-based policy dropped from 11064 to −35 and 5276
to −9, respectively. Note that an untrained BDETT-based policy achieves −124 and −73 rewards
for these two continuous control tasks. Image classification tasks follow the same pattern; that is,
with the originally fitted constants, the Top-1 accuracy achieved by a LIF-based policy dropped from
99.45% to 9.80%. These experimental results validate that the proposed statistical cues are essential
to the proposed method.

5 Conclusion
This work introduces a novel biologically inspired BDETT scheme to SNNs that significantly im-
proves generalization, and as such, fills a gap between biological research and machine learning.
Dynamic threshold behavior plays an essential role in maintaining a neuronal homeostasis in bio-
logical nervous systems. Motivated by this observation, we propose a dynamic threshold scheme to
achieve homeostasis in artificial SNNs. We assess the proposed approach in real-world tasks under
normal and severely degraded conditions to validate its generalization capabilities. We find that
the proposed dynamic threshold achieves strong homeostasis along with generalization to diverse
degraded conditions. This finding is a step toward employing bioplausible SNNs in real-world
applications. As future work, we plan to implement the proposed scheme on neuromorphic hardware
to broadly deploy BDETT in future robotic platforms.
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A Supplementary Material

Supplementary Note 1: Spiking Neural Networks

Spiking Neural Network (SNN)

Various models for spiking neurons mathematically describe the properties of a cell in the nervous
system with varying degrees of detail. Normally, three conditions are considered by these models:
resting, depolarization, and hyperpolarization. When a neuron is resting, it maintains a constant
membrane potential. The change in membrane potential can be either a decrease or an increase
relative to the resting potential. An increase in the membrane potential is called depolarization, which
enhances a cell’s ability to generate an action potential; it is excitatory. In contrast, hyperpolarization
describes a reduction in the membrane potential, which makes the associated cell less likely to
generate an action potential, and, as such, is inhibitory. All inputs and outputs of a spiking neuron
model are sequences of spikes.

A sequence of spikes is called a spike train and is defined as s(t) = Σt(f)∈Fδ(t − t(f)), where F
represents the set of times at which the individual spikes occur [29]. Typical spiking neuron models
set the resting potential to 0. However, existing models achieve depolarization and hyperpolarization
in substantially different ways. In the following, we review two commonly used models: the spike
response model (SRM) [27] and leaky integrate-and-fire (LIF) model [28].

Spike Response Model (SRM) An SRM first converts an incoming spike train si(t) into a spike
response signal as (ε ∗ si)(t), where ε(·) is a spike response kernel. Then, the generated spike
response signal is scaled by a synaptic weight wi. Depolarization is achieved by summing all the
scaled spike response signals: Σiwi(ε ∗ si)(t). When incoming spike trains trigger a spike s(t),
the SRM models hyperpolarization by defining a refractory potential as (ζ ∗ s)(t), where ζ(·) is
a refractory kernel. With an SRM, a feedforward SNN architecture with nl layers can be defined.
Given N l incoming spike trains at layer l, sli(t), the forward propagation process of the network is
mathematically defined as follows [27; 29]:

vl+1
i (t) =

N l∑
j=1

wij(ε ∗ slj)(t) + (ζ ∗ sl+1
i )(t− 1), (7)

sl+1
i (t) = fs(v

l+1
i (t)), (8)

fs(v) : v → s, s(t) := s(t) + δ(t− t(f+1)), (9)

tf+1 = min{t : v(t) = Θ, t > t(f)}, (10)

where fs(·) is a spike function and Θ is the membrane potential threshold, which is static and the
same for all neurons in the network. This static threshold is the one that we replace with the proposed
dynamic threshold.

Leaky Integrate-and-Fire (LIF) An LIF model is a simplified variant of an SRM. This scheme
directly processes incoming spike trains and ignores the spike response kernel. Hyperpolarization is
achieved by a simple decay function fd(·). The forward propagation process of the network can be
defined as:

vl+1
i (t) =

N l∑
j=1

wijs
l
j(t) + vl+1

i (t− 1)fd(s
l+1
i (t− 1)) + bl+1

i , (11)

sl+1
i (t) = fs(v

l+1
i (t)), (12)

fd(s(t)) =

{
D s(t) = 0

0 s(t) = 1,
(13)

where bl+1
i is an adjustable bias that is learned to mimic a dynamic threshold behavior. However,

the biases of this model are static during forwarding propagation. In contrast, the proposed dynamic
threshold is dynamic and automatically adapts to membrane potentials.
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Supplementary Note 2: Related Mathematical Definitions

In this section, we provide mathematical definitions for DT1, DT2, and Loihi weight transferring. In
addition, we formally define the proposed homeostasis metrics.

DT1 Hao et al. [24] noted that neurons do not (or barely) fire when their thresholds are too large,
which can negatively affect model performance. Therefore, they proposed DT1 to slow threshold
growth. For the i-th neuron in the l-th layer, DT1 at timestamp t is mathematically defined as:

Θl
DT1,i(t) = Θconst + (−Θl

DT1,i(t− 1) +
Θinitial

|2Θl
DT1,i(t− 1)−Θinitial|

nl∑
i=1

sli(t)), (14)

where Θconst and Θinitial are two hyperparameters; the dynamic threshold is mainly controlled by a
dynamic scaling factor Θinitial

|2ΘlDT1,i(t−1)−Θinitial|
; nl is the total number of neurons in the l-th layer. For

fair comparisons with other competing approaches, we apply grid search to find the optimal values of
Θinitial and Θconst and ensure that the host SNNs of DT1 offer similar success rates (SRs) in the
static obstacle avoidance task to those of other approaches. Based on the grid search, Θinitial is set
to 10.0; 0.5 and 0.2 are the optimal values of Θconst for the LIF-based and SRM-based host SNNs,
respectively.

DT2 Inspired by the observed homeostasis in biology, Kim et al. [26] proposed DT2 to maintain
neurons’ firing rates at a predefined constant target frequency. Mathematically, for the i-th neuron in
the l-th layer, DT2 at timestamp t is defined as:

Θl
DT2,i(t) = Θl

DT2,i(t− 1) + (

nl∑
i=1

sli(t))− f ltarget)×Θl
DT2,i(t− 1)× γ, (15)

where f ltarget is the predefined constant target frequency; γ is a homeostasis factor that determines
the threshold changing rate. Based on our grid search, we set f ltarget to 85 (i.e., 1/3 of 256) for the
three 256-neuron layers and γ to 0.004 to achieve the same static obstacle avoidance performance as
that of other competing SNNs.

8-Bit Loihi Weights In our weight uncertainty (WU) experiments, we scale and round up the learned
floating-point synaptic weights to low-precision 8-bit weights. The weight scaling process is defined
as:

rl =
wLoihi

max

wlmax
, (16)

w
(l)(Loihi)
ij = round(rlwlij), (17)

Θ
(l)(Loihi)
i (t) = round(rlΘl

i(t)), (18)

vli(t) = v
(l)(Loihi)
i (t)/rl, (19)

where rl is the rescaling ratio of layer l; wLoihi
max is the maximum weight that Loihi supports; wlmax is

the maximum weight of the l-th layer of the host SNN; wlij is the synaptic weight between the i-th

neuron in the l-th layer and the j-th neuron in the (l− 1)-th layer, and w(l)(Loihi)
ij is the corresponding

rescaled weight on Loihi; Θl
i(t) and Θ

(l)(Loihi)
i (t) are the original membrane threshold and the

corresponding threshold for Loihi of the i-th neuron in the l-th layer at timestamp t, respectively;
round(x) is a rounding function that returns the rounded version of x. Notably, to estimate Θl

i(t),
we need to know the original membrane potentials. However, all the membrane potentials on Loihi
are rescaled. Therefore, to obtain the original membrane potentials, we need to reverse the process
defined in Eq 19.

Homeostasis Metrics We leverage three statistical metrics to quantify the homeostasis of an SNN.
Mathematically, they are defined as follows:
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FRm = µ(FRpm) for p = 1, 2, ..., P, (20)

FRmstd = µ(FRpstd) for p = 1, 2, ..., P, (21)

FRsstd = σ(FRpstd) for p = 1, 2, ..., P, (22)

FRpm = µ(f l,pi ) for i = 1, 2, ..., N l l = 1, 2, ..., L, (23)

FRpstd = σ(f l,pi ) for i = 1, 2, ..., N l l = 1, 2, ..., L, (24)

f l,pi =

∑Tp

tp=1 s
l
i(t

p)

T p
, (25)

where, T p is the time taken for the p-th trial and f l,pi is the firing rate of the i-th neuron in the l-th
layer during the p-th trial. FRpm denotes the mean firing rate of all neurons of an SNN during the p-th
trial, and FRpstd is the standard deviation of all neuron firing rates for an SNN during the p-th trial.
The definitions of FRm, FRmstd, and FRsstd are defined in the main paper.
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Figure 5: a. The structure of a neuron. b. We demonstrate a sodium (Na+) voltage-gated channel
under resting, activated, and inactivated (refractory) states. The Na+ channel enters an inactivated
state after depolarization and returns to a resting state only after the membrane potential is restored to
its resting potential. c. The process of action potential generation, which is based on the Hodgkin-
Huxley model [50], involves the sequential opening of voltage-gated Na+ and K+ channels. The Na+

and K+ conductance curves are adapted from the Hodgkin-Kuxley model [50].

Supplementary Note 3: Biological Concepts

A typical biological neuron has four morphological regions: a cell body, dendrites, an axon, and
synaptic terminals. Inside the cell body (i.e., the soma), a nuclear envelope contains the cell’s genes.
The short tree-like dendrites branch out from the cell body, and they are the main apparatus for
receiving incoming signals from other neurons. The long tubular axon covered by the myelin sheath
extends some distance from the cell body and carries action potential to other neurons through
synaptic terminals. A typical nerve neuron is illustrated in Figure 5a.

In a nerve cell that is at rest, the extracellular surface of the cell membrane has an excess positive
charge, while the cytoplasmic side has an excess negative charge. The cell membrane maintains the
separation of charge as a barrier against the diffusion of ions; see Figure 5b. The electrical potential
difference across the membrane is defined as the membrane potential, which has three different
statuses: resting, depolarization, and hyperpolarization. At rest, no net charge movement across the
membrane occurs, and the resting membrane potential is maintained. By convention, the potential
outside the cell is defined as zero, and hence, the resting potential is a negative value. A net flow
of cations or anions into or out of a cell disturbs the resting membrane, causing depolarization or
hyperpolarization, respectively. Depolarization indicates less negative membrane potential, while
hyperpolarization signifies more negative potential; see Figure 5c.

Dynamic Thresholds in Biological Neurons

The Hodgkin-Huxley model [50] has served as an archetype for compartmental models of the
electrophysiology of biological membranes (see Figure 5a). Many numerical methods leverage the
Hodgkin-Huxley model as their testbeds, which can be applied to more complex models [17; 51; 52].
We use the Hodgkin-Huxley model to introduce the concept of threshold in biological neurons.
Based on the Hodgkin-Huxley model, an action potential is produced when the membrane potential
is higher than a particular threshold; this involves the following sequence of processes. First, when
the membrane potential is higher than a threshold, the associated depolarization opens sodium (Na+)
channels, resulting in an inward Na+ current. By discharging the membrane capacitance, the inward
current causes further depolarization and the opening of more Na+ channels, resulting in a further
increase in the inward current. Second, under prolonged depolarization, the voltage-gated Na+

channels become inactive. Furthermore, after some delay, the voltage-gated potassium (K+) channels
begin to open, causing an outward K+ current that tends to repolarize the membrane (see Figure 5b).
The second process underlies the absolute refractory period [53], a period during which no action
potential can be elicited. After that, with some K+ channels being closed and some Na+ channels
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recovering from inactivation, the membrane enters a relative refractory period [53] (see Figure 5c).
During this period, it is possible to trigger an action potential, but this requires a higher threshold.

Note that a small subthreshold depolarization cannot trigger an action potential, as it not only increases
the inward Na+ current but also increases the outward K+ current [50]. Only at a specific membrane
potential value does the net ionic current become inward, depositing a net positive charge on the
inside of the membrane capacitance. This specific value is the potential (or spike) threshold [54].

The threshold changes dynamically, widely observed in the different nervous systems [14; 15; 16; 17;
18; 19; 20; 21; 22]. A thread of studies leverage the Hodgkin-Huxley model to verify the observed
threshold dynamics [55; 17]. However, not all spike initiation dynamics of biological neurons can be
accurately described by the Hodgkin-Huxley model [56].
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Supplementary Note 4: Additional Details on Obstacle Avoidance
Experiments

Experimental Setup

In the obstacle avoidance experiments, our evaluation baseline model and test environment are
modified variants of the spiking actor network (SAN) [9] and its original simulated test environment,
respectively. The SAN is a part of the spiking deep deterministic policy gradient (SDDPG) frame-
work [9], which is a fully connected four-layer SNN (i.e., three 256-neuron hidden layers and one
two-neuron output layer). This network maps a state s of a robot to a control action a. Specifically, a
state s = {Gdis, Gdir, ν, ω, L} is encoded into 24 Poisson spike trains as inputs of the SAN, and each
spike train has T timesteps. Gdis and Gdir are the relative 1-D distances from the robot to the goal
and a 2-D direction (i.e., right and left directions), respectively; ν and ω are the robot’s 1-D linear
and 2-D angular velocities (i.e., rightward and leftward angular velocities); L denotes the distance
measurements obtained from a Robo Peak light detection and ranging (RPLIDAR) laser range scanner
(range: 0.2-40 m), which has a field of view of 180 degrees with 18 range measurements, each with
a 10-degree resolution. The two output spike trains are decoded to control the robot via an action
a = {νL, νR}, where νL and νR are the left and right wheel speeds of the differential-drive mobile
robot, respectively [9].

Figure 6: Illustrations of the training, static testing and dynamic testing environments. a. The
training environments of the obstacle avoidance tasks. The training processes of all competing SNNs
start from Env1 and end with Env4. b. Static testing environment. c. Dynamic testing environment.
In addition to static obstacles, 11 dynamic obstacles are inserted.

Training

The SAN and its modified versions are trained with the original SDDPG framework. The training
environments consist of four different maps, as shown in Figure 6a. In particular, during the training
process, we set 100, 200, 300, and 400 start-goal pairs in the Env1, Env2, Env3, and Env4, respectively.
The training starts from Env1 and ends with Env4. Following the training protocol described by Tang
et al. [9], the hyperparameters related to training are set as follows: D = 0.75 for the LIF; η = 0.01
and ψ = 4.0 for the dynamic energy threshold (DET); C = 3.0 for the dynamic temporal threshold
(DTT); τs = τr = 1.0 for the SRM; collision reward = −20; goal reward = 30; step reward = 15;
goal l2 distance threshold = 0.5 m; obstacle l2 distance threshold = 0.35 m; ε ranges for Env1 to
Env4 of (0.9, 0.1), (0.6, 0.1), (0.6, 0.1), and (0.6, 0.1), respectively; and corresponding ε-decays of
0.999 for the four environments. During the training procedure, we set the batch size to 256 and the
learning rates to 0.00001 for both the actor and critic networks. We use PyTorch [57] to train and test
all competing SNNs with an i7-7700 CPU and an NVIDIA GTX 1080Ti GPU. We direct the readers
to the SAN algorithm [9] for details.

Assessment—Success Rate

We evaluate the obstacle avoidance capabilities of the proposed method by using SR as a metric. The
SR is the percentage of successful passes out of 200 trials. A successful pass is a trial in which the
robot can reach its destination without touching any static or dynamic obstacle within 1000 steps. In
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addition to the SR, we also report the overtime percentage (OTP), the percentage of overtime trials
out of the total trials (i.e., 200 trials), where overtime is defined as a trial in which the robot cannot
reach the goal within 1000 steps but does not touch any obstacle.

We use the Gazebo simulator to construct a 20× 20 m2 static test environment (see Figure 6b) and
adopt the randomly sampled 200 start-goal location pairs used for testing the SAN [9]. For fairness,
we apply grid searches on all tunable hyperparameters to ensure that the SRs of all competing
approaches are relatively the same (i.e., within ±2%) when testing in the static testing environment.
The quantitative experimental results obtained by all competing dynamic threshold methods in
the static obstacle avoidance tasks are shown in Table 4. Due to space limits, we only report the
experimental results based on T = 5 in the main manuscript. Here, we offer the quantitative
performance with both T = 5 and T = 25.

Based on Table 4, compared to the SRs obtained with T = 5, the SRs obtained under T = 25 only
change slightly (i.e., ±0.5%), indicating that all competing SNNs are not sensitive to the T value
in static obstacle avoidance tasks. The observations related to the T value also hold in the dynamic
obstacle experiments (see Table 5). However, we observe that the SRs decrease as the T value
increases for most degraded input and weight uncertainty experiments.

Tables 5, 6, and 7 show the quantitative performance of all competing approaches in dynamic
obstacle, degraded inputs, and weight uncertainty experiments, respectively. The SRs are also shown
in Figures 8a and b. In terms of the OTPs, we witness high levels of overtime trials in the “0.2" section
of the degraded inputs condition and the “GN weight" section of the weight uncertainty condition.
As discussed in the main manuscript, with the “0.2" setup, the three disturbed lasers generate more
spikes than they are supposed to, making the robot more cautious. Thus, the robot’s speed slows,
leading to more overtime trials. As expected, adding Gaussian noise to the learned weights reduces
the effectiveness of the avoidance policy. However, our approach faces the most negligible impact,
offering the best SRs under all experimental results. In the following, we provide a more detailed
analysis for each degraded condition.

Dynamic Obstacles As discussed, we introduce 11 dynamically moving cylinders to the static
testing environment; see Figure 6c. Table 5 shows the corresponding experimental results obtained
under this condition. Our approach delivers the highest SRs with both the LIF and SRM neuron
models. Notably, under both the T = 5 and T = 25 settings, the proposed approach outperforms
the runners-up by significant margins (by at least 9% over the LIF model and 12% over the SRM).
The results demonstrate that the proposed bioinspired dynamic threshold scheme provides substantial
environmental adaptability to the host SNNs. Since all the synaptic weights and static thresholds of
both the SAN and the SAN with no resting operation (SAN-NR) are learned from the environments
with static obstacles only, we expect that they cannot adapt well to an environment with dynamic
objects. Surprisingly, compared to the static threshold scheme, the two heuristic dynamic threshold
schemes, DT1 and DT2, obtain lower SRs. The threshold dynamics provided by DT1 rely on two
hyperparameters, the constant potential and initial potential. DT2 requires a target firing count
to be set. These hyperparameters are justified during the training process but fixed during testing.
We believe that these hyperparameters dramatically impact the adaptability of the tested heuristic
dynamic threshold schemes. In contrast, the dynamics offered by the proposed bioinspired dynamic
energy-temporal threshold (BDETT) scheme are dynamically based on layerwise statistical cues.

Degraded Inputs In this experiment, as discussed in our main manuscript, in addition to the presence
of dynamic obstacles, we disturb the obtained range measurements in three different ways: a) “0.2":
we set the 3rd, 9th, and 15th laser ranges to 0.2 m. In this case, the three modified measurements
always report obstacles in their perception fields even when none are present; b) “6.0": the ranges
of the same three lasers are set to 6.0 m, which is the average visible range in the test environment.
This means that the three lasers cannot perceive any object; c) “GN": we add Gaussian noise (i.e.,
clip(sinput +N (0, 1.0), 0.2, 6.0), as suggested in a study regarding long short-term memory with a
local map critic (LSTM-LMC) [43]) to each of the 18 range measurements. The experimental results
obtained under these settings are shown in Table 6.

In all degraded input experiments, the SRs offered by our BDETT scheme still remain the highest
and outperform the runners-up by at least 10%. This reflects that the proposed dynamic threshold
scheme provides the host SNNs with strong adaptability to all designed degraded inputs, which is
highly desired and appreciated in mobile robot applications. In the “0.2" setup, the three disturbed
lasers generate more spikes than they are supposed to, making the robot more cautious. All host
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Figure 7: The success rate heatmaps. The heatmaps yielded by the best and runner-up performers
under four different conditions indicate the areas with lower success rates (i.e., those shown in red).

SNNs obtain lower SRs than those obtained under the dynamic obstacle settings. However, the
SRM-based host SNNs are significantly impacted. We believe the reason for this is that the spike
response and refractory kernels of the SRM amplify the intense spikes triggered by the three modified
measurements. In the “6.0" experiments, the three modified measurements trigger fewer spikes, and
the robot becomes more relaxed due to the ‘hyperopia’ effect. Therefore, we expect more failed
passes than in the “0.2" setup. This is true for the LIF-based SNNs but not for the SRM-based SNNs.
Since the three farsighted lasers reduce the signal amplification effects caused by the two kernels,
the SRM-based SNNs perform better here than in the “0.2” experiments. Under the “GN" condition,
the SRs of all competing host SNNs decrease, but our approach is the least affected and induces the
lowest SR drops. Remarkably, under all degraded input experiments, the proposed BDETT improves
upon the SRs of both the LIF-based and SRM-based baseline models (i.e., SAN-NR) by at least 10%
and 17%, respectively. The success rates of the best and runner-up performers under “0.2” and “6.0”
conditions are also qualitatively illustrated in Figure 7.

Weight Uncertainty Neuromorphic hardware (e.g., Loihi) achieves computing efficiency by sac-
rificing the weight precision, and an 8-bit integer normally yields the highest precision. Therefore,
when deploying an SNN on neuromorphic hardware, one needs to scale and round up the learned
floating-point synaptic weights to low-precision weights. We mimic this scenario by mapping the
learned weights to Intel’s Loihi 8-bit integer weights. The mapping equations are provided in Sup-
plementary Note 2. In addition, we design two extra weight pollution experiments. “GN weight"
involves adding Gaussian noise (i.e., wij +N (0, 0.05)) to all synaptic weights; under “30% zero
weight", we reandomly set 30% of the synaptic weights between every two adjacent layers to 0. To
reduce the impact caused by the randomness introduced in the two additional experiments, we report
the average SRs of 5-round tests.

As shown in Table 7, the proposed BDETT can effectively reduce the impact caused by degraded
synaptic weights and deliver the best SRs under all experimental settings. Low-precision weight
convergence slightly reduces the SRs of all competing host SNNs slightly. We observe that the
effectiveness of the SRM-based SNNs is dramatically impacted by the “GN weight" and “30% zero
weight" pollution settings, especially the SAN. This means that SRM-based models are more sensitive
to weight changes than LIF-based SNNs. Again, under the three degraded conditions, the proposed
BDETT increases the SRs of the baseline model SAN-NR by at least 9.5%, 14.2%, and 14.8%. The
success rates of the best and runner-up performers under “8-bit Loihi weight” and “30% zero weight”
conditions are also qualitatively illustrated in Figure 7.
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Table 4: Quantitative performance of obstacle avoidance with static obstacles.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP
SAN 98% 0.0% 96.5% 0.0% 98% 0.0% 96% 0.0%
SAN-NR 98% 0.0% 95.5% 0.0% 98.5% 0.0% 95.5% 0.0%
DT1 [24] 96.5% 0.0% 95% 0.0% 96% 0.0% 94.5% 0.5%
DT2 [26] 97% 0.0% 95% 0.0% 97% 0.0% 94% 0.0%
DET only 96% 0.0% 95.5% 0.0% 95.5% 0.0% 95% 0.0%
DTT only 97% 0.0% 95.5% 0.0% 97% 0.0% 95% 0.0%
BDETT 98.5% 0.0% 96.5% 0.0% 98% 0.0% 97% 0.0%

Table 5: Quantitative performance of obstacle avoidance with dynamic obstacles.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP
SAN 81.5% 0.0% 78.5% 0.0% 81% 0.0% 77.5% 0.0%
SAN-NR 83.5% 0.0% 77.5% 0.5% 83.5% 0.0% 77% 1.0%
DT1 [24] 74.5% 0.0% 68.5% 0.0% 74% 0.5% 68.5% 0.5%
DT2 [26] 80% 0.0% 71.5% 0.5% 80% 0.0% 71.5% 0.0%
DET only 81% 0.0% 78.5% 0.5% 80.5% 0.0% 78.5% 1.0%
DTT only 88% 0.0% 83.5% 0.0% 86.5% 0.0% 82% 0.0%
BDETT 92.5% 0.0% 90.5% 0.0% 93% 0.0% 89.5% 0.5%

Table 6: Quantitative performance of obstacle avoidance under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP

0.2

SAN 78.5% 1.5% 68% 1.0% 74% 2.5% 60.5% 1.0%
SAN-NR 80% 2.5% 59% 3.0% 76% 3.0% 39.5% 4.5%
DT1 [24] 65.5% 4.0% 64% 3.5% 60.5% 3.5% 58.5% 5.0%
DT2 [26] 78% 3.0% 53.5% 3.5% 72.5% 4.0% 49% 3.5%
DET only 83% 2.0% 71.5% 3.0% 77.5% 3.5% 67.5% 3.0%
DTT only 78.5% 3.5% 64.5% 1.0% 72.5% 3.5% 62% 2.5%
BDETT 90% 2.5% 79.5% 3.5% 87.5% 3.5% 76% 4.5%

6.0

SAN 71% 0.0% 70% 0.0% 73% 0.0% 72% 0.0%
SAN-NR 70% 0.0% 61.5% 0.0% 71% 0.0% 65.5% 0.0%
DT1 [24] 62% 0.0% 67% 0.0% 64% 0.0% 66.5% 0.0%
DT2 [26] 61.5% 0.0% 55% 0.5% 61.5% 0.0% 57.5% 0.0%
DET only 80% 0.0% 79% 0.0% 79.5% 0.0% 79.5% 0.0%
DTT only 80% 0.0% 75.5% 0.0% 81% 0.0% 76% 0.0%
BDETT 84.5% 0.0% 83% 0.0% 86% 0.0% 83.5% 0.0%

GN

SAN 71.5% 0.0% 57% 0.0% 63% 0.0% 51.5% 0.5%
SAN-NR 72% 0.0% 65.5% 1.0% 67% 0.5% 54.5% 2.0%
DT1 [24] 60.5% 0.5% 58% 0.0% 56.5% 0.5% 55.5% 0.0%
DT2 [26] 71.5% 1.5% 61.5% 0.0% 68% 1.0% 57% 1.5%
DET only 78.5% 1.0% 75.5% 0.5% 76% 2.0% 71% 0.5%
DTT only 75.5% 0.0% 69% 0.0% 70.5% 0.0% 66.5% 0.5%
BDETT 84.5% 0.0% 82.5% 0.0% 81.5% 0.0% 79% 0.5%
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Figure 8: The experimental results obtained for the robot obstacle avoidance tasks. a & b. The
SRs of obstacle avoidance under normal and different degraded conditions under the T = 5 and
T = 25 settings, respectively. ‘SO’ denotes the static obstacle condition; ‘DO’ represents the dynamic
obstacle condition; ‘0.2’, ‘6.0’, and ‘GN’ are the three degraded input conditions; ‘8-bit’, ‘GNW’,
and ‘30%’ denotes the 8-bit Loihi weights, GN weights, and 30% zero weights, respectively. c & d.
Homeostasis measurements obtained with the T = 5 setting by the LIF- and SRM-based host SNNs.
e & f. The homeostasis results obtained with the T = 25 setup by the LIF- and SRM-based host
SNNs, respectively.

Table 7: Quantitative performance of obstacle avoidance under weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name SR↑ OTP SR↑ OTP SR↑ OTP SR↑ OTP

8-bit
Loihi

weight

SAN 78.5% 0.0% 77% 0.0% 77.5% 0.0% 74.5% 0.0%
SAN-NR 79.5% 0.0% 76.5% 0.5% 79% 0.0% 75.5% 0.0%
DT1 [24] 70% 0.0% 67% 0.0% 67.5% 0.5% 65.5% 0.0%
DT2 [26] 78.5% 0.0% 67.5% 1.0% 77% 0.0% 67% 0.5%
DET only 77.5% 0.0% 75% 0.0% 74.5% 0.5% 75% 0.0%
DTT only 86% 0.0% 80.5% 0.0% 81.5% 0.0% 80% 0.0%
BDETT 90% 0.0% 88.5% 0.0% 88.5% 0.0% 87.5% 0.0%

GN
weight

(5 rounds)

SAN 51.3% (σ-6.8) 1.2% 0% (σ-0) 20.3% 36.2% (σ-7.3) 3.6% 0% (σ-0) 18.4%
SAN-NR 52.5% (σ-7.1) 1.6% 37.2% (σ-7.6) 2.4% 39.0% (σ-7.8) 3.1% 38.4% (σ-8.9) 2.1%
DT1 [24] 54.6% (σ-7.9) 2.3% 44.9% (σ-11.4) 3.0% 35.7% (σ-9.2) 3.3% 32.4% (σ-9.6) 4.7%
DT2 [26] 73.2% (σ-7.4) 2.1% 43.6% (σ-4.4) 2.4% 56.2% (σ-9.3) 2.0% 30.3% (σ-5.7) 2.9%
DET only 61.8% (σ-12.0) 1.8% 43.3% (σ-4.6) 2.5% 47.0% (σ-11.3) 2.3% 34.1% (σ-5.4) 2.6%
DTT only 77.1% (σ-8.8) 1.5% 46.4% (σ-8.0) 1.6% 64.7% (σ-8.0) 1.8% 36.8% (σ-10.2) 1.4%
BDETT 87.7% (σ-3.3) 0.8% 61.8% (σ-2.9) 1.3% 70.1% (σ-4.2) 0.4% 52.6% (σ-4.0) 2.5%

30%
Zero

weight
(5 rounds)

SAN 59.3% (σ-10.5) 0.0% 0% (σ-0) 17.7% 51.2% (σ-11.3) 0.0% 0% (σ-0) 19.4%
SAN-NR 61.6% (σ-7.5) 0.0% 46.5% (σ-12.4) 0.0% 53.6% (σ-6.7) 0.0% 36.5% (σ-9.9) 0.2%
DT1 [24] 41.2% (σ-7.7) 0.7% 44.3% (σ-11.7) 0.0% 32.2% (σ-9.1) 1.3% 31.7% (σ-12.6) 0.6%
DT2 [26] 55.6% (σ-9.3) 0.3% 49.1% (σ-10.8) 0.8% 48.0% (σ-10.5) 0.0% 37.8% (σ-10.2) 1.1%
DET only 46.2% (σ-8.5) 0.0% 39.8% (σ-11.5) 1.4% 33.6% (σ-8.5) 0.8% 29.3% (σ-12.3) 2.5%
DTT only 60.6% (σ-9.5) 0.0% 45.4% (σ-7.4) 0.5% 50.3% (σ-8.7) 0.4% 38.8% (σ-8.0) 1.3%
BDETT 77.2% (σ-3.6) 0.0% 65.2% (σ-2.7) 0.3% 68.4% (σ-5.2) 0.0% 56.5% (σ-4.3) 0.7%
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Table 8: The raw homeostasis measurements of successful trials and the corresponding changes with
respect to the baseline condition in obstacle avoidance tasks with the T = 5 setting.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

Dynamic
obstacle
(baseline

condition)

SAN 0.523 0.325 0.000891 0.278 0.301 0.000596
SAN-NR 0.515 0.330 0.001029 0.487 0.309 0.006853
DT1 [24] 0.443 0.325 0.001738 0.482 0.310 0.002942
DT2 [26] 0.400 0.345 0.002136 0.418 0.309 0.005873
DET only 0.508 0.336 0.001024 0.380 0.276 0.002564
DTT only 0.456 0.320 0.000902 0.475 0.294 0.002284
BDETT 0.439 0.312 0.000916 0.501 0.298 0.001759

0.2

SAN 0.556 (0.033) 0.329 (0.004) 0.000750 (0.000141) 0.293 (0.015) 0.247 (0.054) 0.000746 (0.000150)
SAN-NR 0.565 (0.050) 0.326 (0.004) 0.000738 (0.000291) 0.508 (0.021) 0.333 (0.024) 0.001069 (0.005784)
DT1 [24] 0.479 (0.036) 0.387 (0.062) 0.000973 (0.000765) 0.518 (0.036) 0.348 (0.038) 0.003993 (0.001051)
DT2 [26] 0.412 (0.012) 0.370 (0.025) 0.001293 (0.000843) 0.438 (0.020) 0.325 (0.016) 0.001709 (0.004164)
DET only 0.495 (0.013) 0.353 (0.017) 0.001523 (0.000499) 0.380 (0.000) 0.244 (0.032) 0.003969 (0.001405)
DTT only 0.481 (0.025) 0.335 (0.015) 0.000768 (0.000134) 0.420 (0.055) 0.335 (0.041) 0.002040 (0.000244)
BDETT 0.444 (0.005) 0.315 (0.003) 0.000851 (0.000065) 0.494 (0.007) 0.310 (0.012) 0.001884 (0.000125)

6.0

SAN 0.564 (0.041) 0.342 (0.017) 0.001454 (0.000563) 0.275 (0.003) 0.306 (0.005) 0.000747 (0.000151)
SAN-NR 0.558 (0.043) 0.339 (0.009) 0.001548 (0.000519) 0.483 (0.004) 0.306 (0.003) 0.002533 (0.004320)
DT1 [24] 0.432 (0.011) 0.318 (0.007) 0.002862 (0.001124) 0.471 (0.011) 0.315 (0.005) 0.004224 (0.001282)
DT2 [26] 0.407 (0.007) 0.354 (0.009) 0.003785 (0.001649) 0.408 (0.010) 0.320 (0.011) 0.005417 (0.000456)
DET only 0.515 (0.007) 0.374 (0.038) 0.003088 (0.002064) 0.377 (0.003) 0.230 (0.046) 0.003889 (0.001325)
DTT only 0.450 (0.006) 0.325 (0.005) 0.003057 (0.002155) 0.403 (0.072) 0.290 (0.004) 0.002855 (0.000571)
BDETT 0.440 (0.001) 0.317 (0.005) 0.000960 (0.000044) 0.501 (0.000) 0.300 (0.002) 0.001870 (0.000111)

GN

SAN 0.534 (0.011) 0.310 (0.015) 0.001416 (0.000525) 0.287 (0.009) 0.204 (0.097) 0.000727 (0.000131)
SAN-NR 0.527 (0.012) 0.314 (0.016) 0.001622 (0.000593) 0.497 (0.010) 0.298 (0.011) 0.007395 (0.000542)
DT1 [24] 0.451 (0.008) 0.319 (0.006) 0.000982 (0.000756) 0.502 (0.020) 0.302 (0.008) 0.004634 (0.001692)
DT2 [26] 0.405 (0.005) 0.337 (0.008) 0.001654 (0.000482) 0.423 (0.005) 0.283 (0.026) 0.005578 (0.000295)
DET only 0.502 (0.006) 0.361 (0.025) 0.001228 (0.000204) 0.390 (0.010) 0.283 (0.007) 0.002454 (0.000110)
DTT only 0.445 (0.011) 0.315 (0.005) 0.001453 (0.000551) 0.390 (0.085) 0.308 (0.014) 0.001968 (0.000316)
BDETT 0.443 (0.004) 0.307 (0.005) 0.000880 (0.000036) 0.500 (0.001) 0.301 (0.003) 0.001886 (0.000127)

8-bit
Loihi

weight

SAN 0.520 (0.003) 0.319 (0.006) 0.000988 (0.000097) 0.288 (0.010) 0.314 (0.013) 0.000731 (0.000135)
SAN-NR 0.513 (0.002) 0.334 (0.004) 0.001286 (0.000257) 0.479 (0.008) 0.315 (0.006) 0.005527 (0.001326)
DT1 [24] 0.437 (0.006) 0.319 (0.006) 0.001589 (0.000149) 0.473 (0.009) 0.325 (0.015) 0.002084 (0.000858)
DT2 [26] 0.407 (0.007) 0.340 (0.005) 0.001853 (0.000283) 0.425 (0.007) 0.316 (0.007) 0.005638 (0.000235)
DET only 0.505 (0.003) 0.341 (0.005) 0.000868 (0.000156) 0.385 (0.005) 0.285 (0.009) 0.002185 (0.000379)
DTT only 0.446 (0.010) 0.325 (0.005) 0.000787 (0.000115) 0.460 (0.015) 0.301 (0.007) 0.002436 (0.000152)
BDETT 0.439 (0.000) 0.308 (0.004) 0.000932 (0.000016) 0.500 (0.001) 0.293 (0.005) 0.001570 (0.000189)

GN
weight

(5 rounds)

SAN 0.501 (0.022) 0.338 (0.013) 0.001192 (0.000301) - - -
SAN-NR 0.490 (0.025) 0.338 (0.008) 0.001281 (0.000252) 0.498 (0.011) 0.326 (0.017) 0.004461 (0.002392)
DT1 [24] 0.407 (0.036) 0.349 (0.024) 0.001902 (0.000164) 0.487 (0.005) 0.319 (0.009) 0.003573 (0.000631)
DT2 [26] 0.391 (0.009) 0.335 (0.010) 0.001356 (0.000780) 0.410 (0.008) 0.291 (0.018) 0.010002 (0.004129)
DET only 0.516 (0.008) 0.375 (0.039) 0.002225 (0.001201) 0.399 (0.019) 0.212 (0.064) 0.003675 (0.001111)
DTT only 0.467 (0.011) 0.327 (0.007) 0.001244 (0.000342) 0.387 (0.088) 0.301 (0.007) 0.002387 (0.000103)
BDETT 0.444 (0.005) 0.318 (0.006) 0.001013 (0.000097) 0.498 (0.003) 0.299 (0.001) 0.001602 (0.000157)

30%
Zero

weight
(5 rounds)

SAN 0.448 (0.075) 0.321 (0.004) 0.001490 (0.000599) - - -
SAN-NR 0.454 (0.061) 0.335 (0.005) 0.001399 (0.000370) 0.470 (0.017) 0.331 (0.022) 0.009941 (0.003088)
DT1 [24] 0.387 (0.056) 0.313 (0.012) 0.002045 (0.000307) 0.456 (0.026) 0.334 (0.024) 0.005103 (0.002161)
DT2 [26] 0.377 (0.023) 0.358 (0.013) 0.001834 (0.000302) 0.403 (0.015) 0.332 (0.023) 0.003469 (0.002404)
DET only 0.520 (0.012) 0.387 (0.051) 0.002582 (0.001558) 0.356 (0.024) 0.235 (0.041) 0.005036 (0.002472)
DTT only 0.470 (0.014) 0.337 (0.017) 0.002551 (0.001649) 0.394 (0.081) 0.274 (0.020) 0.003706 (0.001422)
BDETT 0.444 (0.005) 0.316 (0.004) 0.000993 (0.000077) 0.497 (0.004) 0.318 (0.020) 0.003855 (0.002096)

Assessment—Homeostatic

In the main manuscript, we show the quantified homeostasis changes induced during all successful
trials with respect to the base condition (i.e., the homeostasis obtained in the dynamic obstacle
experiments) under the T = 5 setting. Table 8 provides the raw homeostasis measurements and the
corresponding changes used for plotting the polar chart in the main manuscript.

We also offer the measured homeostasis and corresponding changes obtained under the T = 25 setting
in Table 9. The corresponding polar plots are shown in Figures 8e and f. Similar to the observations
obtained in the experiments with T = 5, the association between homeostasis and the obstacle
avoidance SR still holds for T = 25; stronger homeostasis offers better performance. Notably,
our approach induces the smallest changes in the three metrics across all experimental settings,
except for the ∆FRmstd obtained in the SRM-based 8-bit Loihi weight experiment. Furthermore, the
proposed BDETT delivers the best obstacle avoidance SRs in all designed experimental conditions
with T = 25; see Tables 5, 6, and 7 and Figures 8e and f.
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Table 9: The raw homeostasis measurements of successful trials and the corresponding changes with
respect to the baseline condition in obstacle avoidance tasks with the T = 25 setting.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

Dynamic
obstacle
(baseline

condition)

SAN 0.524 0.325 0.002098 0.285 0.306 0.001504
SAN-NR 0.515 0.331 0.001440 0.488 0.312 0.003486
DT1 [24] 0.447 0.324 0.002155 0.485 0.319 0.002473
DT2 [26] 0.401 0.347 0.002470 0.420 0.314 0.005771
DET only 0.509 0.336 0.001206 0.384 0.279 0.002483
DTT only 0.449 0.317 0.001736 0.475 0.301 0.002515
BDETT 0.439 0.311 0.001035 0.501 0.301 0.002394

0.2

SAN 0.556 (0.032) 0.330 (0.005) 0.000798 (0.001300) 0.294 (0.009) 0.245 (0.061) 0.001004 (0.000500)
SAN-NR 0.566 (0.051) 0.326 (0.005) 0.000768 (0.000670) 0.536 (0.048) 0.351 (0.039) 0.001224 (0.002260)
DT1 [24] 0.481 (0.034) 0.387 (0.063) 0.001097 (0.001060) 0.517 (0.032) 0.344 (0.025) 0.003823 (0.001350)
DT2 [26] 0.415 (0.014) 0.370 (0.023) 0.001662 (0.000810) 0.438 (0.018) 0.326 (0.012) 0.001781 (0.003990)
DET only 0.496 (0.013) 0.353 (0.017) 0.001424 (0.000218) 0.380 (0.004) 0.246 (0.033) 0.003362 (0.000879)
DTT only 0.485 (0.036) 0.336 (0.019) 0.000972 (0.000760) 0.420 (0.055) 0.335 (0.034) 0.003116 (0.000601)
BDETT 0.444 (0.005) 0.314 (0.003) 0.001104 (0.000069) 0.494 (0.007) 0.310 (0.010) 0.002238 (0.000160)

6.0

SAN 0.558 (0.034) 0.341 (0.016) 0.001415 (0.000683) 0.275 (0.010) 0.303 (0.003) 0.000839 (0.000665)
SAN-NR 0.550 (0.035) 0.340 (0.009) 0.001165 (0.000275) 0.484 (0.004) 0.306 (0.006) 0.003828 (0.000342)
DT1 [24] 0.433 (0.014) 0.319 (0.005) 0.002449 (0.000294) 0.471 (0.014) 0.315 (0.004) 0.003621 (0.001148)
DT2 [26] 0.406 (0.005) 0.353 (0.006) 0.003206 (0.000736) 0.406 (0.014) 0.320 (0.006) 0.005094 (0.000667)
DET only 0.516 (0.007) 0.374 (0.038) 0.003172 (0.001966) 0.377 (0.007) 0.241 (0.038) 0.003248 (0.000765)
DTT only 0.450 (0.001) 0.327 (0.010) 0.002744 (0.001008) 0.413 (0.062) 0.289 (0.012) 0.002742 (0.000227)
BDETT 0.440 (0.001) 0.316 (0.005) 0.001247 (0.000212) 0.501 (0.000) 0.300 (0.001) 0.002092 (0.000302)

GN

SAN 0.538 (0.014) 0.311 (0.014) 0.002522 (0.000424) 0.288 (0.003) 0.209 (0.097) 0.000883 (0.000621)
SAN-NR 0.530 (0.015) 0.318 (0.013) 0.003055 (0.001615) 0.503 (0.015) 0.299 (0.013) 0.005029 (0.001543)
DT1 [24] 0.452 (0.005) 0.319 (0.005) 0.001408 (0.000747) 0.502 (0.017) 0.302 (0.017) 0.004470 (0.001997)
DT2 [26] 0.405 (0.004) 0.336 (0.011) 0.002005 (0.000465) 0.423 (0.003) 0.283 (0.031) 0.005235 (0.000536)
DET only 0.500 (0.009) 0.367 (0.031) 0.001424 (0.000218) 0.392 (0.008) 0.286 (0.007) 0.003130 (0.000647)
DTT only 0.445 (0.004) 0.311 (0.006) 0.001260 (0.000476) 0.401 (0.074) 0.310 (0.009) 0.001795 (0.000720)
BDETT 0.443 (0.004) 0.306 (0.005) 0.001085 (0.000050) 0.498 (0.003) 0.301 (0.000) 0.001962 (0.000432)

8-bit
Loihi

weight

SAN 0.519 (0.005) 0.319 (0.006) 0.001106 (0.000992) 0.290 (0.005) 0.315 (0.009) 0.000961 (0.000543)
SAN-NR 0.510 (0.005) 0.336 (0.005) 0.001153 (0.000287) 0.478 (0.010) 0.317 (0.005) 0.005220 (0.001734)
DT1 [24] 0.435 (0.012) 0.318 (0.006) 0.001467 (0.000688) 0.472 (0.013) 0.327 (0.008) 0.001854 (0.000619)
DT2 [26] 0.411 (0.010) 0.339 (0.008) 0.001802 (0.000668) 0.428 (0.008) 0.317 (0.003) 0.005032 (0.000739)
DET only 0.504 (0.005) 0.341 (0.005) 0.000924 (0.000282) 0.387 (0.003) 0.288 (0.009) 0.002816 (0.000333)
DTT only 0.446 (0.003) 0.327 (0.010) 0.001302 (0.000434) 0.462 (0.013) 0.303 (0.002) 0.002038 (0.000477)
BDETT 0.439 (0.000) 0.308 (0.003) 0.001107 (0.000072) 0.502 (0.001) 0.297 (0.004) 0.002164 (0.000230)

GN
weight

(5 rounds)

SAN 0.503 (0.021) 0.340 (0.015) 0.001241 (0.000857) - - -
SAN-NR 0.488 (0.027) 0.340 (0.009) 0.001796 (0.000356) 0.499 (0.011) 0.328 (0.016) 0.004204 (0.000718)
DT1 [24] 0.413 (0.034) 0.346 (0.022) 0.002318 (0.000163) 0.491 (0.006) 0.320 (0.001) 0.003065 (0.000592)
DT2 [26] 0.390 (0.011) 0.336 (0.011) 0.001382 (0.001088) 0.411 (0.007) 0.292 (0.017) 0.008895 (0.003124)
DET only 0.516 (0.007) 0.372 (0.036) 0.002643 (0.001437) 0.397 (0.013) 0.218 (0.061) 0.003384 (0.000901)
DTT only 0.467 (0.018) 0.328 (0.011) 0.001352 (0.000384) 0.393 (0.082) 0.303 (0.002) 0.003581 (0.001066)
BDETT 0.444 (0.005) 0.318 (0.007) 0.001163 (0.000128) 0.498 (0.003) 0.300 (0.001) 0.001923 (0.000471)

30%
Zero

weight
(5 rounds)

SAN 0.443 (0.081) 0.320 (0.005) 0.000862 (0.001236) - - -
SAN-NR 0.457 (0.058) 0.338 (0.007) 0.002461 (0.001021) 0.472 (0.016) 0.332 (0.020) 0.009380 (0.005894)
DT1 [24] 0.388 (0.059) 0.312 (0.012) 0.001257 (0.000898) 0.456 (0.029) 0.334 (0.015) 0.005820 (0.003347)
DT2 [26] 0.372 (0.029) 0.359 (0.012) 0.001930 (0.000540) 0.403 (0.017) 0.332 (0.018) 0.003060 (0.002711)
DET only 0.524 (0.015) 0.368 (0.032) 0.002974 (0.001786) 0.360 (0.024) 0.245 (0.034) 0.004378 (0.001895)
DTT only 0.472 (0.023) 0.334 (0.017) 0.002013 (0.000277) 0.402 (0.073) 0.280 (0.021) 0.004420 (0.001905)
BDETT 0.446 (0.007) 0.316 (0.005) 0.001502 (0.000467) 0.488 (0.013) 0.316 (0.015) 0.004638 (0.002244)

Assessment—Ablation Studies

We conduct ablation studies to validate the effectiveness of the DET and DTT components of the
proposed BDETT. The results obtained under different degraded conditions are reported in the rows
named “DET only” and “DTT only” in Tables 4, 5, 6, and 7. The ablation study results are also
illustrated in Figure 8. All listed evaluations validate that the BDETT scheme performs better than
any single component. The dynamic threshold scheme with only one component cannot effectively
regulate the firing rate statuses of the host SNNs, prohibiting meaningful homeostasis. One extreme
example is illustrated in Figure 8f. The ∆FRm changes induced under the ‘DTT only’ setting are the
largest among all competing approaches under all experimental conditions. Notably, when combined
with the other component, the proposed BDETT provides the strongest homeostasis for the host
SNNs. This validates the biologically observed positive correlation encoded by the DET and the
negative correlation enforced by the DTT, which are equally essential for effectively maintaining the
homeostasis of an SNN.
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Supplementary Note 5: Additional Details on Continuous Control
Experiments—HalfCheetah-v3

Training

The adopted population-coded SAN (PopSAN) and its modified variants are trained by using the
twin-delayed deep deterministic policy gradient (TD3) off-policy algorithm [42] and the following
hyperparameter settings: D = 0.75 for the LIF; η = 0.01 and ψ = 6.0 for the DET; C = 3.0 for the
DTT; and τs = τr = 1.0 for the SRM. Compared to the settings of the obstacle avoidance tasks, the
only different setting is the value of ψ for the DET. Following the training protocol of the PopSAN,
we set the batch size to 100 and the learning rates to 0.0001 for both the actor and critic networks.
The reward discount factor is set to 0.99, and the maximum length of the replay buffer is set to 1
million. We use PyTorch [57] to train all competing SNNs with an i7-7700 CPU and an NVIDIA
GTX 1080Ti GPU.

Figure 9: The experimental results obtained in the HalfCheetah-v3 tasks. a & b. The rewards obtained
under normal and different degraded conditions with T = 5 and T = 25 settings, respectively. ‘Base’
indicates the base condition; ‘RP’ indicates random joint position; ‘RV’ denotes random joint
velocity; ‘8-bit’, ‘GNW’, and ‘30%’ denote the 8-bit Loihi weights, GN weights, and 30% zero
weights, respectively. c & d. Homeostasis measurements obtained with the T = 5 setting for the LIF-
and SRM-based host SNNs, respectively. e & f. Homeostasis results obtained with the T = 25 setup
for the LIF- and SRM-based host SNNs, respectively.

Assessment—Reward

After determining the evaluation settings of the PopSAN [35], we train ten models corresponding to
ten random seeds, and the best-performing model is used for our assessments under different degraded
conditions. In particular, the best-performing model is evaluated ten times under each experimental
condition, and the mean reward of the ten evaluations represents the model’s performance. Each
evaluation consists of ten episodes, and each episode lasts for a maximum of 1000 execution steps.
Table 10 shows the ten evaluations’ average rewards and the corresponding standard deviations
of all competing SNNs under a normal testing condition. Here, we also present the quantitative

23



Table 10: Quantitative Performance of Mujoco HalfCheetah-v3 Tasks under standard testing condi-
tion.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name Reward↑ Reward↑ Reward↑ Reward↑
PopSAN 10989 (σ-49) 11268 (σ-149) 11137 (σ-70) 11247 (σ-132)
DT1 [24] 6572 (σ-85) 7085 (σ-69) 6438 (σ-102) 7001 (σ-82)
DT2 [26] 5110 (σ-30) 5262 (σ-77) 5523 (σ-67) 5311 (σ-113)
DET only 9794 (σ-107) 9694 (σ-112) 9704 (σ-125) 9619 (σ-105)
DTT only 10104 (σ-44) 10332 (σ-106) 10221 (σ-57) 10563 (σ-83)
BDETT 11064 (σ-28) 11960 (σ-86) 11209 (σ-56) 11956 (σ-95)

performance achieved under the T = 5 and T = 25 settings. With both the LIF and SRM models,
the proposed BDETT offers the host SNNs the best rewards in all experimental settings under normal
testing conditions (i.e., the base conditions).

Unlike in the obstacle avoidance tasks, even with grid searches, the rewards offered by DT1 and
DT2 are significantly lower than those provided by the baseline PopSAN model. This indicates
that dynamic threshold schemes may perform worse than a simple static threshold, especially for
heuristic-based schemes. More importantly, we observe similar patterns in the obstacle avoidance
tasks; the SRs offered by DT1 and DT2 are lower than those of the baseline SAN-NR model in most
experimental conditions.

Tables 11 and 12 show the quantitative performance of all competing approaches under degraded
input and weight uncertainty conditions, respectively. The results are also illustrated in Figures 9a
and b for the T = 5 and T = 25 settings, respectively. We provide a more detailed analysis for each
degraded condition in the following.

Degraded Inputs In the HalfCheetah-v3 continuous control task, an observation (state) s represents
17-dimensional data consisting of 8-dimensional joint position information and 9-dimensional joint
velocity information. Similar to the degraded input experiments conducted in the robot obstacle
avoidance tasks, we disturb a HalfCheetah-v3’s observations in three different ways. a) “Random
joint position": for each episode, one of the eight joint positions is randomly selected, and its
original position is replaced by a random number sampled from a Gaussian distribution N (0, 0.1).
b) “Random joint velocity": we randomly select one of the nine joint velocities in each episode and
change its observed velocity to a random number sampled from a Gaussian distribution N (0, 10.0).
c) “GN": For each episode, we add Gaussian noise (i.e., sinput +N (0, 1.0), as suggested in a study
regarding LSTM-LMC [43]) to each of the 17 joint states. The average rewards obtained from the
ten evaluations conducted under these three different conditions are shown in Table 11.

Under all experimental settings, the proposed BDETT offers the host SNNs the highest rewards,
significantly improving upon the rewards of the baseline PopSAN model by at least 438 with T = 5,
and 358 with T = 25. Compared to the other two degraded input conditions, the “GN" condition
disturbs all dimensions of the HalfCheetah-v3 state. Therefore, we observe that the lowest rewards
obtained by all host SNNs occur with the “GN" setting. Even though the DT1 method hosted by an
LIF-based SNN reduces the rewards of the baseline PopSAN model by almost half, it outperforms the
baseline model with both T settings under the “GN" condition. Furthermore, the proposed BDETT
provides the most stable performance, highlighted by it obtaining the smallest standard deviations
under all the degraded input settings.

Weight Uncertainty We leverage the same weight uncertainty conditions as those introduced in
robot obstacle avoidance experiments to demonstrate the effectiveness of all competing dynamic
threshold schemes, and the corresponding results are shown in Table 12. The proposed BDETT
remains the best performer under the weight uncertainty conditions. Note that the SRM-based BDETT
outperforms other methods by significant margins under the “GN weight" settings, highlighting that
the proposed dynamic threshold scheme can effectively deal with weight uncertainty errors. We also
notice that the DT2 scheme produces the lowest rewards under all experimental weight uncertainty
settings, indicating that predefining a target firing rate does not work well with weight uncertainty
conditions. Surprisingly, even with low-precision 8-bit weights, the proposed BDETT helps the
SRM-based host SNN achieve higher rewards than those obtained with high-precision weights under
the T = 5 and T = 25 settings (11767 vs. 11268 with T = 5 and 11760 vs. 11247 with T = 25).
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Table 11: Quantitative performance of Mujoco HalfCheetah-v3 tasks under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

Random
joint

position

PopSAN 7832 (σ-222) 7120 (σ-214) 7947 (σ-253) 7167 (σ-197)
DT1 [24] 3923 (σ-204) 6830 (σ-140) 3835 (σ-248) 6792 (σ-157)
DT2 [26] 3750 (σ-171) 3230 (σ-239) 3950 (σ-192) 3213 (σ-230)
DET only 7954 (σ-103) 3582 (σ-284) 8051 (σ-148) 3502 (σ-323)
DTT only 6817 (σ-221) 7428 (σ-234) 6922 (σ-202) 7493 (σ-182)
BDETT 8465 (σ-121) 7883 (σ-78) 8463 (σ-130) 7846 (σ-70)

Random
joint

velocity

PopSAN 7020 (σ-146) 6576 (σ-147) 7223 (σ-165) 6583 (σ-168)
DT1 [24] 3187 (σ-142) 3836 (σ-181) 3203 (σ-148) 3855 (σ-202)
DT2 [26] 3395 (σ-209) 3031 (σ-239) 3506 (σ-208) 2965 (σ-241)
DET only 6664 (σ-179) 6392 (σ-206) 6498 (σ-219) 6435 (σ-213)
DTT only 7249 (σ-137) 6772 (σ-299) 7363 (σ-150) 6762 (σ-247)
BDETT 8302 (σ-84) 7116 (σ-146) 8422 (σ-94) 7127 (σ-131)

GN

PopSAN 2440 (σ-199) 3457 (σ-187) 2393 (σ-214) 3494 (σ-187)
DT1 [24] 2790 (σ-187) 2210 (σ-124) 2773 (σ-198) 2355 (σ-120)
DT2 [26] 1994 (σ-175) 2307 (σ-272) 2281 (σ-223) 2210 (σ-251)
DET only 2831 (σ-157) 3013 (σ-130) 2807 (σ-163) 3061 (σ-155)
DTT only 2974 (σ-194) 2851 (σ-81) 3281 (σ-173) 2855 (σ-115)
BDETT 3909 (σ-101) 3895 (σ-81) 3965 (σ-83) 3852 (σ-69)

Table 12: Quantitative performance of Mujoco HalfCheetah-v3 tasks under weight uncertainty
conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

8-bit
Loihi

weight

PopSAN 10728 (σ-47) 10802 (σ-32) 10926 (σ-59) 10850 (σ-44)
DT1 [24] 6026 (σ-63) 6569 (σ-46) 5883 (σ-102) 6420 (σ-97)
DT2 [26] 4372 (σ-54) 4629 (σ-50) 4301 (σ-87) 4636 (σ-74)
DET only 9455 (σ-125) 9398 (σ-60) 9474 (σ-137) 9376 (σ-82)
DTT only 9803 (σ-44) 9636 (σ-84) 9968 (σ-69) 9645 (σ-113)
BDETT 10823 (σ-37) 11767 (σ-45) 10990 (σ-61) 11760 (σ-68)

GN
weight

PopSAN 4640 (σ-510) 3583 (σ-347) 4816 (σ-583) 3597 (σ-426)
DT1 [24] 4483 (σ-491) 4128 (σ-754) 4365 (σ-466) 4051 (σ-760)
DT2 [26] 1334 (σ-616) 2028 (σ-1026) 1402 (σ-721) 1982 (σ-993)
DET only 5251 (σ-859) 5032 (σ-705) 5313 (σ-801) 5035 (σ-652)
DTT only 4013 (σ-423) 6250 (σ-368) 4238 (σ-468) 6327 (σ-403)
BDETT 6928 (σ-373) 8381 (σ-320) 6957 (σ-429) 8321 (σ-352)

30%
Zero

weight

PopSAN 5020 (σ-923) 3233 (σ-879) 5078 (σ-1031) 3304 (σ-950)
DT1 [24] 3995 (σ-1319) 3503 (σ-571) 3927 (σ-1406) 3484 (σ-772)
DT2 [26] 2721 (σ-1281) 3056 (σ-555) 2713 (σ-1352) 3002 (σ-582)
DET only 4436 (σ-801) 4682 (σ-540) 4406 (σ-822) 4692 (σ-515)
DTT only 3583 (σ-692) 3268 (σ-641) 3604 (σ-662) 3359 (σ-705)
BDETT 6551 (σ-679) 5386 (σ-443) 6619 (σ-712) 5474 (σ-388)

Assessment—Homeostatic

In the main manuscript, the changes in the quantified homeostasis values with respect to the base
condition (i.e., the normal Mujoco testing condition) under T = 5 are illustrated. The raw homeostasis
measurements and the corresponding changes used for plotting the polar chart in the main manuscript
are reported in Table 13. In addition, we also provide the experimental homeostasis results obtained
under T = 25 in Table 14. The corresponding polar plots obtained under the T = 5 and T = 25
setups are shown in Figures 9c-f.

The results are consistent with those obtained in the obstacle avoidance tasks. The proposed BDETT
scheme offers the strongest homeostasis, indicating the effectiveness of the proposed dynamic thresh-
old scheme. The essential goal of homeostasis is to enhance the host SNN’s performance. Therefore,
we expect the SNNs with stronger homeostasis (i.e., smaller ∆FRm, ∆FRmstd, and ∆FRsstd values) to
outperform those with weaker homeostasis. Our experimental results confirm this expectation.
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Table 13: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco HalfCheetah-v3 tasks with T = 5.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.433 0.228 0.000978 0.427 0.241 0.002146
DT1 [24] 0.412 0.239 0.001342 0.474 0.248 0.002166
DT2 [26] 0.697 0.298 0.000911 0.530 0.302 0.001472
DET only 0.284 0.220 0.001084 0.335 0.243 0.001558
DTT only 0.646 0.257 0.002291 0.501 0.334 0.002541
BDETT 0.249 0.190 0.001152 0.212 0.160 0.000952

Random
joint

position

PopSAN 0.426 (0.007) 0.237 (0.009) 0.001230 (0.000252) 0.440 (0.013) 0.258 (0.017) 0.002852 (0.000706)
DT1 [24] 0.435 (0.023) 0.252 (0.013) 0.001713 (0.000371) 0.426 (0.048) 0.269 (0.021) 0.004145 (0.001979)
DT2 [26] 0.686 (0.011) 0.289 (0.009) 0.001239 (0.000328) 0.508 (0.022) 0.333 (0.031) 0.002164 (0.000692)
DET only 0.289 (0.005) 0.227 (0.007) 0.001323 (0.000239) 0.347 (0.012) 0.261 (0.018) 0.002006 (0.000448)
DTT only 0.640 (0.006) 0.263 (0.006) 0.002077 (0.000214) 0.521 (0.020) 0.380 (0.046) 0.003124 (0.000583)
BDETT 0.246 (0.003) 0.186 (0.004) 0.001268 (0.000116) 0.209 (0.003) 0.152 (0.008) 0.001071 (0.000119)

Random
joint

velocity

PopSAN 0.439 (0.006) 0.240 (0.012) 0.001502 (0.000524) 0.453 (0.026) 0.314 (0.073) 0.001513 (0.000633)
DT1 [24] 0.381 (0.031) 0.259 (0.020) 0.002602 (0.001260) 0.510 (0.036) 0.261 (0.013) 0.004051 (0.001885)
DT2 [26] 0.690 (0.007) 0.289 (0.009) 0.001725 (0.000814) 0.487 (0.043) 0.340 (0.038) 0.001896 (0.000424)
DET only 0.280 (0.004) 0.214 (0.006) 0.000905 (0.000179) 0.351 (0.016) 0.219 (0.024) 0.001846 (0.000288)
DTT only 0.656 (0.010) 0.246 (0.011) 0.002027 (0.000264) 0.550 (0.049) 0.355 (0.021) 0.002891 (0.000350)
BDETT 0.245 (0.004) 0.186 (0.004) 0.001336 (0.000184) 0.204 (0.008) 0.168 (0.008) 0.001104 (0.000152)

GN

PopSAN 0.418 (0.015) 0.243 (0.015) 0.001400 (0.000422) 0.476 (0.049) 0.221 (0.020) 0.002481 (0.000335)
DT1 [24] 0.423 (0.011) 0.225 (0.014) 0.001623 (0.000281) 0.535 (0.061) 0.283 (0.035) 0.004810 (0.002644)
DT2 [26] 0.680 (0.017) 0.312 (0.014) 0.001273 (0.000362) 0.481 (0.049) 0.362 (0.060) 0.002215 (0.000743)
DET only 0.278 (0.006) 0.212 (0.008) 0.001353 (0.000269) 0.302 (0.033) 0.277 (0.034) 0.002411 (0.000853)
DTT only 0.638 (0.008) 0.269 (0.012) 0.002448 (0.000157) 0.434 (0.067) 0.301 (0.033) 0.002062 (0.000479)
BDETT 0.245 (0.004) 0.184 (0.006) 0.001300 (0.000148) 0.225 (0.013) 0.171 (0.011) 0.001093 (0.000141)

8-bit
Loihi

weight

PopSAN 0.430 (0.003) 0.221 (0.007) 0.001061 (0.000083) 0.420 (0.007) 0.252 (0.011) 0.001847 (0.000299)
DT1 [24] 0.424 (0.012) 0.248 (0.009) 0.001285 (0.000057) 0.442 (0.032) 0.230 (0.018) 0.002520 (0.000354)
DT2 [26] 0.678 (0.019) 0.285 (0.013) 0.001022 (0.000111) 0.492 (0.038) 0.320 (0.018) 0.001701 (0.000229)
DET only 0.290 (0.006) 0.229 (0.009) 0.001211 (0.000127) 0.327 (0.008) 0.235 (0.008) 0.001303 (0.000255)
DTT only 0.655 (0.009) 0.264 (0.007) 0.002402 (0.000111) 0.488 (0.013) 0.343 (0.009) 0.002707 (0.000166)
BDETT 0.249 (0.000) 0.186 (0.004) 0.001114 (0.000038) 0.215 (0.003) 0.163 (0.003) 0.000907 (0.000045)

GN
weight

PopSAN 0.456 (0.023) 0.210 (0.018) 0.001249 (0.000271) 0.464 (0.037) 0.305 (0.064) 0.003358 (0.001212)
DT1 [24] 0.426 (0.014) 0.223 (0.016) 0.001004 (0.000338) 0.429 (0.045) 0.285 (0.037) 0.003702 (0.001536)
DT2 [26] 0.678 (0.019) 0.316 (0.018) 0.001381 (0.000470) 0.503 (0.027) 0.362 (0.060) 0.002172 (0.000700)
DET only 0.271 (0.013) 0.227 (0.007) 0.001385 (0.000301) 0.364 (0.029) 0.208 (0.035) 0.001042 (0.000516)
DTT only 0.626 (0.020) 0.281 (0.024) 0.001972 (0.000319) 0.562 (0.061) 0.287 (0.047) 0.004133 (0.001592)
BDETT 0.256 (0.007) 0.185 (0.005) 0.001264 (0.000112) 0.219 (0.007) 0.165 (0.005) 0.001049 (0.000097)

30%
Zero

weight

PopSAN 0.502 (0.069) 0.220 (0.008) 0.001441 (0.000463) 0.412 (0.015) 0.279 (0.038) 0.003522 (0.001376)
DT1 [24] 0.439 (0.027) 0.256 (0.017) 0.001784 (0.000442) 0.436 (0.038) 0.263 (0.015) 0.001216 (0.000950)
DT2 [26] 0.675 (0.022) 0.325 (0.027) 0.001327 (0.000416) 0.472 (0.058) 0.258 (0.044) 0.000994 (0.000478)
DET only 0.268 (0.016) 0.210 (0.010) 0.001329 (0.000245) 0.370 (0.035) 0.210 (0.033) 0.003205 (0.001647)
DTT only 0.680 (0.034) 0.338 (0.081) 0.002804 (0.000513) 0.485 (0.016) 0.317 (0.017) 0.001024 (0.001517)
BDETT 0.243 (0.006) 0.184 (0.006) 0.001306 (0.000154) 0.217 (0.005) 0.154 (0.006) 0.001058 (0.000106)

Assessment—Ablation Studies

The ablation study results are reported in the rows named “DET only” and “DTT only” in Tables 10,
11, and 12. In addition, the results are illustrated in Figure 9. The results reflect the same facts that
we observed in the obstacle avoidance tasks. The dynamic threshold schemes with only the DET or
DTT components cannot effectively regulate the firing rate statuses of the host SNNs, prohibiting
meaningful homeostasis. For the LIF-based host SNNs, one extreme example is illustrated in the
“30% Zero weight" sections of Figures 9c and e, where ‘DTT only’ reports the largest change among
all competing approaches under all experimental conditions in terms of ∆FRmstd. With the T = 25
setup, as shown in Figures 9d and f, the ∆FRm values of ‘DTT only’ in the “GN weight" sections are
the largest across all experimental settings.
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Table 14: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco HalfCheetah-v3 tasks with the T = 25 setup.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.436 0.230 0.001156 0.440 0.252 0.002217
DT1 [24] 0.420 0.240 0.001158 0.470 0.247 0.001869
DT2 [26] 0.676 0.290 0.000939 0.521 0.305 0.001785
DET only 0.292 0.225 0.001237 0.341 0.253 0.001631
DTT only 0.635 0.257 0.002433 0.493 0.340 0.002722
BDETT 0.251 0.192 0.001292 0.215 0.173 0.001074

Random
joint

position

PopSAN 0.426 (0.010) 0.238 (0.008) 0.001381 (0.000225) 0.458 (0.018) 0.264 (0.012) 0.003048 (0.000831)
DT1 [24] 0.440 (0.020) 0.258 (0.018) 0.001721 (0.000563) 0.442 (0.028) 0.268 (0.021) 0.003632 (0.001763)
DT2 [26] 0.648 (0.028) 0.272 (0.018) 0.001348 (0.000409) 0.501 (0.020) 0.342 (0.037) 0.002384 (0.000599)
DET only 0.301 (0.009) 0.236 (0.011) 0.001464 (0.000227) 0.359 (0.018) 0.285 (0.032) 0.002179 (0.000548)
DTT only 0.630 (0.005) 0.265 (0.008) 0.002104 (0.000329) 0.518 (0.025) 0.372 (0.032) 0.003438 (0.000716)
BDETT 0.247 (0.004) 0.187 (0.005) 0.001431 (0.000139) 0.210 (0.005) 0.163 (0.010) 0.001242 (0.000168)

Random
joint

velocity

PopSAN 0.450 (0.014) 0.239 (0.009) 0.001425 (0.000269) 0.474 (0.034) 0.332 (0.080) 0.002922 (0.000705)
DT1 [24] 0.387 (0.033) 0.258 (0.018) 0.002474 (0.001316) 0.427 (0.043) 0.268 (0.021) 0.003572 (0.001703)
DT2 [26] 0.664 (0.012) 0.261 (0.029) 0.002582 (0.001643) 0.487 (0.034) 0.347 (0.042) 0.002529 (0.000744)
DET only 0.310 (0.018) 0.235 (0.010) 0.001582 (0.000345) 0.368 (0.027) 0.292 (0.039) 0.002544 (0.000913)
DTT only 0.627 (0.008) 0.269 (0.012) 0.001548 (0.000885) 0.515 (0.022) 0.370 (0.030) 0.003282 (0.000560)
BDETT 0.245 (0.006) 0.185 (0.007) 0.001478 (0.000186) 0.208 (0.007) 0.183 (0.010) 0.001305 (0.000231)

GN

PopSAN 0.423 (0.013) 0.252 (0.022) 0.001633 (0.000477) 0.403 (0.037) 0.236 (0.016) 0.002574 (0.000357)
DT1 [24] 0.433 (0.013) 0.221 (0.019) 0.002061 (0.000903) 0.552 (0.082) 0.271 (0.024) 0.003784 (0.001915)
DT2 [26] 0.642 (0.034) 0.310 (0.020) 0.001385 (0.000446) 0.480 (0.041) 0.373 (0.068) 0.002833 (0.001048)
DET only 0.281 (0.011) 0.219 (0.006) 0.001610 (0.000373) 0.304 (0.037) 0.290 (0.037) 0.003082 (0.001451)
DTT only 0.622 (0.013) 0.274 (0.017) 0.002762 (0.000329) 0.453 (0.040) 0.305 (0.035) 0.002048 (0.000674)
BDETT 0.243 (0.008) 0.184 (0.008) 0.001512 (0.000220) 0.226 (0.011) 0.180 (0.007) 0.001283 (0.000209)

8-bit
Loihi

weight

PopSAN 0.432 (0.004) 0.224 (0.006) 0.001310 (0.000154) 0.452 (0.012) 0.238 (0.014) 0.001849 (0.000368)
DT1 [24] 0.427 (0.007) 0.221 (0.019) 0.001035 (0.000123) 0.485 (0.015) 0.259 (0.012) 0.002363 (0.000494)
DT2 [26] 0.661 (0.015) 0.278 (0.012) 0.001174 (0.000235) 0.535 (0.014) 0.328 (0.023) 0.001976 (0.000191)
DET only 0.299 (0.007) 0.234 (0.009) 0.001379 (0.000142) 0.351 (0.010) 0.267 (0.014) 0.001275 (0.000356)
DTT only 0.644 (0.009) 0.242 (0.015) 0.002210 (0.000223) 0.506 (0.013) 0.354 (0.014) 0.002894 (0.000172)
BDETT 0.250 (0.001) 0.197 (0.005) 0.001393 (0.000101) 0.211 (0.004) 0.178 (0.005) 0.001169 (0.000094)

GN
weight

PopSAN 0.471 (0.035) 0.211 (0.019) 0.001637 (0.000481) 0.479 (0.039) 0.336 (0.084) 0.003181 (0.000964)
DT1 [24] 0.433 (0.013) 0.218 (0.022) 0.000904 (0.000254) 0.438 (0.032) 0.302 (0.055) 0.004041 (0.002172)
DT2 [26] 0.642 (0.034) 0.320 (0.030) 0.001683 (0.000744) 0.492 (0.029) 0.366 (0.061) 0.004585 (0.002800)
DET only 0.271 (0.021) 0.238 (0.013) 0.001720 (0.000483) 0.369 (0.028) 0.202 (0.051) 0.003927 (0.002296)
DTT only 0.607 (0.028) 0.289 (0.032) 0.003104 (0.000671) 0.569 (0.076) 0.301 (0.039) 0.004273 (0.001551)
BDETT 0.264 (0.013) 0.183 (0.009) 0.001512 (0.000220) 0.229 (0.014) 0.182 (0.009) 0.001199 (0.000125)

30%
Zero

weight

PopSAN 0.493 (0.057) 0.215 (0.015) 0.001892 (0.000736) 0.410 (0.030) 0.292 (0.040) 0.003237 (0.001020)
DT1 [24] 0.447 (0.027) 0.258 (0.018) 0.001859 (0.000701) 0.424 (0.046) 0.288 (0.041) 0.000926 (0.000943)
DT2 [26] 0.655 (0.021) 0.334 (0.044) 0.001674 (0.000735) 0.486 (0.035) 0.251 (0.054) 0.000896 (0.000889)
DET only 0.273 (0.019) 0.239 (0.014) 0.001692 (0.000455) 0.371 (0.030) 0.216 (0.037) 0.004106 (0.002475)
DTT only 0.677 (0.042) 0.305 (0.048) 0.002976 (0.000543) 0.426 (0.067) 0.312 (0.028) 0.001176 (0.001546)
BDETT 0.239 (0.012) 0.181 (0.011) 0.001642 (0.000350) 0.221 (0.006) 0.180 (0.007) 0.001183 (0.000109)
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Supplementary Note 6: Additional Details on Continuous Control
Experiments—Ant-v3

The training and experimental setups are the same as those used for the HalfCheetah-v3 tasks.

Figure 10: The experimental results obtained in the Ant-v3 tasks. a & b. The rewards obtained under
normal and different degraded conditions under the T = 5 and T = 25 settings, respectively. ‘Base’
denotes the base condition; ‘RP’ and ‘RV’ represent random joint position and random joint velocity,
respectively; ‘8-bit’, ‘GNW’, and ‘30%’ denote the 8-bit Loihi weights, GN weights, and 30% zero
weights, respectively. c & d. Homeostasis measurements obtained under the T = 5 setting for the
LIF- and SRM-based host SNNs, respectively. e & f. Homeostasis results obtained with the T = 25
setup for the LIF- and SRM-based host SNNs, respectively.

Assessment—Reward

As in the HalfCheetah-v3 tasks, we present the rewards of all competing host SNNs under the original
normal conditions with the T = 5 and T = 25 settings; see Table 15. Compared to HalfCheetah-v3’s
17-dimensional state, the state of an Ant-v3 task has 111 dimensions. Thus, the rewards obtained
from the Ant-v3 experiments are much lower than those obtained in the HalfCheetah-v3 tasks.
Nevertheless, the proposed BDETT offers the highest rewards in the Ant-v3 tasks, and it improves
upon the rewards of the LIF- and SRM-based baseline models by at least 173 and 236, respectively.

Relative to the HalfCheetah-v3 tasks, DT1 offers much better rewards in the Ant-v3 tasks under
normal conditions. However, the rewards provided by DT1 and DT2 are still lower than those of the
baseline PopSAN model. This observation is consistent with those obtained in the obstacle avoidance
and HalfCheetah-v3 experiments.

We show the quantitative performance of all competing methods under degraded input and weight
uncertainty conditions in Tables 16 and 17, respectively. In Figures 10a and b, we also intuitively
present the results. The proposed BDETT is still the best performer under all experimental conditions
based on the obtained results. A more detailed analysis for each degraded condition is provided in
the following.
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Table 15: Quantitative performance of Mujoco Ant-v3 tasks under standard testing condition.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Name Reward↑ Reward↑ Reward↑ Reward↑
PopSAN 5526 (σ-81) 5643 (σ-84) 5711 (σ-105) 5612 (σ-105)
DT1 [24] 5272 (σ-142) 5179 (σ-157) 5218 (σ-164) 5121 (σ-117)
DT2 [26] 3454 (σ-183) 3925 (σ-483) 3628 (σ-180) 4016 (σ-445)
DET only 4836 (σ-82) 4971 (σ-128) 4957 (σ-113) 5125 (σ-144)
DTT only 5041 (σ-294) 4883 (σ-154) 5192 (σ-267) 4864 (σ-187)
BDETT 5726 (σ-61) 5879 (σ-117) 5884 (σ-97) 5942 (σ-136)

Table 16: Quantitative performance of Mujoco Ant-v3 tasks under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

Random
joint

position

PopSAN 2503 (σ-503) 3004 (σ-131) 2544 (σ-337) 3036 (σ-152)
DT1 [24] 1435 (σ-130) 1333 (σ-122) 1380 (σ-158) 1258 (σ-150)
DT2 [26] 1280 (σ-234) 1330 (σ-99) 1335 (σ-206) 1364 (σ-152)
DET only 2907 (σ-320) 2836 (σ-392) 2862 (σ-342) 2994 (σ-332)
DTT only 2213 (σ-389) 2190 (σ-119) 2305 (σ-373) 2273 (σ-162)
BDETT 3339 (σ-111) 3450 (σ-75) 3320 (σ-126) 3427 (σ-115)

Random
joint

velocity

PopSAN 2890 (σ-115) 2372 (σ-390) 2858 (σ-149) 2287 (σ-427)
DT1 [24] 2628 (σ-232) 2508 (σ-166) 2643 (σ-259) 2574 (σ-232)
DT2 [26] 1579 (σ-89) 1025 (σ-139) 1595 (σ-131) 1009 (σ-208)
DET only 2720 (σ-365) 2809 (σ-296) 2802 (σ-197) 2896 (σ-372)
DTT only 2635 (σ-234) 2515 (σ-201) 2699 (σ-255) 2618 (σ-260)
BDETT 3103 (σ-95) 2984 (σ-176) 3217 (σ-119) 2996 (σ-195)

GN

PopSAN 977 (σ-320) 1031 (σ-212) 1022 (σ-358) 1059 (σ-217)
DT1 [24] 922 (σ-234) 958 (σ-156) 875 (σ-270) 1012 (σ-178)
DT2 [26] 560 (σ-179) 583 (σ-158) 664 (σ-163) 623 (σ-235)
DET only 782 (σ-246) 1048 (σ-345) 844 (σ-304) 1105 (σ-364)
DTT only 849 (σ-177) 1172 (σ-209) 906 (σ-170) 1255 (σ-218)
BDETT 1269 (σ-166) 1559 (σ-138) 1339 (σ-156) 1576 (σ-161)

Degraded Inputs Compared to that of a HalfCheetah-v3 agent, the observation (state) of an Ant-v3
agent s represents a 111-dimensional data consisting of 13-dimensional joint position information,
14-dimensional joint velocity information, and 84-dimensional contact force data. We disturb Ant-
v3’s observation in the same three ways introduced in the HalfCheetah-v3 tasks: “Random joint
position", “Random joint velocity", and “GN". The average rewards obtained in the ten evaluations
conducted under these three different conditions are shown in Table 16. Under all experimental
settings, the proposed BDETT offers the host SNNs the highest rewards, significantly improving
upon the reward of the baseline PopSAN model by at least 213.

Weight Uncertainty We leverage the same weight uncertainty conditions as those used in the robot
obstacle avoidance and HalfCheetah-v3 experiments. The experimental results are shown in Table 17.
The proposed BDETT remains the best performer under all weight uncertainty conditions. As in
the HalfCheetah-v3 experiments, even with low-precision 8-bit weights, the proposed BDETT helps
both the LIF- and SRM-based host SNNs achieve higher rewards than those offered by the baseline
counterparts with high-precision floating-point weights under T = 5 (i.e., 5570 vs. 5526 and 5648 vs.
5643, respectively). With the T = 25 setup, the SRM-based host SNN exhibits the same pattern.

Assessment—Homeostatic

The raw homeostasis measurements obtained with both T=5 and T=25 are provided in Tables 18
and 19, respectively. The corresponding homeostasis plots are shown in Figures 10c-f.

The homeostasis results obtained in the Ant-v3 tasks demonstrate the effectiveness of the proposed
BDETT in terms of regulating the neuronal firing rates of the host SNNs, inducing minimal changes
in all three metrics when transferring from the base conditions to all other experimental settings. We
witness that the strongest homeostasis again provides the highest rewards.
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Table 17: Quantitative performance of Mujoco Ant-v3 tasks with weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 25) SRM (T = 25)

Type Name Reward↑ Reward↑ Reward↑ Reward↑

8-bit
Loihi

weight

PopSAN 5347 (σ-175) 5285 (σ-158) 5504 (σ-210) 5228 (σ-139)
DT1 [24] 5004 (σ-88) 4889 (σ-163) 4826 (σ-102) 4902 (σ-182)
DT2 [26] 3122 (σ-77) 3463 (σ-99) 3266 (σ-93) 3676 (σ-86)
DET only 4561 (σ-135) 4634 (σ-111) 4663 (σ-156) 4727 (σ-153)
DTT only 4703 (σ-56) 4722 (σ-87) 4903 (σ-63) 4779 (σ-126)
BDETT 5570 (σ-59) 5648 (σ-73) 5606 (σ-52) 5620 (σ-143)

GN
weight

PopSAN 637 (σ-860) 467 (σ-951) 667 (σ-1002) 444 (σ-1105)
DT1 [24] 221 (σ-949) -57 (σ-1245) 155 (σ-839) 6 (σ-1722)
DT2 [26] -265 (σ-488) -173 (σ-640) -226 (σ-628) -198 (σ-883)
DET only 1208 (σ-855) 940 (σ-750) 1258 (σ-638) 923 (σ-883)
DTT only 1392 (σ-467) 1204 (σ-746) 1448 (σ-644) 1310 (σ-867)
BDETT 2782 (σ-599) 1658 (σ-640) 2780 (σ-621) 1669 (σ-612)

30%
Zero

weight

PopSAN 287 (σ-524) 372 (σ-994) 273 (σ-633) 407 (σ-959)
DT1 [24] 1247 (σ-801) 1450 (σ-863) 1200 (σ-1020) 1552 (σ-996)
DT2 [26] -548 (σ-354) -203 (σ-901) -563 (σ-743) -183 (σ-1125)
DET only 1007 (σ-960) 1136 (σ-1179) 1084 (σ-1092) 1186 (σ-1084)
DTT only 908 (σ-428) 1559 (σ-1167) 1038 (σ-487) 1563 (σ-1049)
BDETT 2931 (σ-544) 3046 (σ-886) 2978 (σ-605) 3152 (σ-924)

Table 18: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco Ant-v3 tasks with the T = 5 setting.

LIF (T = 5) SRM (T = 5)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.548 0.262 0.002169 0.197 0.150 0.001823
DT1 [24] 0.531 0.253 0.002483 0.446 0.251 0.002172
DT2 [26] 0.770 0.223 0.004427 0.580 0.167 0.003238
DET only 0.289 0.246 0.001820 0.328 0.187 0.002027
DTT only 0.547 0.280 0.001554 0.443 0.276 0.002942
BDETT 0.271 0.204 0.001325 0.213 0.199 0.001535

Random
joint

position

PopSAN 0.556 (0.008) 0.242 (0.020) 0.003210 (0.001041) 0.208 (0.011) 0.134 (0.016) 0.003022 (0.001199)
DT1 [24] 0.521 (0.010) 0.209 (0.044) 0.002859 (0.000376) 0.420 (0.026) 0.275 (0.024) 0.002819 (0.000647)
DT2 [26] 0.757 (0.013) 0.211 (0.012) 0.002735 (0.001692) 0.529 (0.051) 0.188 (0.021) 0.002521 (0.000717)
DET only 0.262 (0.027) 0.270 (0.024) 0.002575 (0.000755) 0.339 (0.011) 0.210 (0.023) 0.002831 (0.000804)
DTT only 0.519 (0.028) 0.256 (0.024) 0.002481 (0.000927) 0.430 (0.013) 0.244 (0.032) 0.002454 (0.000488)
BDETT 0.275 (0.004) 0.209 (0.005) 0.001240 (0.000085) 0.207 (0.006) 0.192 (0.007) 0.001308 (0.000227)

Random
joint

velocity

PopSAN 0.526 (0.022) 0.223 (0.039) 0.001743 (0.000426) 0.180 (0.017) 0.117 (0.033) 0.003239 (0.001416)
DT1 [24] 0.516 (0.015) 0.221 (0.032) 0.003031 (0.000548) 0.415 (0.031) 0.278 (0.027) 0.002766 (0.000594)
DT2 [26] 0.760 (0.010) 0.220 (0.003) 0.003049 (0.001378) 0.534 (0.046) 0.182 (0.015) 0.002749 (0.000489)
DET only 0.265 (0.024) 0.266 (0.020) 0.001443 (0.000377) 0.345 (0.017) 0.206 (0.019) 0.003182 (0.001155)
DTT only 0.524 (0.023) 0.251 (0.029) 0.003020 (0.001466) 0.410 (0.033) 0.225 (0.051) 0.002385 (0.000557)
BDETT 0.265 (0.006) 0.206 (0.002) 0.001452 (0.000127) 0.207 (0.006) 0.193 (0.006) 0.001882 (0.000347)

GN

PopSAN 0.560 (0.012) 0.244 (0.018) 0.004782 (0.002613) 0.180 (0.017) 0.123 (0.027) 0.002589 (0.000766)
DT1 [24] 0.515 (0.016) 0.229 (0.024) 0.002723 (0.000240) 0.470 (0.024) 0.289 (0.038) 0.003259 (0.001087)
DT2 [26] 0.727 (0.043) 0.238 (0.015) 0.002130 (0.002297) 0.527 (0.053) 0.204 (0.037) 0.004192 (0.000954)
DET only 0.302 (0.013) 0.260 (0.014) 0.003762 (0.001942) 0.312 (0.016) 0.161 (0.026) 0.002495 (0.000468)
DTT only 0.506 (0.041) 0.241 (0.039) 0.003306 (0.001752) 0.390 (0.053) 0.320 (0.044) 0.004334 (0.001392)
BDETT 0.262 (0.009) 0.198 (0.006) 0.001539 (0.000214) 0.198 (0.015) 0.178 (0.021) 0.002068 (0.000533)

8-bit
Loihi

weight

PopSAN 0.540 (0.008) 0.269 (0.007) 0.001838 (0.000331) 0.206 (0.009) 0.167 (0.017) 0.001602 (0.000221)
DT1 [24] 0.519 (0.012) 0.261 (0.008) 0.002217 (0.000266) 0.459 (0.013) 0.237 (0.014) 0.002406 (0.000234)
DT2 [26] 0.758 (0.012) 0.217 (0.006) 0.003884 (0.000543) 0.566 (0.014) 0.193 (0.026) 0.002513 (0.000725)
DET only 0.281 (0.008) 0.250 (0.004) 0.001933 (0.000113) 0.323 (0.005) 0.194 (0.007) 0.001869 (0.000158)
DTT only 0.539 (0.008) 0.286 (0.006) 0.001463 (0.000091) 0.433 (0.010) 0.285 (0.009) 0.003206 (0.000264)
BDETT 0.274 (0.003) 0.206 (0.002) 0.001280 (0.000045) 0.215 (0.002) 0.203 (0.004) 0.001602 (0.000067)

GN
weight

PopSAN 0.507 (0.041) 0.291 (0.029) 0.003844 (0.001675) 0.190 (0.007) 0.138 (0.012) 0.004859 (0.003036)
DT1 [24] 0.475 (0.056) 0.261 (0.008) 0.004749 (0.002266) 0.519 (0.073) 0.328 (0.077) 0.003441 (0.001269)
DT2 [26] 0.722 (0.048) 0.305 (0.082) 0.003632 (0.000795) 0.503 (0.077) 0.212 (0.045) 0.004833 (0.001595)
DET only 0.242 (0.047) 0.218 (0.028) 0.000966 (0.000854) 0.402 (0.074) 0.209 (0.022) 0.003346 (0.001319)
DTT only 0.520 (0.027) 0.223 (0.057) 0.004540 (0.002986) 0.408 (0.035) 0.322 (0.046) 0.004416 (0.001474)
BDETT 0.268 (0.003) 0.208 (0.004) 0.001548 (0.000223) 0.208 (0.005) 0.190 (0.009) 0.002351 (0.000816)

30%
Zero

weight

PopSAN 0.488 (0.060) 0.290 (0.028) 0.006801 (0.004632) 0.140 (0.057) 0.130 (0.020) 0.004246 (0.002423)
DT1 [24] 0.460 (0.071) 0.328 (0.075) 0.004668 (0.002185) 0.411 (0.035) 0.223 (0.028) 0.003402 (0.001230)
DT2 [26] 0.696 (0.074) 0.326 (0.103) 0.002308 (0.002119) 0.511 (0.069) 0.203 (0.036) 0.004283 (0.001045)
DET only 0.250 (0.039) 0.279 (0.033) 0.001023 (0.000797) 0.364 (0.036) 0.213 (0.026) 0.003631 (0.001604)
DTT only 0.566 (0.019) 0.308 (0.028) 0.003243 (0.001689) 0.465 (0.022) 0.268 (0.008) 0.003563 (0.000621)
BDETT 0.258 (0.013) 0.217 (0.013) 0.001840 (0.000515) 0.194 (0.019) 0.191 (0.008) 0.002276 (0.000741)
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Table 19: The raw homeostasis measurements and the corresponding changes with respect to the
baseline condition in Mujoco Ant-v3 tasks with the T = 25 setup.

LIF (T = 25) SRM (T = 25)

Type Name FRm(∆) FRmstd(∆) FRsstd(∆) FRm(∆) FRmstd(∆) FRsstd(∆)

baseline
condition

PopSAN 0.535 0.258 0.002247 0.213 0.166 0.002027
DT1 [24] 0.530 0.252 0.002688 0.453 0.244 0.001694
DT2 [26] 0.753 0.230 0.004728 0.563 0.182 0.003493
DET only 0.302 0.250 0.001947 0.334 0.192 0.001872
DTT only 0.541 0.276 0.001526 0.451 0.281 0.002485
BDETT 0.275 0.204 0.001503 0.222 0.195 0.001829

Random
joint

position

PopSAN 0.549 (0.014) 0.242 (0.016) 0.003794 (0.001547) 0.248 (0.035) 0.140 (0.026) 0.003682 (0.001655)
DT1 [24] 0.522 (0.008) 0.223 (0.029) 0.003074 (0.000386) 0.426 (0.027) 0.277 (0.033) 0.002951 (0.001257)
DT2 [26] 0.692 (0.061) 0.211 (0.019) 0.003076 (0.001652) 0.513 (0.050) 0.219 (0.037) 0.002523 (0.000970)
DET only 0.276 (0.026) 0.286 (0.036) 0.002744 (0.000797) 0.352 (0.018) 0.224 (0.032) 0.002642 (0.000770)
DTT only 0.520 (0.021) 0.252 (0.024) 0.002636 (0.001110) 0.430 (0.021) 0.246 (0.035) 0.002206 (0.000279)
BDETT 0.280 (0.005) 0.210 (0.006) 0.001386 (0.000117) 0.216 (0.006) 0.188 (0.007) 0.001682 (0.000147)

Random
joint

velocity

PopSAN 0.510 (0.025) 0.224 (0.034) 0.001589 (0.000658) 0.189 (0.024) 0.121 (0.045) 0.003472 (0.001445)
DT1 [24] 0.510 (0.020) 0.220 (0.032) 0.003236 (0.000548) 0.424 (0.029) 0.281 (0.037) 0.002692 (0.000998)
DT2 [26] 0.688 (0.065) 0.203 (0.027) 0.003163 (0.001565) 0.522 (0.041) 0.220 (0.038) 0.002732 (0.000761)
DET only 0.263 (0.039) 0.294 (0.044) 0.002583 (0.000636) 0.353 (0.019) 0.209 (0.017) 0.003135 (0.001263)
DTT only 0.522 (0.019) 0.259 (0.017) 0.002184 (0.000658) 0.426 (0.025) 0.252 (0.029) 0.001921 (0.000564)
BDETT 0.267 (0.008) 0.206 (0.002) 0.001632 (0.000129) 0.213 (0.009) 0.190 (0.005) 0.002005 (0.000176)

GN

PopSAN 0.572 (0.037) 0.240 (0.018) 0.004581 (0.002334) 0.180 (0.033) 0.120 (0.046) 0.003148 (0.001121)
DT1 [24] 0.512 (0.018) 0.214 (0.038) 0.002012 (0.000676) 0.633 (0.018) 0.269 (0.025) 0.002885 (0.001191)
DT2 [26] 0.718 (0.035) 0.259 (0.029) 0.002833 (0.001895) 0.520 (0.043) 0.232 (0.050) 0.002148 (0.001345)
DET only 0.323 (0.021) 0.299 (0.049) 0.003665 (0.001718) 0.305 (0.029) 0.169 (0.023) 0.002684 (0.000812)
DTT only 0.512 (0.029) 0.244 (0.032) 0.003522 (0.001996) 0.412 (0.039) 0.328 (0.047) 0.003144 (0.000659)
BDETT 0.264 (0.011) 0.200 (0.004) 0.001400 (0.000103) 0.204 (0.018) 0.177 (0.018) 0.002129 (0.000300)

8-bit
Loihi

weight

PopSAN 0.546 (0.011) 0.275 (0.017) 0.002569 (0.000322) 0.225 (0.012) 0.179 (0.013) 0.002581 (0.000554)
DT1 [24] 0.542 (0.012) 0.264 (0.012) 0.003189 (0.000501) 0.421 (0.032) 0.257 (0.013) 0.001184 (0.000510)
DT2 [26] 0.738 (0.015) 0.220 (0.010) 0.003680 (0.001048) 0.545 (0.018) 0.194 (0.012) 0.003026 (0.000467)
DET only 0.316 (0.014) 0.236 (0.014) 0.002292 (0.000345) 0.346 (0.012) 0.212 (0.020) 0.002214 (0.000342)
DTT only 0.554 (0.013) 0.290 (0.014) 0.001174 (0.000352) 0.438 (0.013) 0.294 (0.013) 0.002763 (0.000278)
BDETT 0.270 (0.005) 0.200 (0.004) 0.001576 (0.000073) 0.218 (0.004) 0.199 (0.004) 0.001722 (0.000107)

GN
weight

PopSAN 0.493 (0.042) 0.295 (0.037) 0.003726 (0.001479) 0.190 (0.023) 0.141 (0.025) 0.005216 (0.003189)
DT1 [24] 0.482 (0.048) 0.277 (0.025) 0.004663 (0.001975) 0.522 (0.069) 0.287 (0.043) 0.003540 (0.001846)
DT2 [26] 0.715 (0.038) 0.286 (0.056) 0.003431 (0.001297) 0.486 (0.077) 0.235 (0.053) 0.004632 (0.001139)
DET only 0.257 (0.045) 0.215 (0.035) 0.001036 (0.000911) 0.394 (0.060) 0.227 (0.035) 0.003373 (0.001501)
DTT only 0.518 (0.023) 0.223 (0.053) 0.003998 (0.002472) 0.410 (0.041) 0.342 (0.061) 0.004025 (0.001540)
BDETT 0.265 (0.010) 0.211 (0.007) 0.001729 (0.000226) 0.212 (0.010) 0.206 (0.011) 0.002773 (0.000944)

30%
Zero

weight

PopSAN 0.510 (0.025) 0.288 (0.030) 0.005942 (0.003695) 0.168 (0.045) 0.137 (0.029) 0.004893 (0.002866)
DT1 [24] 0.457 (0.073) 0.307 (0.055) 0.004043 (0.001355) 0.406 (0.047) 0.220 (0.024) 0.003909 (0.002215)
DT2 [26] 0.685 (0.068) 0.309 (0.079) 0.002863 (0.001865) 0.517 (0.046) 0.236 (0.054) 0.005426 (0.001933)
DET only 0.252 (0.050) 0.243 (0.007) 0.001132 (0.000815) 0.376 (0.042) 0.232 (0.040) 0.004387 (0.002515)
DTT only 0.579 (0.038) 0.332 (0.056) 0.003538 (0.002012) 0.487 (0.036) 0.256 (0.025) 0.003692 (0.001207)
BDETT 0.263 (0.012) 0.213 (0.009) 0.001883 (0.000380) 0.204 (0.018) 0.183 (0.012) 0.002485 (0.000656)

Assessment—Ablation Studies

The experimental results obtained in the Ant-v3 task ablation studies under different conditions
are reported in the rows named ‘DET only’ and ‘DTT only’ in Tables 15, 16, and 17. All listed
evaluations validate that the BDETT scheme performs better than any single component. As shown
in Table 17, under the “GN weight" condition, both ‘DET only’ and ‘DTT only’ offer both the LIF-
and SRM-based host SNNs higher rewards than the other competing dynamic threshold schemes. As
in the other tasks, the dynamic threshold scheme with only one component cannot effectively regulate
the firing rate statuses of the host SNNs, prohibiting meaningful homeostasis. When combining the
DTT and DET components, we witness much more stable homeostasis for all host SNNs.
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Table 20: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under static obstacle condition.

LIF (T = 5) SRM (T = 5)

Constant SR↑ SR↑
0.1 97.5% 96.5%
0.2(original) 98.5% 96.5%
0.3 98.5% 96.5%
0.4 97.5% 95.5%
0.5 98% 95%
1.0 93.5% 91.5%

Table 21: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under dynamic obstacle condition.

LIF (T = 5) SRM (T = 5)

Constant SR↑ SR↑
0.1 91.5% 90.5%
0.2(original) 92.5% 90.5%
0.3 92% 90%
0.4 92% 89%
0.5 91% 89%
1.0 86% 80.5%

Supplementary Note 7: Impact of Constant Coefficient ‘0.2’ in the DET

In the proposed DET component, a constant ‘0.2’ is used for balancing the contributions of the specif-
ically designed bias items, i.e., 0.2(max(vli(t))−min(vli(t))) and 0.2(max(Θl

i(t))−min(Θl
i(t))).

Based on our experimental results, the effectiveness of the proposed BDETT is not sensitive to
this value. In the obstacle avoidance tasks (see Tables 21, 22, and 23), when the constant value
is within the range of [0.1, 0.5], the standard deviations of the SRs for the LIF- and SRM-based
host SNNs are 0.005 and 0.007, respectively. More importantly, even with an extreme value of
1.0, the corresponding SRs are higher than those offered by all other competing dynamic threshold
approaches.

In the HalfCheetah-v3 tasks (see Tables 24, 25, and 26) and the Ant-v3 tasks (see Table 27, 28,
and 29), the proposed BDETT method is more sensitive to the coefficient value than in the obstacle
avoidance tasks. When the constant value is within the range of [0.1, 0.5], the standard deviations
of the rewards are 94 and 107 for the LIF- and SRM-based host SNNs in the HalfCheetah-v3 tasks,
respectively. In the Ant-v3 experiments, the LIF- and SRM-based SNNs provide rewards of 114 and
111, respectively. With the extreme value of 1.0, under some experimental conditions, the rewards
offered by our approach are still higher than those provided by other methods (e.g., the “30% zero
weight" condition of HalfCheetah-v3 and the “GN weight" condition of Ant-v3). However, with the
extreme value of 1.0, the effectiveness of the proposed BDETT scheme is reduced. This means that
the sensitivity to the constant value increases as the complexity of the given task increases.

Note that the value of ‘0.2’ offers the most effective and robust performance across all three tasks
under all experimental conditions. Therefore, we set the coefficient to ‘0.2’ in our proposed dynamic
threshold scheme.

Table 22: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant SR↑ SR↑ Type Constant SR↑ SR↑ Type Constant SR↑ SR↑

0.2

0.1 89% 78%

0.6

0.1 83.5% 82%

GN

0.1 83.5% 82%
0.2(original) 90% 79.5% 0.2(original) 84.5% 83% 0.2(original) 84.5% 82.5%
0.3 89% 77.5% 0.3 83% 81.5% 0.3 84% 82%
0.4 87% 75% 0.4 82% 79% 0.4 84% 81.5%
0.5 87.5% 75% 0.5 81.5% 80.5% 0.5 83% 81%
1.0 83.5% 70.5% 1.0 76% 76.5% 1.0 77% 70.5%
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Table 23: Quantitative performance of obstacle avoidance tasks with different constant coefficient
settings under weight uncertainty conditions.

LIF (T = 5)SRM (T = 5) LIF (T = 5)SRM (T = 5) LIF (T = 5)SRM (T = 5)

Type Constant SR↑ SR↑ Type Constant SR↑ SR↑ Type Constant SR↑ SR↑

8-bit
Loihi

weight

0.1 89.5% 87.5%

GN
weight

(5 rounds)

0.1 87.2% 60.5%
30%
Zero

weight
(5 rounds)

0.1 77.2% 64.0%
0.2(original) 90% 88.5% 0.2(original) 87.7% 61.8% 0.2(original) 77.2% 65.2%
0.3 90% 88% 0.3 86.3% 60.0% 0.3 75.8% 64.2%
0.4 88.5% 88% 0.4 85.7% 58.6% 0.4 74.3% 63.5%
0.5 87.5% 87% 0.5 84.1% 57.4% 0.5 72.8% 83.6%
1.0 83% 79.5% 1.0 80.3% 52.3% 1.0 67.1% 52.9%

Table 24: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under standard testing conditions.

LIF (T = 5) SRM (T = 5)

Constant Reward↑ Reward↑
0.1 11029 11903
0.2(original) 11064 11960
0.3 10987 11875
0.4 10976 11682
0.5 10793 11724
1.0 10028 11123

Table 25: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under degraded input conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

Random
joint

position

0.1 8379 7767

Random
joint

velocity

0.1 8241 7023

GN

0.1 3832 3825
0.2(original) 8465 7883 0.2(original) 8302 7116 0.2(original) 3909 3895
0.3 8302 7748 0.3 8159 6968 0.3 3790 3810
0.4 8351 7703 0.4 8113 6743 0.4 3673 3724
0.5 8188 7615 0.5 8044 6702 0.5 3711 3641
1.0 7580 7180 1.0 7702 6231 1.0 3420 3172

Table 26: Quantitative performance of HalfCheetah-v3 tasks with different constant coefficient
settings under weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

8-bit
Loihi

weight

0.1 10780 11624

GN
weight

0.1 6798 8142

30%
Zero

weight

0.1 6428 5250
0.2(original) 10823 11767 0.2(original) 6928 8381 0.2(original) 6551 5386
0.3 10672 11584 0.3 6920 8077 0.3 6531 5188
0.4 10658 11467 0.4 6818 7936 0.4 6286 5102
0.5 10583 11385 0.5 6674 7769 0.5 6290 4975
1.0 9757 10648 1.0 6113 7019 1.0 5680 4562

Table 27: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
standard testing conditions.

LIF (T = 5) SRM (T = 5)

Constant Reward↑ Reward↑
0.1 5662 5803
0.2(original) 5726 5879
0.3 5648 5747
0.4 5570 5589
0.5 5394 5610
1.0 5104 5226
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Table 28: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
degraded inputs conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

Random
joint

position

0.1 3241 3368

Random
joint

velocity

0.1 2983 2772

GN

0.1 1214 1478
0.2(original) 3339 3450 0.2(original) 3103 2984 0.2(original) 1269 1559
0.3 3188 3380 0.3 3032 2704 0.3 1148 1409
0.4 3213 3217 0.4 2844 2655 0.4 1003 1255
0.5 3062 3048 0.5 2697 2517 0.5 980 1261
1.0 2676 2572 1.0 2230 2280 1.0 772 1083

Table 29: Quantitative performance of Ant-v3 tasks with different constant coefficient settings under
weight uncertainty conditions.

LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5) LIF (T = 5) SRM (T = 5)

Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑ Type Constant Reward↑ Reward↑

8-bit
Loihi

weight

0.1 5413 5600

GN
weight

0.1 2703 1596

30%
Zero

weight

0.1 2883 2925
0.2(original) 5570 5648 0.2(original) 2782 1658 0.2(original) 2931 3046
0.3 5373 5583 0.3 2636 1554 0.3 2945 2990
0.4 5230 5349 0.4 2488 1433 0.4 2802 2731
0.5 5022 5224 0.5 2523 1382 0.5 2652 2583
1.0 4448 4783 1.0 2205 1071 1.0 2217 1992
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Table 30: Quantitative performance of obstacle avoidance tasks under the standard static obstacle
conditions with respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed SR↑ SR↑
1 98.5% 96%
2 98.5% 96.5%%
3 97% 95%
4 96.5% 95.5%
5 98% 96%

Mean 97.7% 95.8%
Standard Deviation 0.008 0.005

Coefficient
of Variation 0.008 0.005

Table 31: Quantitative performance of obstacle avoidance tasks under dynamic obstacle conditions
with respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed SR↑ SR↑
1 92% 89.5%
2 92.5% 90.5%
3 91% 90.5%
4 92% 90%
5 92.5% 89.5%

Mean 92% 90%
Standard Deviation 0.005 0.004

Coefficient
of Variation 0.006 0.005

Supplementary Note 8: Impact of Random Seeds

In this section, we study the impact of the random seeds during the training process on the proposed
BDETT. For the obstacle avoidance tasks, we train five models for each LIF- and SRM-based host
SNN, corresponding to five different random seeds. The SRs and the corresponding error bars of the
trained host SNNs are reported in Figure 11a and Tables 30, 31, 32, and 33.

For the continuous control tasks, the rewards obtained in the HalfCheetah-v3 tasks under all experi-
mental conditions are shown in Figure 11b. The corresponding experimental results are reported in
Tables 34, 35, and 36. In Tables 37, 38, and 39, we report the experimental results of the Ant-v3
tasks under all experimental settings. The results are also illustrated in Figure 11c.

Since the mean success rates and rewards obtained in the three tasks differ significantly, we calculate
coefficients of variation to produce fair comparisons. We observe that the random seeds have the
lowest impact on the obstacle avoidance tasks and the most substantial influence on the Ant-v3 tasks.

Table 32: Quantitative performance of obstacle avoidance tasks under degraded input conditions with
respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑

0.2

1 89% 79%

0.6

1 83.5% 82%

GN

1 82.5% 81.5%
2 90% 79.5% 2 84.5% 83% 2 84.5% 82.5%
3 89.5% 79% 3 85% 82.5% 3 83% 81.5%
4 88% 78.5% 4 84% 81.5% 4 83.5% 81%
5 89% 78% 5 83% 82% 5 82% 82%

Mean 89.1% 78.8% Mean 84% 82.2% Mean 83.1% 81.7%
Standard Deviation 0.007 0.005 Standard Deviation 0.007 0.005 Standard Deviation 0.009 0.005

Coefficient
of Variation

0.007 0.006
Coefficient
of Variation

0.008 0.006
Coefficient
of Variation

0.010 0.006

35



Table 33: Quantitative performance of obstacle avoidance tasks under weight uncertainty conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑ Type Random Seed SR↑ SR↑

8-bit
Loihi

weight

1 90% 87%

GN
weight

(5 rounds)

1 85.8% 61%

30%

Zero
weight

(5 rounds)

1 76.8% 64.5%
2 90% 88.5% 2 87.7% 61.8% 2 77.2% 65.2%
3 88.5% 86% 3 87.1% 61.3% 3 75.9% 63.9%
4 88.5% 88.5% 4 86.6% 60.2% 4 75.4% 64.5%
5 89% 86.5% 5 87.5% 60.8% 5 76.9% 65.0%

Mean 89.2% 87.3% Mean 86.9% 61% Mean 76.4% 64.6%
Standard Deviation 0.007 0.010 Standard Deviation 0.007 0.005 Standard Deviation 0.007 0.005

Coefficient
of Variation

0.008 0.012
Coefficient
of Variation

0.008 0.009
Coefficient
of Variation

0.009 0.007

Table 34: Quantitative performance of HalfCheetah-v3 tasks under standard testing condition with
respect to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed Reward↑ Reward↑
1 11064 11960
2 10979 11873
3 9848 10474
4 10881 11061
5 8992 11644
6 10977 10939
7 10975 11337
8 10869 11777
9 10932 10673
10 10993 11841

Mean 10651 11358
Standard Deviation 647 513

Coefficient
of Variation 0.061 0.045

Table 35: Quantitative performance of the HalfCheetah-v3 tasks under degraded input conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

Random
joint

position

1 8465 7883

Random
joint

position

1 8302 7116

GN

1 3909 3895
2 8452 7788 2 8239 7101 2 3820 3854
3 7617 6618 3 7575 5684 3 3292 2648
4 8399 7001 4 8274 6208 4 3797 2979
5 7003 7622 5 7216 6869 5 2816 3561
6 8320 7280 6 8226 6540 6 3675 3197
7 8339 7557 7 8288 6806 7 3790 3636
8 8348 7832 8 8129 6805 8 3743 3582
9 8329 6777 9 8118 6044 9 3858 2770
10 8423 7781 10 8208 6964 10 3806 3667

Mean 8169 7414 Mean 8058 6614 Mean 3651 3379
Standard Deviation 454 443 Standard Deviation 345 459 Standard Deviation 322 426

Coefficient
of Variation

0.056 0.06
Coefficient
of Variation

0.043 0.069
Coefficient
of Variation

0.088 0.126
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Table 36: Quantitative performance of the HalfCheetah-v3 tasks under weight uncertainty conditions
with respect to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

8-bit
Loihi

weight

1 10823 11767

GN
weight

1 6928 8381

30%

Zero
weight

1 6551 5386
2 10767 11749 2 6704 8307 2 6486 5308
3 10062 10406 3 6155 7208 3 5671 3970
4 10648 10780 4 6858 7527 4 6296 4254
5 9368 11452 5 5857 8216 5 5217 5249
6 10532 11097 6 6656 7537 6 6282 5007
7 10284 11358 7 6838 8046 7 6341 5040
8 10617 11768 8 6729 8306 8 6231 5337
9 10788 10733 9 6740 7598 9 6537 4227
10 10787 11496 10 6765 8282 10 6481 5081

Mean 10468 11261 Mean 6623 7941 Mean 6209 4886
Standard Deviation 435 460 Standard Deviation 324 407 Standard Deviation 410 501

Coefficient
of Variation

0.042 0.041
Coefficient
of Variation

0.049 0.051
Coefficient
of Variation

0.066 0.103

Table 37: Quantitative performance of the Ant-v3 tasks under standard testing condition with respect
to random seeds.

LIF (T = 5) SRM (T = 5)

Random Seed Reward↑ Reward↑
1 5726 5879
2 5678 5758
3 5306 5798
4 5553 5480
5 3980 5508
6 4657 5590
7 5692 4063
8 5595 5829
9 5688 5429
10 5696 5616

Mean 5357 4933
Standard Deviation 553 500

Coefficient
of Variation 0.103 0.101

Table 38: Quantitative performance of Ant-v3 tasks under degraded input conditions with respect to
random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

Random
joint

position

1 3339 3450

Random
joint

position

1 3103 2984

GN

1 1269 1559
2 3323 3423 2 2879 2869 2 1166 1524
3 2973 3059 3 2651 2930 3 1030 1432
4 3161 3049 4 2763 2731 4 1093 1357
5 2053 3234 5 2105 2870 5 796 1440
6 2424 3339 6 2547 2863 6 881 1396
7 2993 2252 7 2822 2032 7 1132 830
8 3216 3365 8 2892 2829 8 1105 1501
9 3217 3300 9 3047 2815 9 1268 1464
10 3218 3237 10 2860 2692 10 1020 1385

Mean 2992 2847 Mean 2767 2492 Mean 1076 1250
Standard Deviation 402 332 Standard Deviation 270 256 Standard Deviation 144 196

Coefficient
of Variation

0.134 0.117
Coefficient
of Variation

0.098 0.103
Coefficient
of Variation

0.134 0.157
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Table 39: Quantitative performance of Ant-v3 tasks under weight uncertainty conditions with respect
to random seeds.

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

LIF
(T = 5)

SRM
(T = 5)

Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑ Type Random Seed Reward↑ Reward↑

8-bit
Loihi

weight

1 5570 5648

GN
weight

1 2782 1658

30%

Zero
weight

1 2931 3046
2 5398 5641 2 2668 1503 2 2849 2859
3 5219 5611 3 2518 1467 3 2729 2674
4 5309 5291 4 2580 1341 4 2741 2929
5 4395 5201 5 1816 1522 5 1840 2794
6 4853 5394 6 2303 1466 6 2125 2730
7 5166 3968 7 2426 959 7 2654 1895
8 5365 5610 8 2646 1595 8 2826 2760
9 5544 5416 9 2601 1427 9 2874 2635
10 5254 5343 10 2422 1497 10 2802 2644

Mean 5207 4778 Mean 2476 1294 Mean 2637 2432
Standard Deviation 333 473 Standard Deviation 257 181 Standard Deviation 342 294

Coefficient
of Variation

0.064 0.099
Coefficient
of Variation

0.104 0.140
Coefficient
of Variation

0.130 0.121

Figure 11: Quantitative performance of the LIF- and SRM-based BDETThost SNNs with respect to
random seeds.
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Supplementary Note 9: BDETT without Statistical Parameter Settings

We study the impact of the proposed layerwise statistical parameter settings, an extension of section
4.3 of our main paper. The experimental settings and the corresponding results are reported in
Table 40. Without replacing the constants of the original biological model, the proposed method is
is only slightly better than the ones without any training. Both LIF- and SRM-based experiments
validate that the proposed statistical cues are essential to the proposed method.

Table 40: Quantitative performance of BDETT without statistical parameter settings (SPS) under the
stardard testing conditions. OA means obstacle avoidance; HC-v3 indicates HalfCheetah-v3.

LIF SRM

Approach SPS Trained OA
(SR↑)

HC-v3
(Reward↑)

Ant-v3
(Reward↑)

OA
(SR↑)

HC-v3
(Reward↑)

Ant-v3
(Reward↑)

BDETT Yes Yes 92.5% 11064 5726 90.5% 11960 5879
BDETT No Yes 0% -35 -9 0% -28 -18
BDETT Yes No 0% -124 -73 0% -59 3
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Supplementary Note 10: Interaction between DET and DTT

In the section “Interaction of DET and DTT" of our main paper, we illustrate the interaction between
DET and DTT with two examples. Here, we provide additional experimental evidence of the
interaction of DET and DTT. Without loss of generality, we conduct the experiments by using spiking
actor network (SAN) as the host SNN for a robot obstacle avoidance task.

Interaction DET/DTT with low potential fluctuations.

• Experimental setup: We randomly chose a timestamp and recorded all postsynaptic mem-
brane potentials and spiking thresholds of the host SNN. Then, for each layer, we randomly
selected X neurons based on the binomial distribution with a probability of 0.5. The cho-
sen neurons were added random positive noise, generated based on a normal distribution
N (0.2, 0.05). The mean of 0.2 is around 20% of the average of the recorded membrane
potentials. To reduce the impact of the randomness, we did 5-round tests and reported the
average and standard deviation of the obtained DETs and DTTs. The average number of
selected neurons of these 5-round tests of each layer, µ(X), is also reported.

• Experimental thesis: We expect DET increases as the noise increases the membrane
potential. DTT should remain at a relatively constant threshold (i.e., a+ 1) as the preceding
rate of depolarization caused by the noise is close to 0.

• Experimental result: The layerwise mean, µ, and standard deviation, σ, of the 5-round
DETs and DTTs with and without added noise are reported in Table 41, aligning well with
the experimental thesis. ∆ is the absolute value of the difference between original and add
noise.

Table 41: Interaction DET/DTT with low potential fluctuations.

µ(X) original (µ / σ) add noise (µ / σ) ∆

layer 1 DET
130.4

1.4950 / 0.0051 1.5143 / 0.0066 0.0193 / 0.0015

layer 1 DTT 0.0570 / 0.0064 0.0571 / 0.0063 0.0001 / 0.0001

layer 2 DET
128.4

2.1548 / 0.0120 2.1745 / 0.0111 0.0197 / 0.0009

layer 2 DTT 0.2725 / 0.0154 0.2724 / 0.0152 0.0001 / 0.0002

layer 3 DET
126.6

3.3528 / 0.0788 3.3720 / 0.0777 0.0192 / 0.0011

layer 3 DTT 0.4549 / 0.0033 0.4549 / 0.0033 0.0000 / 0.0000

Interaction DET/DTT with fast membrane potential drop.

• Experimental setup: We adopted the same binomial distribution as in the first experiment
and randomly selected X neurons of the host SNN. To mimic fast membrane potential drops
from t to t+1, we added random negative membrane potentials with a larger magnitude than
the first experiment, which was generated by sampling a normal distribution N (−2.0, 0.5).

• Experimental thesis: In this scenario, even though DET decreases with the reduced mem-
brane potential, we expect DTT to increase faster, and BDETT to increase the overall
threshold.

• Experimental result: The layerwise mean and STD of the 5-round X DETs, DTTs, and
BDETTs with and without fast membrane potential drop are shown in Table 42. Again, the
findings align with the experimental thesis.
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Table 42: Interaction DET/DTT with fast membrane potential drop

µ(X) original (µ / σ) fast potential drop (µ / σ) ∆

layer 1 DET

128.2

1.4919 / 0.0089 1.4032 / 0.0106 0.0887 / 0.0017

layer 1 DTT 0.0579 / 0.0044 1.0115 / 0.0251 0.9536 / 0.0207

layer 1 BDETT 0.7749 / 0.0039 1.2074 / 0.0124 0.4325 / 0.0085

layer 2 DET

124.8

2.1865 / 0.0292 2.0348 / 0.0514 0.1517 / 0.0222

layer 2 DTT 0.2863 / 0.0053 1.1938 / 0.0332 0.9075 / 0.0279

layer 2 BDETT 1.2364 / 0.0148 1.6143 / 0.0293 0.3779 / 0.0145

layer 3 DET

130.4

3.6456 / 0.1114 3.3802 / 0.1298 0.2654 / 0.0184

layer 3 DTT 0.4479 / 0.0141 1.3337 / 0.0307 0.8858 / 0.0166

layer 3 BDETT 2.0468 / 0.0610 2.3570 / 0.0574 0.3102 / 0.0036
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Supplementary Note 11: Runtime Complexity analysis

The computational complexity of the proposed BDETT is bounded by the computational complexity
of calculating the mean, maximum, and minimum, i.e., Eqs. 3, 4, and 6. Therefore, the upper bound
of estimating BDETT complexity, Θl

i(t+ 1), is O(n), where n is the number of neurons on the l-th
layer. The baseline methods, DT1 and DT2, are bounded by the summation operations and offer the
same upper bound, O(n); see Eqs. 8 and 9 in Supplementary Note 2.

We report the layer-wise running time with PyTorch 1.2 on an i7-7700 CPU and NVIDIA GTX
1080Ti GPU. As we can see the running time of the proposed BDETT for the testing network is 1.36
ms.

Table 43: Layer-wise running time.

Layer 1
(256 neurons)

Layer 2
(256 neurons)

Layer 3
(256 neurons)

Layer 4
(2 neurons) Total

DET (ms) 0.18 0.19 0.19 0.18 0.74

DTT (ms) 0.11 0.11 0.11 0.10 0.43

BDETT (ms) 0.34 0.35 0.35 0.32 1.36

References
[1] Manuel Valero, Ipshita Zutshi, Euisik Yoon, and György Buzsáki. Probing subthreshold dynamics of

hippocampal neurons by pulsed optogenetics. Science, 375(6580):570–574, 2022.

[2] Ai Nakashima, Naoki Ihara, Mayo Shigeta, Hiroshi Kiyonari, Yuji Ikegaya, and Haruki Takeuchi.
Structured spike series specify gene expression patterns for olfactory circuit formation. Science,
365(6448):eaaw5030, 2019.

[3] Cheng yu T. Li, Mu ming Poo, and Yang Dan. Burst spiking of a single cortical neuron modifies global
brain state. Science, 324(5927):643–646, 2009.

[4] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan,
Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser,
Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar,
and Dharmendra S. Modha. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science, 345(6197):668–673, 2014.

[5] Youhui Zhang, Peng Qu, Yu Ji, Weihao Zhang, Guangrong Gao, Guanrui Wang, Sen Song, Guoqi Li,
Wenguang Chen, Weimin Zheng, Feng Chen, Jing Pei, Rong Zhao, Mingguo Zhao, and Luping Shi. A
system hierarchy for brain-inspired computing. Nature, 586(7829):378–384, 2020.

[6] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice. All-optical spiking
neurosynaptic networks with self-learning capabilities. Nature, 569(7755):208–214, 2019.

[7] Michael V. DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P. Risk,
Jeff Kusnitz, Carlos Ortega Otero, Tapan K. Nayak, Rathinakumar Appuswamy, Peter J. Carlson, Andrew S.
Cassidy, Pallab Datta, Steven K. Esser, Guillaume J. Garreau, Kevin L. Holland, Scott Lekuch, Michael
Mastro, Jeff McKinstry, Carmelo di Nolfo, Brent Paulovicks, Jun Sawada, Kai Schleupen, Benjamin G.
Shaw, Jennifer L. Klamo, Myron D. Flickner, John V. Arthur, and Dharmendra S. Modha. Truenorth:
Accelerating from zero to 64 million neurons in 10 years. Computer, 52(5):20–29, 2019.

[8] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday,
Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines,
Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkatara-
manan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[9] Guangzhi Tang, Neelesh Kumar, and Konstantinos P Michmizos. Reinforcement co-learning of deep
and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware. arXiv
preprint arXiv:2003.01157, 2020.

42



[10] Travis DeWolf. Spiking neural networks take control. Science Robotics, 6(58):eabk3268, 2021.

[11] Ignacio Abadía, Francisco Naveros, Eduardo Ros, Richard R. Carrillo, and Niceto R. Luque. A
cerebellar-based solution to the nondeterministic time delay problem in robotic control. Science Robotics,
6(58):eabf2756, 2021.

[12] Kevin B. Koronowski and Paolo Sassone-Corsi. Communicating clocks shape circadian homeostasis.
Science, 371(6530):eabd0951, 2021.

[13] Gina G Turrigiano and Sacha B Nelson. Homeostatic plasticity in the developing nervous system. Nature
reviews neuroscience, 5(2):97–107, 2004.

[14] Wei Zhang and David J. Linden. The other side of the engram: experience-driven changes in neuronal
intrinsic excitability. Nature Reviews Neuroscience, 4(11):885–900, 2003.

[15] Leon N Cooper and Mark F. Bear. The bcm theory of synapse modification at 30: interaction of theory
with experiment. Nature Reviews Neuroscience, 13(11):798–810, 2012.

[16] Bertrand Fontaine, José Luis Peña, and Romain Brette. Spike-threshold adaptation predicted by membrane
potential dynamics in vivo. PLOS Computational Biology, 10(4), 2014.

[17] Rony Azouz and Charles M. Gray. Dynamic spike threshold reveals a mechanism for synaptic coincidence
detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States
of America, 97(14):8110–8115, 2000.

[18] Luk Chong Yeung, Harel Z Shouval, Brian S Blais, and Leon N Cooper. Synaptic homeostasis and input
selectivity follow from a calcium-dependent plasticity model. Proceedings of the National Academy of
Sciences, 101(41):14943–14948, 2004.

[19] Qian-Quan Sun. Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer iv. Journal
of Neurophysiology, 102(5):2955–2973, 2009.

[20] Karine Pozo and Yukiko Goda. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron,
66(3):337–351, 2010.

[21] Jose Luis Pena and Masakazu Konishi. From postsynaptic potentials to spikes in the genesis of auditory
spatial receptive fields. Journal of Neuroscience, 22(13):5652–5658, 2002.

[22] Rony Azouz and Charles M Gray. Adaptive coincidence detection and dynamic gain control in visual
cortical neurons in vivo. Neuron, 37(3):513–523, 2003.

[23] Guo Zhang, Ke Yu, Tao Wang, Ting-Ting Chen, Wang-Ding Yuan, Fan Yang, Zi-Wei Le, Shi-Qi Guo,
Ying-Yu Xue, Song-An Chen, Zhe Yang, Feng Liu, Elizabeth C. Cropper, Klaudiusz R. Weiss, and Jian Jing.
Synaptic mechanisms for motor variability in a feedforward network. Science Advances, 6(25):eaba4856,
2020.

[24] Yunzhe Hao, Xuhui Huang, Meng Dong, and Bo Xu. A biologically plausible supervised learning method
for spiking neural networks using the symmetric stdp rule. Neural Networks, 121:387–395, 2020.

[25] Ahmed Shaban, Sai Sukruth Bezugam, and Manan Suri. An adaptive threshold neuron for recurrent spiking
neural networks with nanodevice hardware implementation. Nature Communications, 12(1):4234, 2021.

[26] Taeyoon Kim, Suman Hu, Jaewook Kim, Joon Young Kwak, Jongkil Park, Suyoun Lee, Inho Kim, Jong-
Keuk Park, and YeonJoo Jeong. Spiking neural network (snn) with memristor synapses having non-linear
weight update. Frontiers in computational neuroscience, 15:22, 2021.

[27] Wulfram Gerstner. Time structure of the activity in neural network models. Physical Review E, 51(1):738–
758, 1995.

[28] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity.
2002.

[29] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In Advances in
Neural Information Processing Systems, volume 31, pages 1412–1421, 2018.

[30] Moritz B Milde, Hermann Blum, Alexander Dietmüller, Dora Sumislawska, Jörg Conradt, Giacomo
Indiveri, and Yulia Sandamirskaya. Obstacle avoidance and target acquisition for robot navigation using a
mixed signal analog/digital neuromorphic processing system. Frontiers in neurorobotics, 11:28, 2017.

43



[31] Amarnath Mahadevuni and Peng Li. Navigating mobile robots to target in near shortest time using
reinforcement learning with spiking neural networks. In 2017 International Joint Conference on Neural
Networks (IJCNN), pages 2243–2250. IEEE, 2017.

[32] Zhenshan Bing, Ivan Baumann, Zhuangyi Jiang, Kai Huang, Caixia Cai, and Alois Knoll. Supervised
learning in snn via reward-modulated spike-timing-dependent plasticity for a target reaching vehicle.
Frontiers in neurorobotics, 13:18, 2019.

[33] Guangzhi Tang and Konstantinos P Michmizos. Gridbot: an autonomous robot controlled by a spiking
neural network mimicking the brain’s navigational system. In Proceedings of the International Conference
on Neuromorphic Systems, pages 1–8, 2018.

[34] Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T Siegelmann, and Robert Kozma. Improved
robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms
applied to atari breakout game. Neural Networks, 120:108–115, 2019.

[35] Guangzhi Tang, Neelesh Kumar, Raymond Yoo, and Konstantinos P Michmizos. Deep reinforcement learn-
ing with population-coded spiking neural network for continuous control. arXiv preprint arXiv:2010.09635,
2020.

[36] Guangzhi Tang, Arpit Shah, and Konstantinos P Michmizos. Spiking neural network on neuromorphic
hardware for energy-efficient unidimensional slam. arXiv preprint arXiv:1903.02504, 2019.

[37] Kate D. Fischl, Kaitlin Fair, Wei-Yu Tsai, Jack Sampson, and Andreas Andreou. Path planning on the
truenorth neurosynaptic system. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4, 2017.

[38] Hermann Blum, Alexander Dietmüller, Moritz Milde, Jörg Conradt, Giacomo Indiveri, and Yulia San-
damirskaya. A neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor.
Robotics Science and Systems, RSS 2017, 2017.

[39] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[40] Anton V. Chizhov, Elena Yu. Smirnova, K. Kh. Kim, and Aleksey V. Zaitsev. A simple markov model of
sodium channels with a dynamic threshold. J. Comput. Neurosci., 37(1):181–191, 2014.

[41] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[42] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

[43] Jinyoung Choi, Kyungsik Park, Minsu Kim, and Sangok Seok. Deep reinforcement learning of navigation
in a complex and crowded environment with a limited field of view. In 2019 International Conference on
Robotics and Automation (ICRA), pages 5993–6000. IEEE, 2019.

[44] Andreea Lazar, Gordon Pipa, and Jochen Triesch. 2007 special issue: Fading memory and time series
prediction in recurrent networks with different forms of plasticity. Neural Networks, 20(3):312–322, 2007.

[45] Friedemann Zenke, Guillaume Hennequin, and Wulfram Gerstner. Synaptic plasticity in neural networks
needs homeostasis with a fast rate detector. PLOS Computational Biology, 9(11), 2013.

[46] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[47] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[48] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training
high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

[49] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[50] A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Journal of Physiology, 117:500–544, 1952.

44



[51] Andrew Y. Y. Tan, Yuzhi Chen, Benjamin Scholl, Eyal Seidemann, and Nicholas J. Priebe. Sensory
stimulation shifts visual cortex from synchronous to asynchronous states. Nature, 509(7499):226–229,
2014.

[52] David A. McCormick, Yousheng Shu, and Yuguo Yu. Hodgkin and huxley model —still standing? Nature,
445(7123):E1–E2, 2007.

[53] W Tackmann and HJ Lehmann. Refractory period in human sensory nerve fibres. European neurology,
12(5-6):277–292, 1974.

[54] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell, editors. Principles of Neural Science. Elsevier,
New York, third edition, 1991.

[55] Jonathan Platkiewicz and Romain Brette. A threshold equation for action potential initiation. PLoS
computational biology, 6(7):e1000850, 2010.

[56] Björn Naundorf, Fred Wolf, and Maxim Volgushev. Unique features of action potential initiation in cortical
neurons. Nature, 440(7087):1060–1063, 2006.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. arXiv preprint arXiv:1912.01703, 2019.

45


	1 Introduction
	2 Background and Related Work
	2.1 Spiking Neural Networks (SNNs)
	2.2 Spiking Neural Networks for Robot Control

	3 Bioinspired Dynamic Energy-Temporal Threshold (BDETT)
	4 Experiments
	4.1 Robot Obstacle Avoidance with BDETT
	4.2 Continuous Robot Control with BDETT
	4.3 Image Classification with BDETT
	4.4 BDETT without Statistical Parameter Adjustment

	5 Conclusion
	A Supplementary Material

