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Abstract

This work introduces an evaluation benchmark for depth
estimation and completion using high-resolution depth
measurements with angular resolution of up to 25” (arcsec-
ond), akin to a 50 megapixel camera with per-pixel depth
available. Existing datasets, such as the KITTI bench-
mark [12], provide only sparse reference measurements
with an order of magnitude lower angular resolution –
these sparse measurements are treated as ground truth by
existing depth estimation methods. We propose an eval-
uation methodology in four characteristic automotive sce-
narios recorded in varying weather conditions (day, night,
fog, rain). As a result, our benchmark allows us to eval-
uate the robustness of depth sensing methods in adverse
weather and different driving conditions. Using the pro-
posed evaluation data, we demonstrate that current stereo
approaches provide significantly more stable depth esti-
mates than monocular methods and lidar completion in ad-
verse weather. Data and code are available at https:
//github.com/gruberto/DepthBenchmark.

1. Introduction
3D scene understanding is one of the key challenges for

safe autonomous driving, and the critical depth measure-
ment and processing methods are a very active areas of
research. Depth information can be captured using a va-
riety of different sensing modalities, either passive or ac-
tive. Passive methods can be classified into stereo meth-
ods [4, 18, 22, 41], which, inspired by the human visual sys-
tem, extract depth from parallax in intensity images, struc-
ture from motion (SfM) [23, 30, 56, 58, 64], and monocular
depth prediction [5, 9, 14, 27, 45]. Monocular depth esti-
mation methods attempt to extract depth from cues such as
defocus [55], texture gradient and size perspective from a
single image only. All of these passive sensing systems suf-
fer in low light and at night, when the measured intensity
is too low to robustly match image content. Active sens-
ing methods, such as lidar systems and time-of-flight (ToF)
cameras, overcome this challenge by relying on active il-
lumination for depth measurements. Specifically, lidar sys-
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Figure 1: We propose a depth evaluation framework using
ground truth depth data acquired at an angular resolution
of up to 25” (arcsecond). We evaluate depth sensing under
realistic weather situations and different automotive scenar-
ios, including a pedestrian zone, residential area, construc-
tion, area and highway.

tems [49] achieve large distances by focusing light into mul-
tiple beams which are mechanically scanned. This sequen-
tial acquisition fundamentally limits the angular resolution
by the scanning mechanics, prohibiting semantic scene un-
derstanding at large distances where only a coarse sample
distribution is available. As a result, a variety of algorithms
for depth completion [6, 21, 31] have been proposed re-
cently. Existing correlation ToF cameras [16, 24, 28] or
structured light cameras [1, 36, 37, 48], provide accurate
high-resolution depth for close ranges indoors but suffer at
long ranges in outdoor scenes due to strong ambient illumi-
nation and modulation frequency limitations.

In order to evaluate the performance of such diverse
sensing approaches for autonomous driving, empirical
datasets under realistic road conditions and meaningful
metrics are required. Captured with previous generation
hardware, the NYUdepth v2 [53] and KITTI [12] datasets
are established for developing and evaluating depth estima-
tion methods. While NYUdepth v2 contains a large variety
of close-range indoor scenes captured by a Microsoft Kinect
RGB-D camera [63], the KITTI dataset provides real-world
street view scenarios recorded with a stereo camera and a li-
dar sensor. Although the sparse depth measurements of the
KITTI dataset have been accumulated over multiple laser
scans [57], the resulting “ground truth” depth provides only
300” horizontal and 700” vertical angular sampling. To de-
tect the legs of a pedestrian at 150 m distance an angular
resolution of less than 25” would be required. In this work,
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we present an evaluation framework with pixel-wise anno-
tated ground truth depth, as visualized in Figure 1, at an an-
gular resolution of 25”. This resolution corresponds to a 50
mega-pixel camera (similar to KITTI [12]: 4.65 µm pitch,
4.4 mm focal length) which enables semantic understand-
ing tasks at large distances, such as pedestrian detection.
We also record and provide stereo and lidar measurements
acquired with recent state-of-the-art automotive sensors.

The robustness of the sensing and processing chain is
critical for autonomous driving, which mandates reliability
in adverse weather situations such as rain, fog and snow.
Note that the evaluation in these corner cases is particu-
larly challenging because lidar sensors fail in severe ad-
verse weather. For example, in dense fog or snow, the
first peak lidar measurements are unusable due to severe
back-scatter in these scenarios. As a result, existing driving
datasets [12, 19, 60] do not cover these severe conditions.
To acquire accurate depth in challenging weather situations,
and with reproducible scenes and conditions, we record sen-
sor data with the proposed sensor setup in a weather cham-
ber [7] that provides reproducible fog and rain. Using pixel-
wise ground truth depth from clear conditions, the proposed
approach allows us to accurately evaluate the performance
under varying fog visibilities and rain intensities.

Specifically, we make the following contributions:

• We introduce an automotive depth evaluation dataset
(1600 samples) in adverse weather conditions with
high-resolution annotated ground truth of angular reso-
lution 25” – an order of magnitude higher than existing
lidar datasets with angular resolution of 300”.

• We evaluate the performance state-of-the-art algo-
rithms for stereo depth, depth from mono, lidar and
sparse depth completion, in reproducible, finely ad-
justed adverse weather situations.

• We demonstrate that stereo vision performs signifi-
cantly more stable in fog than lidar and monocular
depth estimation approaches.

2. Related Work
Depth Estimation and Depth Completion Depth esti-
mation algorithms can be categorized based on their in-
put data. While SfM approaches [23, 30, 56, 58, 64] rely
on sequentially captured image data, multi-view depth es-
timation [4, 18, 22, 41] uses at least two different views
of a scene which are simultaneously captured. Monocu-
lar depth estimation methods [5, 9, 14, 27, 45] tackle the
severely ill-posed depth reconstruction by monocular cues
such as texture variation, gradients, object size, defocus,
color or haze. Over the last years, convolutional neural net-
works (CNNs)s have been shown to be well-suited for both
SfM, multi-view and monocular approaches, and they can

be trained supervised by large RGB-D indoor datasets ac-
quired by consumer ToF cameras. Since the acquisition of
ground truth depth in large outdoor environments is chal-
lenging, semi-supervised [26] or even self-supervised ap-
proaches [2, 11, 14, 40] have been proposed, tackling this
challenge by solving proxy tasks such as stereo matching.
Another body of work focuses on completing sparse lidar
point clouds. Existing depth completion methods rely on
contextual information from RGB images to obtain high-
resolution depth [6, 21, 31].

Depth Datasets The development and evaluation of depth
estimation algorithms require a large amount of represen-
tative data, particularly for learned estimation methods.
Scharstein and Szeliski [47] provided the Middlebury data
set as an early testing environment for quantitative evalua-
tion of stereo algorithms, where the ground truth was ob-
tained by structured light. While the Middlebury dataset
contained, in the first version, only two samples, subsequent
datasets, such as Make 3D [46] provided around 500 sam-
ples with ground truth measured by a custom-build 3D scan-
ner, though with lower resolution of 55x305. Facilitated by
consumer depth cameras such as the Microsoft Kinect [63],
a number of depth data sets for indoor scenes have been
proposed [8, 51, 52, 53, 54]. In particular, the NYUdepth
v2 data set [53] is a widely used dataset with around 1500
samples. However, due to the limitations of consumer depth
cameras in severe ambient light and modulation frequency
limitations, these data sets only include indoor scenarios
with limited ranges. The KITTI Stereo 2015 benchmark
[34] has introduced 400 images of street scenes with ground
truth depth acquired by a lidar system. In order to miti-
gate the sparsity of raw ground truth depth (4 % coverage),
7 laser scans are registered and accumulated, and moving
objects are replaced with geometrically accurate 3D mod-
els leading to 19 % coverage. In order to obtain sufficient
data for learning algorithms, Uhrig et. al [57] presented
a method to generate denser depth maps (16 % coverage)
by automatically accumulating 11 laser scans and removing
outliers by stereo comparison. Note that, even with accumu-
lation, the resulting depth maps are still not providing depth
at the resolution of the image sensor [34]. Synthetic data
sets such as the New Tsukuba Stereo Data set [33], Virtual
KITTI [10] and Synthia [43] offer the possibility to create a
theoretically unlimited amount of data with dense and accu-
rate ground truth depth. While these data sets are extremely
valuable for pretraining algorithms [42], they cannot replace
real recordings for performance evaluation of real-world ap-
plications due to the synthetic-to-real domain gap [38]. In
this work, we aim to close the gap between range-limited
indoor and ground-truth-limited outdoor scenarios.

Robust Perception in Adverse Weather Robust environ-
ment perception is critical for enabling autonomous driv-



ing (without remote operators) over the world and in all
environmental conditions. To this end, it is critical that
self-driving cars should not stop working when being faced
with unknown sensor distortions and situations that have
not been in the training distribution. To characterize sensor
distortions, previous methods have been focused on evalu-
ating automotive sensors in challenging situations such as
dust, smoke, rain, fog and snow [39]. For these evalua-
tions, testing facilities such as Cerema [7] and Carissma
[17] provide reproducible adverse weather situations with
defined and adjustable severity. In particular, cameras suf-
fer from reduced contrast because particles in the air cause
scattering [3, 35]. Recently, the Robust Vision Challenge
[13] promotes the development of robust algorithms bench-
marked on a variety of datasets. However, the general-
ization and robustness to real adverse weather is signif-
icantly more difficult than dataset generalization because
challenging weather conditions occur rarely and change
quickly [59]. As a result, recent approaches evaluate robust-
ness using synthetically extended datasets such as Foggy
Cityscapes [44]. In this work, we depart from these syn-
thetic datasets and instead propose a non-synthetic, but
reproducible, benchmark for depth estimation in adverse
weather conditions such as rain and fog under controlled
conditions.

3. Sensor Setup and Calibration

To acquire realistic automotive sensor data, which serves
as input for the depth evaluation methods assessed in this
work, we equipped a research vehicle with a RGB stereo
camera (Aptina AR0230, 1920x1024, 12bit) and a lidar
(Velodyne HDL64-S3, 905 nm), see Figure 2. All sensors
run in a robot operating system (ROS) environment and
are time-synchronized by a pulse per second (PPS) signal
provided by a proprietary inertial measurement unit (IMU).
For the Velodyne lidar, both last and strongest return are
recorded. Next, we describe the acquisition of the ground
truth depth dataset that we use to evaluate the depth esti-
mates obtained from the automotive sensor suite.

Ground Truth Acquisition We acquire ground truth
depth for static scenarios using a Leica ScanStation P30
laser scanner (360°/290° FOV, 1550 nm, with up to 1M
points per second, up to 8” angular accuracy, and 1.2 mm +
10 parts per million (ppm) range accuracy). To mitigate the
effects of occlusions and to further increase the resolution,
we accumulate multiple pointclouds at different overlap-
ping positions. At least three white sphere lidar targets with
a diameter of 145 mm at defined positions have to be de-
tected for registration of the raw pointclouds. Each raw scan
lasts about 5 min, which limits the proposed high-resolution
acquision approach to static scenarios. Using the known po-
sitions of the targets in every raw pointcloud, transforma-

Figure 2: Test vehicle equipped with a sensor suite in-
cluding an Aptina AR0230 stereo camera and a Velodyne
HDL64-S3 lidar system.

tions between these raw pointclouds are obtained by solv-
ing a linear least-squares problem. As a result, we obtain
a dense pointcloud (≈ 50M points) with a uniformly dis-
tributed mean distance between neighboring points of only
3 mm, corresponding to an angular resolution of 25”. We
use the middle of the rear axis, identified by measuring the
positions of the wheel hubs, as the origin of the target point
clouds. All sensors of the automotive sensor suite from Fig-
ure 2 have been calibrated with respect to this ground truth
pointcloud, which we describe in the following.

Camera Calibration The intrinsic calibration of the
stereo cameras is performed by detecting checkerboards
with predefined field size [62]. We recorded these checker-
boards at different distances and viewpoints in order to ob-
tain the camera matrix and distortion coefficients. In or-
der to register the very dense ground truth point clouds to
the camera coordinate systems (extrinsic calibration), mul-
tiple black-white targets are placed at known 3D positions.
By labeling the target positions in the images, an extrin-
sic calibration is obtained by solving the perspective-n-
point problem using Levenberg-Marquardt non-linear least-
squares optimization [29, 32].

Lidar Registration While the resolution of scans from
the Leica laser scanner facilitates the detection of the white
sphere targets, it is challenging to detect these targets at
larger distances in the Velodyne laser scan. Therefore, these
lidar targets cannot be used for registration of both Leica
and Velodyne pointclouds. We use generalized iterative
closest point (ICP) [50] for registration by minimizing the
difference between two pointclouds, with the initial iterate
shifted to the manually measured mounting position.

4. Adverse Weather Dataset
We model the typical automotive outdoor scenarios from

[12]. Specifically, we setup the following four realistic
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Figure 3: Representative automotive scenarios, see [12],
covered in this evaluation benchmark.
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Figure 4: The depth distribution of the proposed scenarios is
primarily driven by the camera frustum. The scenario itself
changes the distribution only slightly.

scenarios: pedestrian zone, residential area, construction
area and highway. Real-world examples of these scenarios
are shown in Figure 3, while our setup scenes are shown
in Figure 5 . These scenarios are recorded under dif-
ferent controlled weather and illumination conditions in a
weather chamber [7]. The visible back part of the weather
chamber, see Figure 5, is constructed as greenhouse that
is either transparent or covered by a black tarp and al-
lows to achieve realistic daytime and night conditions. Af-
ter acquiring reference measurements in clear conditions,
the whole chamber is flooded with fog. The fog density
is tracked by the meteorological visibility V defined by
V = − ln (0.05) /β, where β is the atmospheric attenua-
tion. As the fog slowly dissipates, visibility increases and
the recordings are stopped after reaching V = 100m. In or-
der to obtain a larger number of samples, three dissipation
runs have been performed. For measurements in rain, two
particular intensities at 15 and 55 mm/h/m2 represent light
and heavy rain. In total, this benchmark consists of 10 sam-
ples of each scenario (day/night) in clear, light rain, heavy
rain and 17 visibility levels in fog (20-100 m in 5 m steps),
resulting in 1600 samples in total.

5. Benchmark

In this section, we introduce all quantitative metrics and
visualization methods used as evaluation methods in the re-
mainder of this paper. The evaluation is performed on 2.5D
depth images because this domain allows for an immediate

and intuitive comparison with the ground truth obtained by
a depth camera or projected lidar points.

Metrics We adopt established metrics for benchmarking
depth estimation algorithms. Specifically, we use the met-
rics from the KITTI benchmark [57], that is scale invari-
ant logarithmic error (SIlog) [9], squared relative distance
(SRD), absolute relative distance (ARD) and root-mean-
squared error (RMSE). In addition, we evaluate mean-
absolute error (MAE) and the threshold metric δi < 1.25i

for i ∈ {1, 2, 3}. Recently, Imran et al. [20] proposed
root-mean-squared thresholded error (tRMSE) and mean-
absolute thresholded error (tMAE) as variants of the es-
tablished RMSE and MAE metrics which we also add to
our evaluation framework. Moreover, as this work offers
dense depth ground truth, we also assess depth map accu-
racy using dense image metrics, such as structural similar-
ity (SSIM) and peak signal-to-noise ratio (PSNR). Since
PSNR is based on absolute distances, we introduce a vari-
ant using relative depth relative peak signal-to-noise ratio
(rPSNR), see supplemental document. We provide an in-
depth description and formal definition of each metric in
the supplemental document.

Binned Metrics The depth in a depth map is typically not
uniformly distributed, as shown in Figure 4. By calculating
the mean error of a depth image, errors at shorter distances
contribute more to the mean than errors at larger distances.
For a fair comparison of algorithms, we also provide binned
evaluations where metrics are calculated in bins of approx-
imately 2 m and the mean of the bins gives the final result.
This ensures that every distance contributes equally to the
evaluation metric.

Top-Down View As additional qualitative visualization,
we provide top-down views generated by projecting 2.5D
depth images into 3D. However, projecting all points to the
ground plane does not provide any meaningful top-down
view because in such a top-view, points from the ground,
from the ceiling, and from objects in between cannot be
distinguished. For improved visualization of the top-down
view, we discretize the x-y plane into 10x10 cm grid cells
and squeeze the height by counting the number of points in
each grid cell [25, 61]. As the number of points in a cell is
decreasing with distance (see Figure 4), we normalize the
number of points according to their distance.

6. Evaluation
Evaluated Methods A large body of work on depth esti-
mation and depth completion has emerged over the recent
years. For brevity, we focus in this benchmark on one al-
gorithm per algorithm category. Specifically, we compare
Monodepth [14] as a representative method for monocular
depth estimation, semi-global matching (SGM) [18] as tra-
ditional stereo and PSMnet [4] as deep stereo algorithms,
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Figure 5: The proposed benchmark covers four different scenarios at day (first line) and night (second line). We provide
state-of-the-art stereo camera and lidar sensors (third line) together with pixel-wise annotated ground truth (forth line). The
last line shows a top-down view of each scenario. The large sensor on the left belongs to the visibility measurement system.
The depth color coding is the same as in Figure 1.

and Sparse2Dense [31] as a depth completion method for
lidar measurements using RGB image data. We set all al-
gorithms up to estimate full-resolution depth maps, except
for Monodepth [14] where we observed a substantial drop
in performance and therefore resized the images to the na-
tive size the model was trained on. Additionally, we fine-
tuned the model on the training split of [15] where the same
sensor setup has been utilized. For Sparse2Dense [31], we
trained the network with 8000 points on KITTI in order to
apply it to our projected lidar points. Similar to the KITTI
Depth Prediction benchmark [57], we interpolate the results
of methods that provide less than 100 % density with near-
est neighbor interpolation. Additionally, we crop the images
for 270 pixels from the top, 170 pixels from the left, 20 pix-
els from the right and 20 pixels from the bottom to avoid
boundary artifacts, e.g. missing lidar points in the top part
of the image.

Public Benchmark We will make all sensor data and the
high-resolution ground truth data publicly available. All
code for calculating the error metrics and for generating
qualitative results (color-coded depth map, error map and
top-down view) will be provided. The dataset is high-
resolution, and enables fine-grained evaluation in controlled
adverse weather conditions.

Clear Weather Evaluation First, we describe the evalua-
tion results of all benchmarked algorithms in clear weather
conditions. Figure 6 shows the 2.5D depth maps, the top-
down views and error maps as described in Section 5 for
the residential area scenario at daylight and night in clear
conditions. Further qualitative results are shown in the sup-
plemental document. While the stereo and depth comple-
tion approaches produce wrong depth estimates at the edges
of objects, monocular depth estimation shows by far worst
performance and does not generalize to our data. The quan-
titative metrics are averaged over all scenarios and can be
found in Table 1. This evaluation shows that the monoc-
ular and stereo methods slightly decrease in performance
at night, while lidar only and lidar depth completion per-
form stable. As described in Section 5, these metrics are
often calculated over the whole image without consider-
ing the depth distribution, and, therefore, we also show a
binned variant of the metrics. The performance slightly de-
creases as measurements from different distances are now
equally weighted, which represents long-range driving sce-
narios. In Figure 7, MAE is plotted with respect to depth.
Comparing traditional stereo [18] with deep stereo [4], Ta-
ble 1 shows that deep stereo methods have difficulties to
estimate the correct scale: Figure 6 shows that the distance
to the back wall is estimated approximately 4 m closer than
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Figure 6: Qualitative evaluation results of the residential area scenario at day and night comparison in clear conditions. For
each benchmarked algorithm, we include the color-coded depth map (top), error map (middle) and top-down view (bottom).

absolute relative scale-invariant full-depth
Method RMSE tRMSE MAE tMAE logRMSE SRD ARD SIlog δ1 δ2 δ3 SSIM PSNR rPSNR

[m] [m] [m] [m] [%] 100 log (m) [%] [%] [%] [0− 1] [dB] [dB]
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓
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d Lidar (int.) 1.89 1.36 0.70 0.59 0.13 0.23 4.79 12.60 93.62 98.13 99.36 0.49 19.67 15.05
Deep Stereo [4] 2.75 1.96 1.44 1.22 0.18 0.56 9.91 16.07 89.14 97.21 98.80 0.64 17.93 17.53
Trad. Stereo [18] 1.90 1.40 0.96 0.86 0.14 0.27 8.12 13.32 90.74 98.44 99.50 0.47 20.82 16.43
RGB+Lidar [31] 3.05 2.04 1.61 1.29 0.26 0.53 10.85 24.01 84.69 94.77 97.05 0.46 16.39 11.46
Monocular [14] 5.01 2.67 2.93 2.01 0.33 2.78 27.12 29.12 73.73 88.87 95.10 0.47 14.45 18.96

bi
nn

ed

Lidar (int.) 2.41 1.91 1.51 1.33 0.23 1.07 24.24 14.85 82.03 89.10 91.46 0.54 15.08 4.40
Deep Stereo [4] 3.82 2.63 3.10 2.38 0.35 4.18 50.56 15.66 69.50 84.12 88.01 0.52 11.92 1.10
Trad. Stereo [18] 2.52 2.01 1.83 1.60 0.26 1.92 36.31 11.81 76.11 89.21 91.16 0.41 14.90 4.32
RGB+Lidar [31] 3.82 2.61 2.89 2.24 0.39 1.75 33.07 24.52 66.30 82.63 86.36 0.44 11.73 0.92
Monocular [14] 7.49 3.42 6.33 3.07 0.54 31.62 143.44 26.30 56.63 75.92 82.59 0.36 8.15 -2.24
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d Lidar (int.) 1.90 1.36 0.70 0.58 0.13 0.23 4.83 12.77 93.57 98.03 99.32 0.49 19.09 14.89
Deep Stereo [4] 2.94 2.12 1.65 1.40 0.19 0.61 11.59 16.73 84.38 97.25 98.95 0.61 17.40 18.69
Trad. Stereo [18] 3.13 2.03 1.73 1.40 0.23 1.03 16.08 22.98 79.80 93.94 97.22 0.26 17.02 12.76
RGB+Lidar [31] 3.03 2.03 1.60 1.29 0.25 0.52 10.77 23.38 84.81 94.71 97.14 0.47 16.46 11.57
Monocular [14] 7.02 3.17 4.48 2.54 0.43 5.09 41.45 37.06 59.26 79.24 88.39 0.41 11.47 16.31
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ed

Lidar (int.) 2.42 1.91 1.50 1.31 0.24 1.07 24.30 15.13 81.95 88.92 91.36 0.54 14.74 4.07
Deep Stereo [4] 4.11 2.78 3.39 2.50 0.37 5.97 58.18 16.14 64.59 84.89 88.47 0.53 10.93 0.15
Trad. Stereo [18] 3.46 2.51 2.50 2.05 0.33 2.85 44.01 17.72 69.45 85.89 89.62 0.28 12.89 2.42
RGB+Lidar [31] 3.80 2.61 2.89 2.24 0.38 1.75 33.09 23.88 66.31 82.34 86.45 0.44 11.77 0.95
Monocular [14] 9.27 3.92 7.82 3.61 0.63 33.34 154.51 33.14 41.66 65.87 78.08 0.39 5.85 -4.42

Table 1: Quantitative comparison of all benchmarked algorithms based on a variety of 14 metrics averaged over all four
scenarios. Although binned results show slightly worse performance, it provides a fairer comparison as depth is not equally
distributed.

what it is. Nevertheless, for a scale-invariant metric such as
SIlog, deep stereo [4] performs better than traditional stereo
[18], especially at night, matching the qualitative results in
Figure 6.

Evaluation in Fog Next, we show how depth estimation
algorithms degrade with increasing levels of fog. We have

extracted images at 17 different visibility levels and show
the depth estimation performance with increasing visibil-
ity in Figure 9. Figure 8a shows the MAE for varying fog
densities. While contrast in the camera stream drops with
decreasing visibility, many cluttered points appear in the
lidar point cloud due to severe back-scatter. As stereo is
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Figure 8: Binned MAE with respect to visibility and rainfall
rate. Solid lines show daylight performance while dashed
lines represent night conditions. For legend, see Figure 7.

based on finding correspondences, the performance of both
stereo approaches decreases only slightly with lower visi-
bility. In contrast, all methods based on lidar data collapse
in the presence of fog because cluttered points cannot be
distinguished from measurements originating from ballis-
tic photons. The RGB input for lidar depth completion only
slightly improves the depth recovery performance. This per-
formance gap can be quantified by comparing clear condi-
tions in daylight with visibility V = 50m: between these
two settings, deep stereo drops only by 45 cm in MAE, tra-
ditional stereo drops by 84 cm, while the MAE for lidar-

based depth completion reduces by a margin of 2.47 m and
interpolated lidar even by 5.17 m. Comparing night and
daylight conditions, Figure 8a indicates that camera-based
depth estimation performs worse during night due to dark
low-signal images, but lidar-based depth estimation shows
slightly better performance during night. Additional met-
ric visualizations in foggy conditions can be found in the
supplemental document.

Evaluation in Rain We have recorded the scenes at
two different rain intensity levels, that is 15 mm/h/m2 and
55 mm/h/m2. Figure 9 shows the qualitative impressions
while Figure 8b visualizes the binned MAE correspond-
ing to different intensities of rain. We note that light rain
disturbs lidar already significantly due to path bending and
back-scatter at the droplets while both stereo methods are
relatively stable.

7. Conclusion
In this work, we provide a high-resolution ground truth

depth dataset of angular resolution 25” for representative
automotive scenarios in various adverse weather conditions.
Using this evaluation data, we present a comprehensive
comparison of state-of-the-art algorithms for stereo depth,
depth from mono, lidar and sparse depth completion, in re-
producible, finely adjusted adverse weather situations. The
sensor data for these comparisons has been acquired with a
representative automotive test vehicle.

We demonstrate that stereo approaches robustly general-
ize to the provided depth dataset, whereas monocular depth
estimation is very sensitive to a change of scene type and
capture conditions. We also evaluate depth estimation in
the presence of fog and rain. We find that stereo-based
approaches perform significantly more stable in adverse
weather than monocular or recent lidar sensing and depth
completion methods based on lidar measurements, which
fail due to back-scatter in fog and rain.

All sensor data for the proposed benchmark (1600 sam-
ples) will be made publicly available, and researchers will
be able to evaluate their methods using a benchmark server
which keeps the high-resolution ground truth data hidden
to the user. By acquiring data in a weather chamber, the
proposed benchmark allows for reproducible evaluation in
adverse weather – in contrast to existing driving datasets
which lack data in adverse weather as current sensing sys-
tems fail in these scenarios. As such, this benchmark allows
to jointly assess the robustness and resolution of existing
depth estimation methods, which is essential for safety in
autonomous driving.
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