
IDEAL: Image DEnoising AcceLerator
Mostafa Mahmoud
University of Toronto

mostafa.mahmoud@mail.utoronto.ca

Bojian Zheng
University of Toronto

bojian.zheng@mail.utoronto.ca

Alberto Delmás Lascorz
University of Toronto

a.delmaslascorz@mail.utoronto.ca

Felix Heide
Stanford University/Algolux

fheide@stanford.edu

Jonathan Assouline
Algolux

jonathan.assouline@algolux.com

Paul Boucher
Algolux

paul.boucher@algolux.com

Emmanuel Onzon
Algolux

emmanuel.onzon@algolux.com

Andreas Moshovos
University of Toronto

moshovos@eecg.toronto.edu

ABSTRACT
Computational imaging pipelines (CIPs) convert the raw output
of imaging sensors into the high-quality images that are used for
further processing. This work studies how Block-Matching and
3D filtering (BM3D), a state-of-the-art denoising algorithm can be
implemented to meet the demands of user-interactive (UI) appli-
cations. Denoising is the most computationally demanding stage
of a CIP taking more than 95% of time on a highly-optimized soft-
ware implementation [29]. We analyze the performance and energy
consumption of optimized software implementations on three com-
modity platforms and find that their performance is inadequate.

Accordingly, we consider two alternatives: a dedicated acceler-
ator, and running recently proposed Neural Network (NN) based
approximations of BM3D [9, 27] on an NN accelerator. We de-
velop Image DEnoising AcceLerator(IDEAL), a hardware BM3D ac-
celerator which incorporates the following techniques: 1) a novel
software-hardware optimization, Matches Reuse (MR), that exploits
typical image content to reduce the computations needed by BM3D,
2) prefetching and judicious use of on-chip buffering to minimize
execution stalls and off-chip bandwidth consumption, 3) a careful
arrangement of specialized computing blocks, and 4) data type pre-
cision tuning. Over a dataset of images with resolutions ranging
from 8 megapixel (MP) and up to 42MP, IDEAL is 11, 352× and 591×
faster than high-end general-purpose (CPU) and graphics processor
(GPU) software implementations with orders of magnitude better
energy efficiency. Even when the NN approximations of BM3D are
run on the DaDianNao [14] high-end hardware NN accelerator,
IDEAL is 5.4× faster and 3.95× more energy efficient.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14–18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123941

CCS CONCEPTS
•Computer systems organization→ Special purpose systems;
Neural networks; Real-time system architecture; Single instruction,
multiple data;

KEYWORDS
Computational imaging, image denoising, accelerator, neural net-
works
ACM Reference format:
Mostafa Mahmoud, Bojian Zheng, Alberto Delmás Lascorz, Felix Heide,
JonathanAssouline, Paul Boucher, Emmanuel Onzon, andAndreasMoshovos.
2017. IDEAL: Image DEnoising AcceLerator. In Proceedings of MICRO-50,
Cambridge, MA, USA, October 14–18, 2017, 14 pages.
https://doi.org/10.1145/3123939.3123941

1 INTRODUCTION
Numerous applications, such as those in medical imaging, film
production, automotive, and robotics, use imaging sensors (IS) to
convert light to signals appropriate for further processing and stor-
age by digital devices such as smartphones, desktop computers,
digital cameras, and embedded systems. IS output is far from per-
fect and requires significant processing in the digital domain to yield
acceptable results [39, 44]. For example, lens imperfections result
in distorted output, while sensor imperfection such as non-uniform
sensitivity may yield output that is underexposed or overexposed
at places and thus missing crucial information or that contains
other artifacts. Computational Imaging (CI) is the processing in
the digital domain of IS output to compensate for these limitations.
A Computational Imaging Pipeline (CIP) comprises a sequence of
processing steps implementing CI.

What are the likely inputs to a CIP? On the commercial side,
photos and videos dominate in the past few years with 1 trillion
photos taken in 2015 compared to the 3.8 trillion photos that were
taken in all human history until 2011 [32]. By the end of 2017 around
80% of all photos will be taken with a mobile phone, a platform with
limited power and computational capabilities [51]. Similar resource
limitations apply to many devices such as digital cameras or medical
devices. Accordingly, it is desirable to support CI applications on
platforms whose cost, power, energy, and potentially form factor
are constrained. CI applications are not limited to consumer devices.
For example, they are widely used for scientific applications such

https://doi.org/10.1145/3123939.3123941
https://doi.org/10.1145/3123939.3123941

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

as telescope imaging with images of up to 1.5 billion pixels [31, 34].
Thus, there are also applications where higher cost and energy are
acceptable for better quality.

An essential step in practically all CI applications is denoising, a
process that aims to improve the signal to noise ratio in the output
image frame. The state-of-the-art denoising algorithm is Block-
Matching and 3D filtering (BM3D) [17] as it delivers the highest
known image quality compared to other techniques [7, 8, 17, 18, 24–
26, 28, 29, 33, 43]. However, this superior quality comes at a signifi-
cant computational power cost. Previous BM3D implementations
on high-end general purpose and graphics processors found that
it is impractical to use even after intensive software optimization
efforts [29]. We corroborated this observation by profiling a typi-
cal front-end CIP, the process of converting the raw sensor signal
into a typical image representation (e.g., RGB color channel), that
was developed by Heide et al. [29]. Out of the 184 seconds that
are needed to process a raw 2MP image on a high-end CPU, 95%
is devoted to denoising. Further, we found that BM3D is compute
bound.

User Interactive (UI) applications expect processing to take at
most one second if not less [12, 37, 40, 49] while real-time computer
vision (CV) applications expect much shorter processing times. Mo-
bile phones and photo cameras incorporate a wide range of image
capturing UI applications while Advanced Driver-Assistance Systems
(ADAS) incorporate camera-driven real-time CV components for
scene understanding and segmentation, and multi-object tracking.
The camera’s resolution dictates the distance at which a given object
can be detected while the frame rate dictates system responsiveness
for critical functions such as the vehicle’s stop distance [38]. While
current ADAS use 1MP cameras at 10-15 frames per second (FPS),
next generation systems will use 2MP at 30 FPS and soon thereafter
8MP [3, 38]. Such systems require an accelerated, reliable and power
efficient CI processing pipeline. Finally, video capturing applica-
tions need to denoise raw video frames in real-time before encoding.
The denoised frames require substantially less compression and
therefore lead to significant bandwidth savings as denoising itself
can be seen as a compression mechanism [13]. Accordingly, the
goal of this work is to explore how to implement BM3D so that it
can be used for UI and real-time applications.

We consider the following options: 1) Optimized software imple-
mentations running on commodity hardware, including a high-end
and an embedded general purpose processor or a graphics proces-
sor, 2) a dedicated hardware accelerator, and 3) running recently
proposed NN-based approximations of BM3D on a high-end NN
hardware accelerator.

Unfortunately, performance with the software implementations
falls far short of the needs of UI applications. Accordingly, we
present IDEAL a dedicated hardware BM3D accelerator that allows
for the first time a BM3D variant to be used for UI applications.
IDEAL incorporates the following techniques: 1) a novel software-
hardware optimization, Matches Reuse (MR) that exploits typical
image content to reduce the computations needed by BM3D with-
out sacrificing quality, 2) prefetching and judicious use of on chip
buffering to minimize execution stalls and off-chip bandwidth con-
sumption, 3) a careful arrangement of specialized computing blocks,
and 4) data type precision tuning.

Recent work has showed that it is possible to approximate BM3D
using Deep Neural Networks (DNNs) [9, 27]. A DNN approach
has the advantage of being less rigid whereas a DNN accelerator
could be used for other applications as well. Unfortunately, we
find that further execution time improvements are needed to meet
the requirements of UI applications even when a high-end DNN
accelerator is used.

In summary the contributions and findings of this work are:

• We develop and analyze the performance and energy con-
sumption of highly optimized software implementations of
BM3D for three commodity platforms: 1) a high-end general
purpose processor with vector extensions (CPU), 2) a desktop
graphics processor (GPU), and 3) a general purpose processor
targeting the embedded systems market. We find that these
BM3D implementations fall far short of the requirements of
UI applications even for 1080p HD image frames (roughly
2MP resolution).

• We develop IDEAL, a dedicated hardware accelerator for
BM3D. IDEAL incorporates a novel software optimization
that takes advantage of the common case reducing the amount
of computation performed. Experiments using cycle accurate
simulation and synthesis results demonstrate that IDEAL
makes it possible to process image frames of up to 42MP
for UI applications. On average, IDEAL is 11, 352× and 591×
faster than the CPU and the GPU implementations respec-
tively. IDEAL is 4 and 3 orders of magnitude more energy
efficient respectively as well. We also show that IDEAL can
be modified with little effort to support another CI applica-
tion, sharpening.

• We find that even on an appropriately configured high-end
state-of-the-art DNN accelerator [14] the two NN alterna-
tives while far faster than the software implementations still
fall short of the UI processing requirements. Specifically,
IDEAL is found to be at least 5.4× faster and 3.95× more
energy efficient than the best of the two NN alternatives.

While this work focuses on using BM3D for denoising, BM3D
has many more applications as it is an instance of the Similarity-
Based Collaborative Filtering (SBCF) technique, a state-of-the-art
filtering technique that can implement a wide variety of CI build-
ing blocks. For example, BM3D can be used for image sharpening,
deblurring, upsampling, video denoising, and super-resolution by
simply changing the filter it implements [16, 17, 19–22, 36]. Inves-
tigating the architectural support necessary for BM3D can be thus
valuable for other CI building blocks. Moreover, the MR optimiza-
tion, applied here to BM3D, can be applicable to all SBCF-based
algorithms as illustrated in Section 5.1.

The rest of this paper is organized as follows: Section 2 reviews
the BM3D denoising algorithm. Section 3 analyzes software imple-
mentations of BM3D. Section 4 presents a basic accelerator design
IDEALB. Section 5 further refines the design into IDEALMR by
presenting the MR technique and other optimizations. Section 6
compares the performance, energy, and where appropriate area of
the BM3D implementations. Section 7 illustrates how IDEAL can
be extended to implement additional functionality via an example.
Finally, Section 8 reviews related work and Section 9 concludes.

IDEAL: Image DEnoising AcceLerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

BM

Path B

DCT
Hard

Threshold

L2 Norm

Distance

Ref Patch

3D Block

Formation

I/P image 16 best matches

coordinates
Ns x Ns

search area

R

DCT
Path A

color channel 1

(b)

Haar

Transform

Spectrum

Shrinkage

Inv-

Haar

Inv-

DCT

3D block of patches

O/P Image

Count

non-zero

Weighting
R

DE

DCT WE

channel 1

channel 2

channel 3

Path C
Path F

DCT

Path C

DCT

P
at

h
 D

Path E

(c)

Block

Matching
Denoising

noisy image

Block

Matching
Denoising

Hard-Thresholding

Wiener Filtering

denoised image

intermediate

image
(a)

Figure 1: BM3D processing flow: (a) high level stages, (b)block-matching step, (c) denoising step.

2 BM3D DENOISING
BM3D treats the input 3-channel (Red-Green-Blue) image as a grid,
with a stride of Ps pixels of potentially overlapping subimages, or
patches. BM3D transforms the input image as follows: For each
patch, BM3D searches through a surrounding window of Ns × Ns
pixels and with a stride of Ss for the best set of P similar patches,
given some similarity metric. The P matching patches including
the reference patch are then all transformed and the results affect
all corresponding output image patches. Accordingly, an output
pixel might receive multiple updates from overlapping patches.

As Fig. 1a shows, BM3D denoising processes the input image in
two stages: a) Hard-Thresholding, and b) Wiener Filtering. Each
stage comprises two steps which are almost identical across the
two stages: 1) Block Matching (Fig. 1b), and 2) Denoising (Fig. 1c).
This results into four steps: Block Matching #1 (BM1), Denoising #1
(DE1), Block Matching #2 (BM2), and Denoising #2 (DE2). The input
is a raw image from an IS. We first describe BM1 and DE1, the steps
of the “Hard-Thresholding” stage, followed by the modifications
needed by the “Wiener filtering” stage to implement BM2 and DE2.
The section then comments on how easy it is to use BM3D for
other applications and concludes by detailing the computations
performed by the BM3D building blocks.
Block-Matching #1: As Fig. 1b shows, BM1 searches an area of
N s × N s pixels centered at the reference patch for similar patches.
Patches are typically 4×4 pixels wide. According to Heide et al. [29],
the following configuration provides the best quality: a search stride
Ss and a reference patches stride Ps of 1 and an N s of 49 (39 for
BM2). Block-matching uses only the first channel. Accordingly, for
each reference patch, 49 × 49 = 2401 patches are processed in BM1.

In detail, BM1 operates as follows: a) For every reference patch
Pr ef , the search area is read patch by patch and transformed through
Discrete Cosine Transform (DCT) (Path A in Fig. 1b). The search in-
cludes and starts with Pr ef . b) TheDCT patches are hard-thresholded,
that is coefficients that are below a preset threshold T ht are elimi-
nated. c) The l2-Norm (Euclidean distance) from Pr ef is calculated.
If the distance is below a certain threshold Tmatch, the patch is re-
ported as a match to next module. d) The 3D Block Formation step

keeps the 16 patches with the least distance from Pr ef including
Pr ef itself. At the end, a sorted according to distance 3D stack of
the closest 16 patches is sent to DE1. The stack contains the patch
coordinates only. BM3D uses 16 best matches as this many were
found to be sufficient to compensate for additive white Gaussian
noise with an up to 75 standard deviation (σ) [18].
Denoising Stage #1: As Fig. 1c shows, this step processes the
input patch stack, and updates the corresponding output image
patches. The denoising step processes each of the 3 color channels
separately. The processing proceeds as follows: a) Saving the DCT
of channel 1 patches in BM1 avoids recomputing this for the stack
patches in DE1 (Path C in Fig. 1c). Only channel 2 and 3 stack
patches are passed through DCT. b) The 3D stack in DCT domain is
read in vectors along the depth dimension (z-dimension), as input
to the Haar transform module. c) The Spectrum Shrinkage module
uses hard-thresholding to eliminate those Haar coefficients that
are below a preset threshold Thard. d) The number of non-zero
coefficients in the entire 3D block M is counted. e) The inverse
Haar and inverse DCT restore the 3D block of patches to the color
domain. f) Each restored patch is weighted by 1/M before being
accumulated to its original location in the output image.
Wiener Filtering Stage: The differences in the Wiener filtering
stage are as follows: a) The search window is smaller with Ns set to
39. b) In BM2, searching for the best matches is done in the color
domain instead of the DCT domain (Path B in Fig. 1b). c) Since
channel 1 patches bypass DCT in BM2, the matching channel 1
patches go through DCT in DE2 (Path D in Fig. 1c) like the other
channels. d) Spectrum shrinkage in DE2 implements a “Wiener
Filter” that attenuates the Haar coefficients instead of applying a
hard threshold.
Other BM3D Applications: The Haar-transformed 3D stack ex-
hibits the sparsity needed for further processing to achieve the tar-
geted effect not only of denoising [17], but also of sharpening [36],
deblurring [20] or upsampling [22]. A combined implementation
can achieve more than one effect at once [19]. Such effects are
achieved by replacing/adding different filters to the DE step with
the rest of the pipeline remaining as-is.This class of algorithms has

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

also been extended beyond the imaging domain to video processing
including denoising [16] and super-resolution [21].

2.1 Computational Blocks
The main computational blocks of BM3D are: DCT, Haar transform,
l2-Norm (distance), inverse Haar transform, and inverse DCT.
DCT and Inverse DCT: The DCT consists of a 1D DCT along the
rows of the input patch, a transpose of the output followed by one
more 1D DCT applied along the rows. The 1D DCT is a matrix
multiplication of the patch by a matrix of constant coefficients. For
a 4 × 4 patch, this matrix multiplication involves 64 multiplications
and 64 additions. The computation of the DCT of a patch P follows
this equation:

PDCT = C(CP)T (1)

Where C is the transform coefficients matrix and (.)T is the trans-
pose operator. The inverse DCT uses the same computation with
the transpose of the transform coefficients matrix.
Haar and Inverse Haar Transforms: These are 1D transforms
along the z-dimension of the stacked 16 best matches. The transform
is a matrix-vector multiplication of a 16× 16matrix containing con-
stant coefficients by each 16-element vector along the z-dimension.
Each such multiplication entails 256 scalar multiplications and 256
scalar additions.
l2-Norm: The l2-Norm (distance) between twoM ×M patches P1
and P2 needsM2 subtractions,M2 multiplications andM2 additions.
The computation implements this equation:

distance =
i=M∑
i=0

j=M∑
j=0

(P1(i, j) − P2(i, j))2 (2)

3 SOFTWARE IMPLEMENTATIONS
This section justifies the need for accelerating BM3D by analyzing
the execution time of optimized software implementations on com-
modity hardware. The analysis shows the bottlenecks that should
be targeted by a custom hardware accelerator.

3.1 CPU Implementation
The original pre-compiled reference implementation of BM3D is
highly optimized using Intel’s Thread Building Blocks and Intel’s
Math Kernel Library. On average, its Instructions Per Cycle (IPC)
throughput is 2.45 on a processor with an ideal IPC of 4. Unfortu-
nately, as the reference implementation is only available in binary
form, reverse engineering would have been needed to associate
performance events with code and data structures. Thus, we im-
plemented BM3D in C++ exploiting the Intel AVX extended vector
instruction set to match or exceed the performance of the reference
implementation on a high-end Intel Xeon E5-2650 v2 (Section 6.1
describes our methodology). We also developed a vectorized imple-
mentation on the ARM Cortex-A15 mobile processor. Fig. 2 reports
the processing time in seconds for images of different resolution up
to 16MP for the reference (“Orig”), non-vectorized Xeon (“Basic”),
vectorized Xeon (“AVX Vect”) and ARM (“ARM Vect”) implementa-
tions. The performance of AVX Vect almost matches that of Orig.
The best runtime for moderate resolution images is far beyond the
acceptable range; a 16MP image takes 1400 seconds to process on

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15

R
u

n
ti

m
e

(s
ec

s)

Image Resolution (MegaPixel)

Orig Basic AVX Vect ARM Vect

Figure 2: CPU runtime for images up to 16MP.

Table 1: Microarchitectural breakdown of CPU runtime.

Retiring cycles 62.4%
Front-end stalls 4.1%
Mispeculation stalls 5.4%
Back-end (Memory) stalls 5.5%
Back-end (Core) stalls 22.8%

the Xeon, whereas the ARM implementation is 5.2× slower on aver-
age. In the interest of space, Fig. 3 (left y-axis) shows the processing
time for a wider range of resolutions and only for the vectorized
Xeon implementation. In conclusion, performance is far below that
needed for UI applications even for low resolution images.

3.1.1 Microarchitectural Analysis. Using Intel’s VTune, we ana-
lyzed the microarchitectural behavior of our vectorized Xeon im-
plementation [52]. Table 1 shows that instructions are successfully
retired in 62.4% of the total processor cycles. Front-end stalls and
mispeculation stalls are as low as 4.1% and 5.4% respectively. Back-
end stalls contribute 28.3% of the total cycles but only 5.5% of these
is due to memory. The 22.8% of core-related stalls suggest that com-
putational resources are a bottleneck, and given that the implemen-
tation exhibits a high IPC of 2.7, these measurements demonstrate
that BM3D running on commodity CPUs is compute-bound.

3.2 GPU Implementation
We implemented BM3D in CUDA and analyzed its runtime on a
high-end NVIDIA GTX 980 with 4GB of memory. The implementa-
tion uses an accurate nearest neighbor search for block-matching
and divides the image into tiles to fit the intermediate results on
the 4GB memory. Tiling was also used to exploit the fast on-chip
shared memory. Fig. 3 (right y-axis) shows the runtime for differ-
ent resolution images. While the GPU implementation is much
faster than the CPU one, its performance remains unsatisfactory.
For example, processing a 16MP and a 42MP images takes 86 and
226 seconds respectively. Heide et al. [29] report that using the
approximated-nearest-neighbor (ANN) method proposed by Tsai et
al. [48] improves GPU performance by 4×. We did not implement
this modification as performance would still be unsatisfactory.

IDEAL: Image DEnoising AcceLerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

3.3 Execution Time Breakdown
Fig. 4 shows a per algorithm step breakdown of the runtime on the
Xeon and the GTX 980. Recall that BM3D entails two stages: Hard-
threshold filtering followed by Wiener filtering. Each stage consists
of the following steps: computing the DCT transformation of all
possible patches (DCTx), block-matching (BMx) to find the best 16
matches of each reference patch, and finally the actual denoising
(either hard threshold filter or Wiener filter – DEx). As Fig. 4 shows,
the block-matching step is the bottleneck as it searches through
49 × 49 patches (39 × 39 for the Wiener stage) for every reference
patch. This step accounts for 67% of the CPU runtime combined
for both stages. On the GPU, the BM step also dominates instead
taking 87% of the runtime combined for the two stages. The accurate
nearest neighbor search requires some synchronization among GPU
threads to exchange information about the best matches found so
far. This limits the amount of concurrency that can be extracted on
the GPU for these steps.

In order to reduce processing latency to acceptable levels, all
steps need to be accelerated in hardware. However, the breakdown
above can guide the design process to judiciously partition the
power and area budgets among the pipeline stages.

4 IDEAL
We first describe a basic accelerator configuration (IDEALB) for
BM3D denoising, which we later enhance to meet our performance
requirement. Fig. 5 shows the main components of IDEALB: 1) the

0

50

100

150

200

250

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 15 25 35 45

G
P

U
 R

u
n

ti
m

e
(s

ec
s)

C
P

U
 R

u
n

ti
m

e
(s

ec
s)

Image Resolution (MegaPixel)

CPU Runtime GPU Runtime

Figure 3: CPU and GPU runtime for images up to 42MP.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

vect CPU GPU

Fr
ac

ti
o

n
 o

f
R

u
n

ti
m

e

DCT1 BM1 DE1 BM2 DCT2 DE2

Figure 4: Runtime breakdown for the CPU and GPU imple-
mentations.

DCT engine (EDCT), 2) the Patch Buffer (PB), 3) the 16 Block-
Matching Engines (EBM s), and 4) the Denoising Engine (EDE). The
dashed boxes in Fig. 1b and Fig. 1c provide the mapping of the
algorithmic blocks to IDEALB components. Instead of directly mir-
roring the BM3D pipeline in hardware, IDEALB uses only as many
resources as necessary to keep all units as busy as possible. Since
the bulk of the computation happens in the EBM s, a single EDCT
and a single EDE are sufficient to sustain the 16 EBM s. The PB stores
channel 1 patches in the frequency domain (Path A for BM1) or in
the color domain (Path B for BM2) exploiting reuse across adjacent
search windows. The PB also feeds the EDE with channel 1 DCT
patches (Path C for DE1 and Path D through EDCT for DE2). EDCT
performs both DCT and inverse DCT reusing internal resources
for both. It accepts jobs from three queues: a) the BM Patch Queue
(QBMP) (BM1, Path A Fig. 1b), b) the Denoiser DCT Queue (QD)
(DE1 channels 2 and 3, DE2 channels 1 Path D, 2 and 3 Fig. 1c),
and c) the Denoiser Inverse DCT Queue(QiD) (DE1 and DE2, Path
F Fig. 1c).

Processing starts by fetching channel 1 patches from memory
and onto QBMP . The patches either go through the EDCT (BM1
Path A) or bypass it (BM2 Path B) before being stored in the PB.
The 16 EBM s process concurrently 16 adjacent reference patches.
The PB, detailed in Section 4.3, holds all the channel 1 patches of an
area covering the search windows for these 16 reference patches.
Every cycle, one patch is read out of the PB and is broadcast to all
the EBM s. Each EBM calculates the distance between this patch
and its assigned reference patch. It builds a list of the 16 closest
matching patches. Once the search window is exhausted, each EBM
enqueues the coordinates of the 16 best matches into the Denoising
Jobs Queue (QD J) which feeds the EDE . The EDE then processes
these jobs one at a time. For each job, the three color channels are
processed one at a time. As channel 1 patches are already buffered
in the PB, the EDE gets those needed for denoising from there (Path
C for DE1 and Path D through QD , EDCT then Path E for DE2).
For the two other channels, the patches are read off-chip onto QD ,
passed through the EDCT and then follow Path E. EDE stacks the
16 best matching DCT patches, performs a Haar transform along
the depth dimension, either hard-thresholds (DE1) the resulting
coefficients or attenuates them with a Wiener Filter (DE2), and
finally, performs an inverse Haar transform. The resulting patches
are then sent back to the EDCT through QiD to transform them
back to the color domain (Path F). At the very end, the patches are
weighted and accumulated back to the output image in the main
memory. The rest of this section details the individual processing
components, illustrates design optimizations and motivates the
improved IDEAL design.
Block-matching Engines: Fig. 6 shows the structure of the BM
engine (EBM) with its three main components: 1) a buffer to hold
the assigned reference patch (RPB) 2) an Euclidean distance engine
(EDE), and 3) a priority queue (MQ) to save the coordinates of
the 16 best matches found so far sorted according to the distance
from the reference patch. Processing starts by reading a reference
patch from PB and into RPB. The BM continues by: 1) reading from
PB the patches of the corresponding search window one at time,
2) calculating the distance from the RPB patch using the EDE, and
if the distance is below a preset threshold Tmatch, 3) inserting it into
MQ. The EDE uses 16 subtractors, 16 multipliers, and a 16-input

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

Figure 5: Block diagram of the basic accelerator (IDEALB).

Figure 6: Block-matching (BM) engine.

adder tree to calculate the 4 × 4 patch distance according to Eq. (2)
in one cycle.
Denoising Engine: Fig. 7 shows the EDE which processes the 16
best matches in the DCT domain. Those come from the PB directly
for DE1 channel 1, from the PB through EDCT for DE2 channel 1, or
from off-chip through EDCT otherwise. The 16-patch stack is split
into stripes along the the z-dimension. The stripes are assigned each
to one of the 16 Denoising Lanes (DEL). Each DEL comprises three
pipelined stages: Haar Engine (EH), Spectrum Shrinkage Engine
(ESS), and Inverse Haar Engine (EIH). EH implements the Haar
transformation, a matrix-vector multiplication of a 16×16matrix of
constant coefficients and the input stripe. We exploit the constants
to reduce resources. As a result, EH comprises only 32 multipliers,
10 2-input adders, four 4-input adder trees, and four 8-input adder
trees. ESS takes the 16-element Haar-transformed stripe and either
zeroes those elements that are below a preset threshold (for DE1) or
performs element-wise multiplication by Wiener filter coefficients
attenuating noisy elements (for DE2). Finally, EIH also implements
a matrix-vector multiplication of the transpose of the 16 × 16 coef-
ficients matrix by the filtered stripe. The sparsity, power-of-2 and
repetitions of the transposed matrix elements reduces the number
of needed multipliers to 10 along with 16 5-input adder trees.

EBM processes either 49 × 49 (BM1) or 39 × 39 (BM2) candidate
patches per reference patch. Meanwhile, assuming a 3-channel
image and the max number of best matches is 16, EDE processes
only 16 × 3 = 48 patches. Thus, a single EDE can ideally serve up
to 1, 521/48 = 31 EBM s. However, as Section 6.6 explains, we use
16 EBM s and one EDE .

16

......

16 4x4 DCT
patches

Denoising
Lane

......

Spectrum
Shrinkage

Engine

Inv Haar
Engine

Denoising
Lane

16 4x4 Denoised
DCT patches

......

Haar
Engine

Figure 7: Denoising (DE) engine.

Overlapping

Search W 1

Search W 2

Ref. patch 1

Ref. patch 2

Image

Read Off-chip

Figure 8: Overlapping search windows for consecutive refer-
ence patches.

4.1 Off-chip Bandwidth
Since the reference patches stride Ps is typically smaller than the
patch dimension PD , the search windows of consecutive reference
patches are almost completely overlapping as Fig. 8 shows. For
example, assuming Ps = 1 and Ns = 49, out of the 49 × 49 patches
in the search window of reference patch 1, the next search window
can reuse 48 × 49 patches. Buffering these reusable patches in the
on-chip PB has the following benefits: 1) Reduces off-chip accesses;
Only the gray area in Fig. 8 needs to be read off-chip for each
subsequent reference patch. 2) Significantly reduces the pressure
on EDCT allowing it to be reused for the three job queues QBMP ,
QD and QiD . As a result, the number of pixels read off-chip for
each subsequent reference patch is only (N s + PD − 1) × Ps .

IDEAL: Image DEnoising AcceLerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

12-bit 11-bit 10-bit 9-bit 8-bit 7-bit

N
o

rm
al

iz
ed

 S
N

R

min max avg

Figure 9: SNR for different fraction precisions normalized to
floating-point implementation.

4.2 Reduced Precision Arithmetic
The original BM3D implementation uses floating-point arithmetic.
Reducing precision and using a fixed-point representation are well
known techniques with many applications in signal and image pro-
cessing [11, 41]. Fig. 9 shows how the output image quality changes
when using fixed-point with 7 to 12 fractional bits. The figure shows
the average, minimum, and maximum signal-to-noise ratio (SNR)
normalized over that of the floating-point implementation. The
minimum relative SNR with even 10 bits is at least 98.9%. IDEAL
uses a 12-bit fractional part with the integer part customized along
the pipeline stages to fit the dynamic range of values. Assuming
the input image has an 8-bit channel depth, DCT, Haar transform
and inverse Haar transform values use 11, 13 and 15 bits for the
integer part respectively.

4.3 Patch Buffer Configuration
The PB must serve multiple EBM s concurrently processing adjacent
reference patches. The naïve PB implementation would use multiple
ports consuming more area and power. As the search windows of
adjacent reference patches are almost entirely overlapping, a single-
port PB provides adequate performance. Specifically, the buffered
patches are read one at a time and broadcast to the EBM s which
use or copy the one they need. At times an EBM may need to stall
waiting for the next necessary patch. This single-port PB degrades
performance by only 12.5% on average compared to the multi-port
PB. However, it significantly reduces area and power.

For anM ×M EBM organization, the collective search area com-
prises (N s + (M − 1) ∗ Ps)2 patches. For the 4 × 4 EBM s, a 49 × 49
search window, and Ps = 1, a PB of at most 128KB is sufficient as-
suming 4 × 4 pixel patches and a 3-byte fixed-point representation
of DCT values. The Wiener stage needs less buffering as N s = 39
and patches are buffered in the color domain with 1-byte per pixel.

5 ACCELERATOR OPTIMIZATION
As Section 6.1 demonstrates, while IDEALB outperforms the CPU
and the GPU by 363× and 18.9× respectively it meets UI application
needs for up to 4MP images only. Accordingly, Section 5.1 motivates
and presents Matches Reuse (MR), a hybrid software/hardware opti-
mization that greatly reduces computation time. Since MR relies on
the nature of typical images, Section 5.2 investigates not only its

0

10

20

30

40

50

60

70

80

90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
eu

se
 H

it
 R

at
e

MR Aggressiveness Factor (K)

BM1 reuse BM2 reuse

Figure 10: MR hit rate as a function of K.

potential performance gains but also its effect on the output quality.
Finally, Section 5.3 presents the MR optimized accelerator IDEALMR.

5.1 Matches Reuse Optimization
Since most of the time is spent in BM1 and BM2, MR targets these
steps. In BM1 and BM2, a patch matches a reference patch if their
l2-Norm (distance) is below a preset threshold Tmatch. In typical
images, adjacent reference patches are likely to be almost similar
and thus to have almost the same list of 16 best matches. Exploit-
ing this observation, MR significantly reduces the search effort by
reusing the best matches of a reference patch for its subsequent
reference patch if they are similar enough.

Since reusing the best matches for a subsequent dissimilar ref-
erence patch would deteriorate output quality, MR’s similarity cri-
terion should be stricter than BM3D’s patch similarity criterion.
Thus, MR amends the block-matching step as follows: calculate the
l2-Norm (distance) between the current reference patch Pc and the
previous reference patch Pp . If the distance is less than a stricter
threshold K ×Tmatch, where 0 < K < 1, the 16 best matches for Pc
are found by having the BM engine test: 1) The 16 best matches of
Pp that also fall within Pc ’s search window, and 2) the rightmost
column of N s × Ps patches of Pc ’s search window, which consti-
tutes the part of Pc ’s search window that does not overlap with Pp ’s
search window. Thus, BM reduces the number of patches searched
from N s ×N s to N s ×Ps + 16. This reduces computation by 37× for
Ns = 49 and Ps = 1. If Pc does not strictly match Pp , MR performs
the original search.

As K approaches 1, performance should improve at the expense
of reduced quality as less similar reference patches reuse the best
matches. The speedup depends also on the image content; rapid
changes in colors limit the likelihood that successive reference
patches are similar enough for best matches reuse. MR can be
extended to reuse the matches of earlier reference patches as well.
However, checking for reuse with just the immediately preceding
patch proved sufficient.

MR can be used in all SBCF algorithms and since they only
modify the filters in DE1 and DE2, the block-matching steps are
expected to still dominate execution time.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

96

98

100

102

104

106

108

110

112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
o

rm
al

iz
ed

 S
N

R

MR Aggressiveness Factor (K)

Avg normalized SNR

Figure 11: Per image normalized SNR as a function of K.

5.2 Matches Reuse: Potential and Quality
Fig. 10 shows theMR hit rate, that is the fraction of reference patches
for which MR attempts reuse, as a function of the MR aggressive-
ness factor K . The figure reports the minimum, maximum, and
average hit rates and shows that MR is highly effective at reducing
computation even though it depends on image content. A hit rate
of X% does not mean that patches are reused at the same rate but
that MR restricts its search this often. For BM1, the average hit rate
even with K = 0.1 is 96% saturating at 99.9% for K > 0.5. However,
as the minimum hit rate illustrates, MR’s effectiveness depends on
image content: the minimum hit rate is 74% with K = 0.1 and never
gets below 99.4% once K > 0.5. Such high hit rates should not be
surprising as even abrupt changes in an image affect neighboring
reference patches gradually because BM3D slides its reference win-
dow one pixel at a time. BM2 follows a similar trend as BM1 but
the hit rate is generally lower and the sensitivity to image content
is higher. This is expected as BM1 and BM2 operate respectively in
the DCT and the color domains.

Fig. 11 reports how the output image quality, reported as per
image SNR relative to the original BM3D, varies as a function of
K . The curve highlights the average relative SNR. For K = 0.1,
the average SNR is 2.64% higher than the original BM3D, and as K
increases, the improvement drops to 2%. Image content also affects
the image quality with MR. Images depicting mostly homogeneous
areas tend to benefit more with relative SNR improving by up
to 10%, while others with less homogeneous areas may see some
deterioration which was up to 2% for all K configurations over the
image set we studied.

The experiments show that MR may even improve quality over
BM3D. This occurs because MR is more resistant to noise artifacts
than BM3D, which the latter may consider to be features of the
original image. This property of MR is easier to illustrate in the
extreme case of a uniform color image. In an example run with
such an image, MR improved quality by 49% over BM3D. BM3D
tends to over-fit the matches to a given reference patch since, due
to happenstance, it is often possible to find matches with a nearly
identical noise pattern. Effectively, BM3D considers the specific
noise pattern an embedded feature of these patches and fails to
eliminate it. MR, by reusing the matches of the previous reference
patch, is less prone to over-fitting leading to better diversity and
more sparsity of the coefficients in the transform domain such that
the noise can be more easily identified, isolated and eliminated.

5.3 Architecture Modifications
In IDEALB, all EBM s operate in lock step across reference patches
since the search effort is constant. With MR, each EBM needs to
advance independently as each is performing a different number
of computations. Accordingly, IDEALMR comprises 16 process-
ing lanes sharing the same controller. Fig. 12 shows one lane of
IDEALMR. The modifications made are illustrated in the following
subsections.
Per-BM Denoising Engine: Since MR significantly prunes the
search done by an EBM , the pressure now increases on EDE . We
found that using MR increases the average throughput of each EBM
to almost that of EDE . Hence, per EBM , IDEALMR dedicates one
EDE and three EDCT s: 1) one for channel 1 DCT for BM1, 2) one
performs DCT for channels 2 and 3 for DE1 or channels 1,2 and 3
for DE2, and 3) one for the inverse DCT of all channels after DE.
Per-BM Search Window Buffer: Since the EBM s advance inde-
pendently, their search windows are likely non-overlapping. Thus,
Fig. 12 shows that IDEALMR uses smaller per-EBM Search Window
Buffers (SWB) instead of a shared PB. While PB held DCT trans-
formed patches (BM1) or color domain patches (BM2), each SWB
holds the search window for the corresponding EBM in the color do-
main for both BM1 and BM2. Each SWB needs to hold (N s+PD−1)2
pixels where PD is the patch size. This comes at the expense of
recalculating the DCT of the patches that are searched for the
subsequent reference patch. However, in IDEALMR 1) there are
dedicated EDCT s per EBM making recalculation possible, 2) the MR
optimization significantly reduces the number of patches searched
per reference patch and the energy overhead of recalculating the
DCT for those is negligible compared to the MR energy savings,
and 3) the aggregate capacity over SWBs is less than that of PB.
Scheduling: Work is divided among the EBM s at image row gran-
ularity. An EBM processes a whole image row and then proceeds
with the next available image row if one remains to be processed.
This assignment increases the chances of reducing computation
through MR, as adjacent reference patches are processed by the
same EBM . Furthermore, this allows the buffered search window to
be reused across successive reference patches and reduces off-chip
bandwidth consumption.

Since off-chip memory accesses return a 64-byte block, IDEALMR
uses SWBs that can each hold up to two search windows to effi-
ciently utilize the off-chip bandwidth. Specifically, each SWB has
(N s + P − 1) entries, as many as the rows of the search window.
Each entry holds two 64B memory blocks. Using two blocks per
SWB entry handles the case where the search window rows do
span two memory blocks due to alignment. Moreover, it allows the
SWB to effectively prefetch the next search windows along the same
image row with one access. As a result, IDEALMR’s performance
is within 9.5% of that possible with an ideal single-cycle latency
off-chip memory.

Exploiting MR across rows could further reduce the process-
ing time but would also increase the implementation complexity;
matches would have to be shared across EBM s. Thus, IDEALMR
does not implement it.

IDEAL: Image DEnoising AcceLerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Figure 12: One lane of IDEALMR. The accelerator features 16 lanes sharing the same memory controller.

Table 2: Accelerator hardware parameters.

Parameter IDEALB IDEALMR
Technology 65nm
Frequency 1 GHz
BM Engines 16
Denoising Engines 1 shared 16
DCT Engines 1 shared 16 × 3
On-chip Buffer 126.75 KB 16 × 6.5 KB
Fraction Precision 12-bit
Memory Controller 2-channel, 32 in-flight requests
Off-chip DRAM 4GB, DDR3-1333

6 EVALUATION
This section compares and contrasts the performance, power, and
where possible the area, of various implementations of BM3D-based
denoisers: 1) highly-optimized software implementations of BM3D
targeting high-end CPUs and GPUs, 2) two neural network (NN)
denoisers accelerated on a high-end NN hardware accelerator, and
3) the basic IDEALB and the optimized IDEALMR accelerators. It
also presents a sensitivity study for the IDEAL design choices.

6.1 Methodology
Accelerator Modeling:We developed a cycle-accurate simulator
for IDEALB and IDEALMR which was used with the parameters
shown in Table 2. The simulator integrates with DRAMSim2 [46]
to model the off-chip accesses to main memory. We implemented
the accelerators in VHDL and synthesized the designs through the
Synopsys Design Compiler using a TSMC 65nm cell library. We
use the McPAT [35] version of CACTI to model the area and power
consumption of the on-chip buffers as an SRAM compiler is not
available to us. The accelerator target frequency is set to 1GHz given
CACTI’s estimate for buffer speed. To show how IDEAL scales on
a newer process technology, we also report the area and power
consumption of IDEAL using an STM 28nm cell library. The input
data set comprises 30 publicly available RAW format images [5]
with resolutions varying from 8MP to 42MP. The images depict
nature, street, and texture scenes. We report the results for two MR
configurations with K = 0.25 and K = 0.5.

Table 3: CPU parameters.

Processor Intel Xeon E5-2650 v2
Technology 22nm
Frequency 2.60 GHz
Cores 8 (×2 HW threads)
L1, L2, L3 32 KB D + 32 KB I, 256 KB, 20 MB
Memory 4-channel, 48 GB

Table 4: GPU parameters.

GPU NVIDIA GeForce GTX 980
Technology 28nm
Frequency 1.126 GHz
CUDA Cores 2048
L1/texture, L2 24 KB, 2MB
Shared memory 96 KB
Memory 4 GB GDDR5, 224 GB/s

CPU Implementation: We implemented three versions of the
BM3D algorithm in C++ targeting general-purpose CPUs: 1) single-
thread, 2) multi-threaded to exploit all the hardware threads avail-
able on the processor, and 3) MR-optimized single-thread imple-
mentation with two configurations K = 0.25 and K = 0.5. The im-
plementations were optimized to exploit the Intel AVX extended
vector instruction set, were compiled with GCC 5.1.1 at the -O3 op-
timization level, and were run on a high-end Intel Xeon E5-2650 v2
detailed in Table 3. For energy and power measurements on these
systems, we followed the methodology of Yazdani et al. [53]. Specif-
ically, we measured the energy consumption of these runs using
the the PAPI API [50] which utilizes the Intel RAPL library [2].
GPU Implementation: We implemented BM3D in CUDA and
ran the experiments on an NVIDIA GTX 980 GPU with the spec-
ifications shown in Table 4. The application was compiled with
the nvcc of the CUDA Toolkit v8.0 at the -O3 optimization level.
Performance and power were measured using the NVIDIA Visual
Profiler [4] and following the methodology of Yazdani et al. [53].
The measurements do not include the memory transfers between
the CPU and the GPU (performance is shown to be unsatisfactory
even without including this overhead).

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

Table 5: ML1 & ML2 neural network parameters.

ML1 ML2

NN type FCNN CNN
Number of layers 5 15
Input patch/tile size 39 × 39 320 × 320
Output patch size 17 × 17 256 × 256
Layer dimensions L1: 1522 × 3072 each layer: 64 × 64

L2: 3073 × 3072 kernel: 3 × 3
L3: 3073 × 2559
L4: 2560 × 2047
L5: 2048 × 289

Model size (# of weights) 27.8M 560K

Table 6: The implementations we compare along with the
corresponding abbreviations.

SW/HW Implementation Abbreviation

SW

Single-thread CPU CPU
Multi-threaded CPU Threads
Single-thread CPU + MR, K=0.25 MR (0.25)
Single-thread CPU + MR, K=0.5 MR (0.5)
GPU GPU

HW

Machine Learning 1 ML1
Machine Learning 2 ML2
IDEALB IDEAL_B
IDEALMR, K=0.25 IDEAL (0.25)
IDEALMR, K=0.5 IDEAL (0.5)

Machine Learning Implementations: Several recent works ex-
ploit machine learning (ML) for computational imaging applica-
tions [9, 10, 27, 30, 45, 55]. We chose two state-of-the-art ML-based
denoisers shown to rival BM3D quality. The denoiser of Burger
et al. (ML1) employs a 5-layer fully-connected NN (FCNN) with
the dimensions shown in Table 5 [9]. The denoiser of Gharbi et
al. (ML2) uses a 15-layer convolutional neural network (CNN) to
jointly demosaic and denoise an input image [27]. The parameters
and architecture of the CNN are shown in Table 5.

We measure the execution time on DaDianNao, a state-of-the-art
deep neural network accelerator proposed by Chen et al. [14]. We
developed a custom cycle-accurate simulator for this purpose. To
model power consumption, we synthesize DaDianNao on the same
65nm technology as IDEAL and model the on-chip eDRAMs using
Destiny [42]. While the ML1 model requires 56MB, we assume it
fits on chip as even then the performance remains unsatisfactory.
For ML2, a 1.125MB SRAM is sufficient for the weights and replaces
the original 32MB eDRAM on-chip Synapse Buffer.

6.2 Execution Time Performance
All measuremnts are normalized to the baseline single-thread CPU
implementation and they are averaged over all input images.
Software Implementations: Fig. 13a shows that themulti-threaded
CPU and the GPU implementations improve performance by 12.6×
and 19× respectively. The figure also shows that the single-thread
CPU implementation with the MR optimization results in a 3×
speedup for eitherK value. This is expected as: 1) the block-matching

0
2
4
6
8

10
12
14
16
18
20
22

Sp
ee

d
u

p
 v

s.
C

P
U

(a) SW implementations.

131 363
0,000

2,000

4,000

6,000

8,000

10,000

12,000

Sp
ee

d
u

p
 v

s.
 C

P
U

(b) Accelerators.

Figure 13: Speedup vs. single-thread CPU.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

8 10 12 16 18 20 21 22 24 25 42

R
u

n
ti

m
e

(s
ec

s)

Image Resolution (MegaPixel)

IDEAL(0.25) IDEAL(0.5)

Figure 14: IDEALMR runtime for different resolution im-
ages.

steps consume 67% of the processing time (Fig. 4), and 2) the MR
optimization was found to reduce the search effort of the block-
matching steps by 29× and 31× on average respectively for the
two K values. Integrating MR into the GPU implementation would
improve its performance by at most 6.4× given that currently block-
matching accounts for 87% of the total execution time. Thus, per-
formance would remain unsatisfactory.
Hardware Implementations: Fig. 13b shows speedup with the
hardware-accelerated implementations. Running ML1 and ML2 on
DaDianNao is 131× and 2, 243× faster respectively. IDEALB is on
average 363× faster than the baseline CPU and 18.9× faster than
the GPU. Although IDEALB does not outperform ML2, it consumes
much less energy as Section 6.3 shows. IDEALMR outperforms
all other implementations and is 9, 446× and 11, 352× faster than
the baseline CPU for K = 0.25 and K = 0.5 respectively. Since
the accelerator pipelines the BM and the DE steps, the speedup
over IDEALB scales linearly with the reduction in the BM’s search
effort. IDEALMR is 27× and 31× faster than IDEALB for the two K
configurations respectively.
Per Image Performance: Fig. 14 shows IDEALMR’s runtime for
images of different resolution. The runtime depends on image con-
tent as this affects the probability of reusing the best matches. For
the images studied, processing time remains within UI applications

IDEAL: Image DEnoising AcceLerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

0

10

20

30

40

50

60

70

80

90

100

H
D

 F
ra

m
es

 p
er

 s
ec

o
n

d

Figure 15: HD frames per second processed by IDEALMR un-
der different configurations.

Table 7: Power breakdown for all implementations inWatts.

Core LLC DRAM Total

CPU 25.9 11.9 4.7 42.5
Threads 96.8 24.2 9.1 130.1
GPU - - - 144

On-Chip DRAM Total
Core Buffers

ML1 40.91 NC NC
ML2 9.04 3.97 0.44 13.45
IDEALB 1.29 0.39 3.83 5.51
IDEALMR 9.2 2.84 6.16 18.2

limits: IDEALMR can process a 42MP image in less than 0.5 sec-
onds and the more common 16MP images in 0.13 to 0.18 seconds.
Fig. 15 shows the average, minimum and maximum frames per
second (FPS) performance of different IDEALMR configurations
for High Definition (HD) frames taken from a different dataset of
34 HD frames depicting nature, city, and texture scenes. We use
the abbreviation IDEAL_x_y for IDEALMR configured with K = x
and reference patch stride Ps = y. On average, all configurations
achieve 30 FPS or higher except for IDEAL_0.25_1. IDEALMR can
reach 90 FPS for the relaxed configuration IDEAL_1_3 with which
FPS does not drop below 22. Higher performance would be possible
if the search window dimensions could be reduced.

6.3 Power
Table 7 shows the average static and dynamic power dissipation, for
the studied implementations. The GPU power measurement tool
does not provide a breakdown hence the table lists only the total
power. The multi-threaded software implementation dissipates 3×
the power compared to the baseline CPU as it uses all the 16 cores.
The GPUwith full utilization consumes 144W. IDEALB is the lowest
power-consuming solution at 1.68W on-chip and 5.5W total while
IDEALMR is more power efficient as it consumes 12.05W on-chip
and 18.2W in total while being 31× faster than IDEALB.

ML1 consumes 41W on-chip power while being considerably
slower than IDEALMR and thus we did not measure its off-chip
memory power consumption. ML2 consumes 13W on-chip, almost
1W more than the on-chip power of IDEALMR, but performs fewer
off-chip accesses since it uses a 4MB on-chip activation memory.

Table 8: The effect of prefetching and on-chip buffering on
IDEALMR speedup over CPU.

Configuration Pref+Buff No Pref None
IDEAL 0.25 9, 445× 7, 144× 278×
IDEAL 0.5 11, 352× 8, 176× 286×

0

10,000

20,000

30,000

40,000

50,000

60,000

0 16 32 48 64 80 96 112 128 144

Sp
ee

d
u

p
 v

s.
 C

P
U

Number of Lanes

IDEAL(0.25) IDEAL(0.5)

Figure 16: Performance sensitivity to the number of lanes of
IDEALMR.

While its total power is lower than IDEALMR, so is its performance.
Thus, IDEALMR is 3.95× more energy efficient than ML2.

Given the speed of IDEALMR, a direct comparison shows that it
is 35, 595× and 7, 064× more energy efficient than the CPU and the
GPU implementations respectively. However, the CPU and GPU
measurements are on actual systems and a direct comparison may
not be appropriate. Nevertheless, given the three to four orders of
magnitude, there should be no doubt that IDEALMR is more energy
efficient as well.

6.4 Area
IDEALB with 16 BM engines, 1 DE engine, 1 DCT engine and a
common 126.75KB PB occupies 5.5 mm2. IDEALMR, with 16 BM en-
gines, 16 DEs, 48 DCT engines and 16 per-BM 6.5KB SWBs requires
23.08mm2. The DEs are the most expensive components totaling
79% and 62% of the area and power consumption of IDEALMR. The
original DaDianNaowith 32MB eDRAM runningML1 has an area of
80.4mm2 while the customized version running ML2 needs 41mm2.

6.5 Optimization Effect Breakdown
Besides MR, IDEALMR incorporates prefetching and on-chip buffer-
ing. To quantify the effect of these optimizations, Table 8 reports
IDEALMR’s performance relative to the baseline CPU when these
optimizations are selectively disabled. Three configurations are
shown: 1) Prefetching + Buffering, 2) No prefetching, and 3) No
prefetching and buffering. Disabling the prefetcher reduces speedups
to 7, 144× and 8, 176× respectively for IDEAL 0.25 and IDEAL 0.5.
Eliminating the on-chip buffers further degrades speedups down
to 278× and 286× respectively.

6.6 Sensitivity Study: Scalability
For IDEALB, the EDE can ideally serve up to 31 EBM s. However,
we found that the utilization of each EBM degrades below 90% for

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

Table 9: Area and power consumption vs. precision.

Precision 12-bit 11-bit 10-bit 9-bit 8-bit
Area (mm2) 23.08 21.45 19.97 17.54 15.4
Power (W) 12.05 11.65 11.41 10.21 9.07

configurations with more than 16 EBM s. This is due to the single-
ported PB that reads and broadcasts one patch at a time to all the
EBM s. As the number of EBM s increases, the non-overlapping area
of the corresponding search windows increases causing more stalls.
Thus, we do not show this study in the interest of space.

Given that most of the time in BM3D is taken by BM1 and BM2,
the number of lanes IDEALMR uses is the key design parameter
that directly affects performance. Accordingly, Fig. 16 reports how
performance varies relative to the baseline CPU while scaling the
number of lanes in IDEALMR from 16 up to 128. While performance
scales linearly going from 16 to 32 lanes, going to 64 lanes or higher
the performance improvements become increasingly sublinear and
more so for K = 0.25. These diminishing performance returns are
due to the limited off-chip bandwidth. The evaluated design uses a
dual-channel DDR3-1333 memory controller that can deliver up to
21 GB/s. IDEAL 0.25 hits this bandwidth ceiling earlier at 64 lanes
while IDEAL 0.5 hits it at the 128-lanes configuration. A higher K
value results in higher and more regular reuse across lanes, which
as a result tend to advance more synchronously. When the lanes
stay close to one another, their memory requests often coalesce.

6.7 Sensitivity Study: Technology Node
On a newer STM 28nm cell library IDEALB scales well requiring
1.44mm2 and consuming 0.65W on-chip power. Similarly, IDEALMR
needs an area of 7.9 mm2 and consumes 5.1W on-chip.

6.8 Sensitivity Study: Precision Tuning
A design parameter that greatly affects area and power is precision,
accordingly Table 9 shows how area and power vary for precisions
in the range of 12 down to 8 bits. Section 4.2 reported no visual
artifacts even with 9 bits of precision. The results show to what
extent designers can use precision as a design knob to meet the
constraints of different applications.

7 AUGMENTING FUNCTIONALITY
This section presents an example where IDEALMR was extended
to support an additional CI application, sharpening. As expected,
extending IDEALMR to support sharpening required surgical addi-
tions only to the DE. By changing the DE, it should be possible to
implement other BM3D variants that have demonstrated superior
quality such as for example deblurring [20] and upsampling [22].

The modified IDEALMR implements the technique of Dabov et
al. [19] to jointly denoise and sharpen images. It uses the same
BM3D pipeline with a single minor modification: After denoising
the 3D transform-domain coefficients, sharpening is achieved by
taking the α-root of their magnitude for some α > 1. The modified
accelerator incorporates α-rooting components in the DE pipeline
after the inverse Haar engine (see Fig. 7). For the 65nm technology

these modifications require extra 0.09 mm2 of area and 0.12W of
power. Processing throughput remains unaffected.

8 RELATEDWORK
Previous work on accelerating BM3D includes algorithmic approxi-
mations as well as implementations targeting different computing
platforms such as GPUs, FPGAs and custom hardware. Sarjanoja
et al. presented a heterogeneous implementation of BM3D using
OpenCL and CUDA [47]. On an NVIDIA GeForce GTX 650, their
implementation was shown to be 7.5× faster than a CPU implemen-
tation. Honzátko’s CUDA implementation running on an NVIDIA
GeForce GTX 980 was 10× faster than on an Intel Core i7 pro-
cessor [23]. Both aforementioned implementations restrict BM3D
configuration parameters such as the search window size N s and
reference patch stride Ps . Tsai et al. accelerated block-matching
using an approximated-nearest-neighbor (ANN) search in order to
process a 512 × 512 image in 0.7 seconds on a high-end GPU [48].
Our exact CUDA implementation with the same algorithmic pa-
rameters results in a 19× speedup over our CPU implementation
which would still be unsatisfactory if incorporated ANN.

Zhang et al. proposed a custom hardware accelerator for BM3D
which can process 25 ’720 × 576’ frames per second of a BT656
PAL 0.4MP video [1, 54]. They restrict the BM3D parameters with
N s = 15 and Ps = 4 to reduce computations by two orders of
magnitude. In our experiments, IDEALMR achieves 52 FPS for 0.4MP
frames even with the unmodified BM3D parameters.

Cardoso proposed an FPGA implementation of BM3D [6] whose
pipeline is similar to IDEALB having 16 BM modules followed by
one DE but that makes several approximations: 1) using l1-Norm
instead of l2-Norm for the block-matching distance, 2) not imple-
menting Haar transform but just a single-level Haar decomposition
and, 3) restricting the search parameters to N s = 39 and Ps = 4. On
the Xilinx 28nm ZYNQ-7000 ZC706 SoC, the design operates at 125
MHz, consumes 2.9W and processes an 8MP image in 1.5 seconds.
Our IDEALB would be 21× faster under the same parameters.

Clemons et al. proposed a patch memory system tailored to appli-
cations that process 2D and 3D data structures such as images [15].
The system exploits multi-dimensional locality and provides effi-
cient caching, prefetching, and address calculation. Leveraging this
memory system for IDEALMR is left for future work.

9 CONCLUSIONS
We developed highly optimized implementations of BM3D for im-
age frame denoising in both software and hardware and analyzed
their performance, power, and area. We proposed IDEALMR, a
BM3D accelerator that outperforms CPU and GPU implementations
by 4 and 3 orders of magnitude while being faster than an acceler-
ated ML alternative by 5.4×. Future work may focus on modifying
our accelerators to provide support for additional filters and thus
more CI applications or on improving performance and energy effi-
ciency of ML accelerators to enable ML approximations of BM3D
to be used for UI applications.

10 ACKNOWLEDGMENTS
This work was supported in part by an NSERC Engage Grant and
an NSERC Discovery Grant.

IDEAL: Image DEnoising AcceLerator MICRO-50, October 14–18, 2017, Cambridge, MA, USA

REFERENCES
[1] 2010. BM3D assembly device designed on basis of ASIC. (July 28 2010).

http://www.google.us/patents/CN101789043A?cl=en CN Patent App. CN
201,010,102,701.

[2] 2016. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf. (Septem-
ber 2016).

[3] 2017. Bosch’s Driver assistance systems - Predictive pedestrian protection.
http://products.bosch-mobility-solutions.com/en/de/_technik/component/SF_
PC_DA_Predictive-Pedestrian-Protection_SF_PC_Driver-Assistance-Systems_
5251.html?compId=2880. (2017).

[4] 2017. NVIDIAVisual Profiler. https://developer.nvidia.com/nvidia-visual-profiler.
(2017).

[5] 2017. Photography Blog. (2017). http://www.photographyblog.com
[6] Bernardo Manuel Aguiar Silva Teixeira Cardoso. 2015. Algorithm and Hardware

Design for Image Restoration. Master’s thesis. Faculty of Engineering, the Univer-
sity of Porto, Porto, Portugal. https://repositorio-aberto.up.pt/bitstream/10216/
84329/2/35861.pdf

[7] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A Non-Local
Algorithm for Image Denoising. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 2
(CVPR ’05). IEEE Computer Society, Washington, DC, USA, 60–65. https://doi.
org/10.1109/CVPR.2005.38

[8] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2011. Non-Local Means
Denoising. Image Processing On Line 1 (2011), 208–212. https://doi.org/10.5201/
ipol.2011.bcm_nlm

[9] Harold C. Burger, Christian J. Schuler, and Stefan Harmeling. 2012. Image denois-
ing: Can plain neural networks compete with BM3D?. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition. 2392–2399. https://doi.org/10.1109/
CVPR.2012.6247952

[10] Harold C. Burger, Christian J. Schuler, and Stefan Harmeling. 2013. Learning
how to combine internal and external denoising methods. In Proceedings of the
35th German Conference on Pattern Recognition (GCPR 2013).

[11] Frank Cabello, Julio León, Yuzo Iano, and Rangel Arthur. 2015. Implementation
of a fixed-point 2D Gaussian Filter for Image Processing based on FPGA. In 2015
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA).
28–33. https://doi.org/10.1109/SPA.2015.7365108

[12] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. 1991. The In-
formation Visualizer, an Information Workspace. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’91). ACM, New York,
NY, USA, 181–186. https://doi.org/10.1145/108844.108874

[13] S. Grace Chang, Bin Yu, and Martin Vetterli. 2000. Adaptive Wavelet Threshold-
ing for Image Denoising and Compression. IEEE TRANSACTIONS ON IMAGE
PROCESSING 9, 9 (2000), 1532–1546.

[14] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A
Machine-Learning Supercomputer. In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. 609–622. https://doi.org/10.1109/MICRO.2014.
58

[15] Jason Clemons, Chih C. Cheng, Iuri Frosio, Daniel Johnson, and Stephen W.
Keckler. 2016. A patch memory system for image processing and computer vision.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783754

[16] Kostadin Dabov, Alessandro Foi, and Karen Egiazarian. 2007. Video denoising by
sparse 3D transform-domain collaborative filtering. In 2007 15th European Signal
Processing Conference. 145–149.

[17] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2006.
Image denoising with block-matching and 3D filtering. In Electronic Imaging
2006. International Society for Optics and Photonics, 606414–606414.

[18] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2007.
Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE
Transactions on Image Processing 16, 8 (Aug 2007), 2080–2095. https://doi.org/10.
1109/TIP.2007.901238

[19] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2007.
Joint image sharpening and denoising by 3D transform-domain collaborative
filtering. In Proc. 2007 Int. TICSP Workshop Spectral Meth. Multirate Signal Process.,
SMMSP, Vol. 2007. Citeseer.

[20] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
2008. Image restoration by sparse 3D transform-domain collaborative filtering. In
Electronic Imaging 2008. International Society for Optics and Photonics, 681207–
681207.

[21] AramDanielyan, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2008.
Image and video super-resolution via spatially adaptive blockmatching filtering.
In Proceedings of International Workshop on Local and non-Local Approximation
in Image Processing (LNLA).

[22] Aram Danielyan, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
2008. Image upsampling via spatially adaptive block-matching filtering. In 2008
16th European Signal Processing Conference. 1–5.

[23] David Honzátko. 2015. GPU Acceleration of Advanced Image Denoising. Ph.D.
Dissertation. Department of Software Engineering, Faculty of Mathematics and
Physics, Charles University, Prague, Czech Republic. https://is.cuni.cz/webapps/
zzp/download/130165253/?lang=en

[24] Karen Egiazarian, Jaakko Astola, Mika Helsingius, and Pauli Kuosmanen. 1999.
Adaptive denoising and lossy compression of images in transform domain. Jour-
nal of Electronic Imaging 8, 3 (1999), 233–245. https://doi.org/10.1117/1.482673

[25] Michael Elad and Michal Aharon. 2006. Image Denoising Via Sparse and Redun-
dant Representations Over Learned Dictionaries. IEEE Transactions on Image
Processing 15, 12 (Dec 2006), 3736–3745. https://doi.org/10.1109/TIP.2006.881969

[26] Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2007. Pointwise
Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale
and Color Images. IEEE Transactions on Image Processing 16, 5 (May 2007), 1395–
1411. https://doi.org/10.1109/TIP.2007.891788

[27] Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. 2016. Deep
Joint Demosaicking and Denoising. ACM Trans. Graph. 35, 6, Article 191 (Nov.
2016), 12 pages. https://doi.org/10.1145/2980179.2982399

[28] Jose A. Guerrero-Colon and Javier Portilla. 2005. Two-level adaptive denoising
using Gaussian scale mixtures in overcomplete oriented pyramids. In IEEE Inter-
national Conference on Image Processing 2005, Vol. 1. I–105–8. https://doi.org/10.
1109/ICIP.2005.1529698

[29] Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pająk,
Dikpal Reddy, Orazio Gallo, Jing Liu abd Wolfgang Heidrich, Karen Egiazarian,
Jan Kautz, and Kari Pulli. 2014. FlexISP: A Flexible Camera Image Processing
Framework. ACM Transactions on Graphics (Proceedings SIGGRAPH Asia 2014)
33, 6 (December 2014).

[30] Viren Jain and Sebastian Seung. 2009. Natural Image Denoising with
Convolutional Networks. In Advances in Neural Information Process-
ing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou
(Eds.). Curran Associates, Inc., 769–776. http://papers.nips.cc/paper/
3506-natural-image-denoising-with-convolutional-networks.pdf

[31] Lynn Jenner. 2015. Hubble’s High-Definition Panoramic View of
the Andromeda Galaxy. https://www.nasa.gov/content/goddard/
hubble-s-high-definition-panoramic-view-of-the-andromeda-galaxy. (Jan. 5
2015).

[32] Gerald C. Kane and Alexandra Pear. 2016. The Rise of Visual Content Online. http:
//sloanreview.mit.edu/article/the-rise-of-visual-content-online/. (Jan. 4 2016).

[33] Charles Kervrann and Jérôme Boulanger. 2006. Optimal Spatial Adaptation for
Patch-Based Image Denoising. IEEE Transactions on Image Processing 15, 10 (Oct
2006), 2866–2878. https://doi.org/10.1109/TIP.2006.877529

[34] John E. Krist. 1992. Deconvolution of hubble space telescope images using
simulated point spread functions. In Astronomical Data Analysis Software and
Systems I, Vol. 25. 226.

[35] Sheng Li, Jung H. Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures. In 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 469–
480.

[36] Markku Mäkitalo and Alessandro Foi. 2011. Spatially adaptive alpha-rooting in
BM3D sharpening. In Image Processing: Algorithms and Systems IX, San Francisco,
California, USA, January 24-25, 2011. 787012. https://doi.org/10.1117/12.872606

[37] Robert B. Miller. 1968. Response Time in Man-computer Conversational Trans-
actions. In Proceedings of the December 9-11, 1968, Fall Joint Computer Con-
ference, Part I (AFIPS ’68 (Fall, part I)). ACM, New York, NY, USA, 267–277.
https://doi.org/10.1145/1476589.1476628

[38] MihirMody. 2016. ADAS Front Camera: Demystifying Resolution and Frame-Rate.
http://www.eetimes.com/author.asp?section_id=36&doc_id=1329109. (March 7
2016).

[39] Junichi Nakamura. 2005. Image Sensors and Signal Processing for Digital Still
Cameras. CRC Press, Inc., Boca Raton, FL, USA.

[40] Jakob Nielsen. 2009. Powers of 10: Time Scales in User Experience. https:
//www.nngroup.com/articles/powers-of-10-time-scales-in-ux/. (Oct. 5 2009).

[41] Wayne T. Padgett and David V. Anderson. 2009. Fixed-Point Signal Processing.
Morgan & Claypool. https://books.google.ca/books?id=h590cd_BagMC

[42] Matt Poremba, Sparsh Mittal, Dong Li, Jeffrey S. Vetter, and Yuan Xie. 2015.
DESTINY: A tool for modeling emerging 3D NVM and eDRAM caches. In 2015
Design, Automation Test in Europe Conference Exhibition (DATE). 1543–1546. https:
//doi.org/10.7873/DATE.2015.0733

[43] Javier Portilla, Vasily Strela, Martin J. Wainwright, and Eero P. Simoncelli. 2003.
Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE
Transactions on Image Processing 12, 11 (Nov 2003), 1338–1351. https://doi.org/
10.1109/TIP.2003.818640

[44] Rajeev Ramanath, Wesley E. Snyder, Youngjun Yoo, and Mark S. Drew. 2005.
Color image processing pipeline. IEEE Signal Processing Magazine 22, 1 (Jan 2005),
34–43. https://doi.org/10.1109/MSP.2005.1407713

http://www.google.us/patents/CN101789043A?cl=en
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://products.bosch-mobility-solutions.com/en/de/_technik/component/SF_PC_DA_Predictive-Pedestrian-Protection_SF_PC_Driver-Assistance-Systems_5251.html?compId=2880
http://products.bosch-mobility-solutions.com/en/de/_technik/component/SF_PC_DA_Predictive-Pedestrian-Protection_SF_PC_Driver-Assistance-Systems_5251.html?compId=2880
http://products.bosch-mobility-solutions.com/en/de/_technik/component/SF_PC_DA_Predictive-Pedestrian-Protection_SF_PC_Driver-Assistance-Systems_5251.html?compId=2880
https://developer.nvidia.com/nvidia-visual-profiler
http://www.photographyblog.com
https://repositorio-aberto.up.pt/bitstream/10216/84329/2/35861.pdf
https://repositorio-aberto.up.pt/bitstream/10216/84329/2/35861.pdf
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.1109/CVPR.2012.6247952
https://doi.org/10.1109/CVPR.2012.6247952
https://doi.org/10.1109/SPA.2015.7365108
https://doi.org/10.1145/108844.108874
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2016.7783754
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1109/TIP.2007.901238
https://is.cuni.cz/webapps/zzp/download/130165253/?lang=en
https://is.cuni.cz/webapps/zzp/download/130165253/?lang=en
https://doi.org/10.1117/1.482673
https://doi.org/10.1109/TIP.2006.881969
https://doi.org/10.1109/TIP.2007.891788
https://doi.org/10.1145/2980179.2982399
https://doi.org/10.1109/ICIP.2005.1529698
https://doi.org/10.1109/ICIP.2005.1529698
http://papers.nips.cc/paper/3506-natural-image-denoising-with-convolutional-networks.pdf
http://papers.nips.cc/paper/3506-natural-image-denoising-with-convolutional-networks.pdf
https://www.nasa.gov/content/goddard/hubble-s-high-definition-panoramic-view-of-the-andromeda-galaxy
https://www.nasa.gov/content/goddard/hubble-s-high-definition-panoramic-view-of-the-andromeda-galaxy
http://sloanreview.mit.edu/article/the-rise-of-visual-content-online/
http://sloanreview.mit.edu/article/the-rise-of-visual-content-online/
https://doi.org/10.1109/TIP.2006.877529
https://doi.org/10.1117/12.872606
https://doi.org/10.1145/1476589.1476628
http://www.eetimes.com/author.asp?section_id=36&doc_id=1329109
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://books.google.ca/books?id=h590cd_BagMC
https://doi.org/10.7873/DATE.2015.0733
https://doi.org/10.7873/DATE.2015.0733
https://doi.org/10.1109/TIP.2003.818640
https://doi.org/10.1109/TIP.2003.818640
https://doi.org/10.1109/MSP.2005.1407713

MICRO-50, October 14–18, 2017, Cambridge, MA, USA Mahmoud et al.

[45] Marc’Aurelio Ranzato, Y-lan Boureau, Sumit Chopra, and Yann Lecun. 2007. A
Unified Energy-Based Framework for Unsupervised Learning. In Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistics
(AISTATS-07), Marina Meila and Xiaotong Shen (Eds.), Vol. 2. Journal of Ma-
chine Learning Research - Proceedings Track, 371–379. http://jmlr.csail.mit.edu/
proceedings/papers/v2/ranzato07a/ranzato07a.pdf

[46] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A Cycle
Accurate Memory System Simulator. IEEE Computer Architecture Letters 10, 1
(Jan 2011), 16–19.

[47] Sampsa Sarjanoja, Jani Boutellier, and Jari Hannuksela. 2015. BM3D image
denoising using heterogeneous computing platforms. In 2015 Conference on
Design and Architectures for Signal and Image Processing (DASIP). 1–8. https:
//doi.org/10.1109/DASIP.2015.7367257

[48] Yun-Ta Tsai, Markus Steinberger, Dawid Pająk, and Kari Pulli. 2014. Fast ANN for
High-quality Collaborative Filtering. In Proceedings of High Performance Graphics
(HPG ’14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 61–
70. http://dl.acm.org/citation.cfm?id=2980009.2980016

[49] Gerd Waloszek and Ulrich Kreichgauer. 2009. User-Centered Evaluation of the
Responsiveness of Applications. In Proceedings of the 12th IFIP TC 13 International
Conference on Human-Computer Interaction: Part I (INTERACT ’09). Springer-
Verlag, Berlin, Heidelberg, 239–242. https://doi.org/10.1007/978-3-642-03655-2_
29

[50] Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr
Luszczek, Dan Terpstra, and Shirley Moore. 2012. Measuring Energy and Power
with PAPI. In 2012 41st International Conference on Parallel Processing Workshops.
262–268. https://doi.org/10.1109/ICPPW.2012.39

[51] Paul Worthington. 2014. One Trillion Photos in 2015. http://mylio.com/
true-stories/tech-today/one-trillion-photos-in-2015-2. (Dec. 11 2014).

[52] Ahmad Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 35–44. https://doi.org/10.1109/ISPASS.2014.
6844459

[53] Reza Yazdani, Albert Segura, Jose-Maria Arnau, and Antonio Gonzalez. 2016. An
ultra low-power hardware accelerator for automatic speech recognition. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–12. https://doi.org/10.1109/MICRO.2016.7783750

[54] Hao Zhang, Wenjiang Liu, Ruolin Wang, Tao Liu, and Mengtian Rong. 2016.
Hardware architecture design of block-matching and 3D-filtering denoising
algorithm. Journal of Shanghai Jiaotong University (Science) 21, 2 (2016), 173–183.
https://doi.org/10.1007/s12204-016-1709-0

[55] S. Zhang and E. Salari. 2005. Image denoising using a neural network based non-
linear filter in wavelet domain. In Proceedings. (ICASSP ’05). IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2005., Vol. 2. ii/989–ii/992
Vol. 2. https://doi.org/10.1109/ICASSP.2005.1415573

http://jmlr.csail.mit.edu/proceedings/papers/v2/ranzato07a/ranzato07a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v2/ranzato07a/ranzato07a.pdf
https://doi.org/10.1109/DASIP.2015.7367257
https://doi.org/10.1109/DASIP.2015.7367257
http://dl.acm.org/citation.cfm?id=2980009.2980016
https://doi.org/10.1007/978-3-642-03655-2_29
https://doi.org/10.1007/978-3-642-03655-2_29
https://doi.org/10.1109/ICPPW.2012.39
http://mylio.com/true-stories/tech-today/one-trillion-photos-in-2015-2
http://mylio.com/true-stories/tech-today/one-trillion-photos-in-2015-2
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/MICRO.2016.7783750
https://doi.org/10.1007/s12204-016-1709-0
https://doi.org/10.1109/ICASSP.2005.1415573

	Abstract
	1 Introduction
	2 BM3D Denoising
	2.1 Computational Blocks

	3 Software Implementations
	3.1 CPU Implementation
	3.2 GPU Implementation
	3.3 Execution Time Breakdown

	4 IDEAL
	4.1 Off-chip Bandwidth
	4.2 Reduced Precision Arithmetic
	4.3 Patch Buffer Configuration

	5 Accelerator Optimization
	5.1 Matches Reuse Optimization
	5.2 Matches Reuse: Potential and Quality
	5.3 Architecture Modifications

	6 Evaluation
	6.1 Methodology
	6.2 Execution Time Performance
	6.3 Power
	6.4 Area
	6.5 Optimization Effect Breakdown
	6.6 Sensitivity Study: Scalability
	6.7 Sensitivity Study: Technology Node
	6.8 Sensitivity Study: Precision Tuning

	7 Augmenting Functionality
	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References

