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Convolutional Sparse Coding for 
RGB+NIR Imaging

Xuemei Hu, Felix Heide, Qionghai Dai, and Gordon Wetzstein

Abstract— Emerging sensor designs increasingly rely on novel
color filter arrays (CFAs) to sample the incident spectrum
in unconventional ways. In particular, capturing a near-
infrared (NIR) channel along with conventional RGB color is
an exciting new imaging modality. RGB+NIR sensing has broad
applications in computational photography, such as low-light
denoising, it has applications in computer vision, such as facial
recognition and tracking, and it paves the way toward low-
cost single-sensor RGB and depth imaging using structured
illumination. However, cost-effective commercial CFAs suffer
from severe spectral cross talk. This cross talk represents a major
challenge in high-quality RGB+NIR imaging, rendering existing
spatially multiplexed sensor designs impractical. In this work,
we introduce a new approach to RGB+NIR image reconstruc-
tion using learned convolutional sparse priors. We demonstrate
high-quality color and NIR imaging for challenging scenes,
even including high-frequency structured NIR illumination. The
effectiveness of the proposed method is validated on a large
data set of experimental captures, and simulated benchmark
results which demonstrate that this work achieves unprecedented
reconstruction quality.

Index Terms— Computational photography, convolutional
sparse coding, structured illumination.

I. INTRODUCTION

IMAGING in the near-infrared (NIR) spectral range is
emerging as an exciting low-cost imaging modality beyond

traditional RGB color imaging and has broad applica-
tions in physical and biological sciences [1], in computer
vision, such as depth-imaging, feature detection [2], descatter-
ing [3], or dehazing [4], and in computational photography [5].
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Unlike the human visual system, most silicon-based solid
state sensors are sensitive to the NIR spectral region, and hence
images in the NIR wavelength range can be acquired using
mass-market CMOS sensors in combination with an opti-
cal bandpass filter suppressing the visible spectrum. Hence,
as separate sensors, one for RGB color and one or more
for NIR, RGB+NIR imaging systems can already be found
in consumer products, such as Microsoft’s Kinect and the
Intel RealSense depth camera.1 Recently, novel color filter
arrays (CFAs) have emerged which multiplex RGB color
channels as well as the NIR channel on the same sensor. These
single-sensor RGB+NIR imagers make it possible to eliminate
parallax, reduce bill of material and power requirements
(by eliminating multiple sensors), and they have started to
appear in experimental hardware platforms, such as Google’s
Project Tango.2

While these sensors, such as the OmniVision 4682 model,
represent a promising avenue to efficient, low-cost devices,
acquiring high-quality images with RGB+NIR CFAs remains
a challenging research problem which currently prohibits
broad practical applications. RGB color filters are selectively
transmissive in the visible spectrum but usually transparent
in the NIR domain, and hence RGB color filters receive
significant crosstalk from the NIR channel. This results in
RGB colors appearing “washed out” in the presence of NIR
light, which is why consumer color cameras rely on an IR
cutoff filter. While such washed-out images may still be
acceptable for some computer vision applications, structured
NIR illumination, such as the speckle pattern used in the Intel
RealSense, causes severe localized artefacts. In addition to
corrupted RGB color, the NIR channel is usually implemented
by omitting a color filter in front of a pixel so that it becomes
panchromatic. Currently, commercial RGB+NIR sensors are
used in combination with an optical NIR blocker to capture
“clean” RGB channels and an additional panchromatic channel
in the visible spectrum, an imaging mode referred to as
RGBW. Hence, one may conceive a sequential capture mode,
with and without an IR cutoff filter, as a potential way
to separate NIR and RGB information without introducing
parallax. However, this approach necessitates solving major
optical challenges as it requires two alternate optical paths
that are dynamically changed, or mechanical moving filters,
which would increase cost, form factor, and frame latency.

1https://software.intel.com/en-us/realsense/home
2https://get.google.com/tango/
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To eliminate crosstalk in RGB+NIR imaging, Tang et al. [6]
recently introduced an image reconstruction framework that
attempts to recover unmixed RGB+NIR images as an inverse
problem from only the spectrally mixed CFA measurements.
To tackle the challenging ill-posed inverse problem, they pro-
pose a maximum a posteriori estimation, assuming Gaussian
noise and a total variation (TV) image prior. Recognizing
the essential role of the image prior for this spectral unmix-
ing problem, the approach proposed in this work relies on
learned, natural image statistics for this task. In particular,
we adopt an optimization framework using convolutional
sparse coding (CSC) for RGB+NIR image reconstruction.
CSC models each individual color channel as a sparse sum
of image patches (i.e. atoms) that are learned from training
data and stored in a convolutional dictionary. We demon-
strate that the proposed approach achieves high-quality image
reconstructions, outperforming all existing approaches by a
substantial margin in both simulation and experimental results.
We are the first to demonstrate single-image RGB+NIR
reconstruction with high-frequency structured NIR illumina-
tion patterns, paving the way towards low-cost single-sensor
RGBD cameras.

Specifically, the key contributions of this work are:

• We reframe the RGB+NIR reconstruction problem as
a convolutional sparse coding problem, allowing us
to incorporate learned, natural images representations
that address the ill-posedness of the underlying inverse
problem.

• We develop a new and efficient reconstruction algorithm
based on the alternating direction method of multipliers
algorithm.

• We validate our approach on a large test set of repre-
sentative simulated and captured RGB+NIR scenarios,
with and without structured NIR illumination, and verify
its performance compared to competing state-of-the-art
approaches. The proposed method outperforms existing
methods in a wide range of simulated and real-world
scenarios.

In the following sections, we first review related work in
Sec. II. In Sec. III, we introduce the image formation model
and the proposed convolutional sparse coding framework.
Next, in Sec. IV, the proposed method is validated in simula-
tion and using experimental measurements. Finally, in Sec. V,
we discuss the limitations and potential future directions of
research building on this work.

II. RELATED WORK

A. RGB+NIR Imaging

Recent approaches in NIR imaging extend the basic RGB
mosaic with a fourth filter type with high transmittance
in the NIR spectrum band. Using such a custom CFA,
RGB+NIR information can be captured with a single-sensor
image, but at the cost of reduced image resolution in the
green channel compared to the traditional Bayer CFA pattern.
[7] proposes an optimized CFA design for effective RGB
and NIR image capture. [8] and [9] study demosaicing and
crosstalk in isolation. [10] proposes compressive sensing for

the recovery of RGB+NIR imaging. Note that this approach
only considers the crosstalk between the green and NIR
channel. Recently, [6] proposed an RGB+NIR demosaicing
algorithm that models crosstalk and the defocus of each spec-
tral channel. Although the authors of [6] solve a challenging
inverse reconstruction problem, they rely on engineered, hand-
crafted quadratic or gradient sparsity regularizers. In contrast,
this work relies on learned image priors to facilitate high-
quality reconstruction of RGB and NIR channels. Having
discussed RGB+NIR imaging under general illumination con-
ditions, we next discuss related work relying on structured
illumination.

B. Structured Illumination

Structured NIR illumination has been of interest to the
research community for about a decade [11] and has mostly
been used for stereo depth imaging. Speckle decorrelation [12]
and depth-varying light field [13] methods have been proposed
as structured illumination patterns for 3D ranging applica-
tions. Structured illumination has matured as a technology
and is available in a range of consumer RGBD cameras,
such as Microsoft’s Kinect and the Intel RealSense. These
devices have enabled a broad range of exciting applica-
tions in consumer electronics, robotics, machine vision, and
beyond [14], [15]. Conventional RGBD cameras are equipped
with two sensors, an RGB sensor and a separate NIR sensor.
If a high-quality single-sensor RGB+NIR solution did exist,
one could acquire a single image to recover a high-quality
RGB image along with an NIR channel that contains the
structured illumination. Such an approach would reduce not
only the form factor, cost, and power of RGBD cameras but
would also remove the need for registration between the two
cameras. Unfortunately, no image processing technique is cur-
rently capable of actually recovering high-quality RGB images
when the NIR structured illumination contaminates the mea-
surements of the color channels. In this paper, we demonstrate
the first approach to achieve high-quality RGB imaging with
structured NIR illumination. Reconstructing high-quality RGB
and NIR images can also be seen as a demosaicing problem
with an unconventional color filter array. In the following
subsection, we review the related work on demosaicing.

C. Image Demosaicing

Demosaicing, the inpainting of spatially subsampled spec-
tral measurements, is a mature field with an immense body of
prior work [16]. Both CFAs and corresponding demosaicing
algorithms have been extensively optimized for RGB color
imaging [17]. Demosaicing can be divided into two branches,
one considering spatial-domain reconstructions and the other
considering frequency-domain reconstructions [18]. Many
variants of CFAs have been proposed, as in [19] and [20],
including several versions of RGB+NIR CFAs. Due to man-
ufacturing limitations, crosstalk among the RGB and NIR
channels is severe and needs to be modeled accurately for
high-quality color reconstruction. Several methods have been
proposed to demosaic and unmix measurements from such
CFAs [6], [8], [10], [21], [22]. Due to the spectral unmixing
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component, high-quality RGB+NIR demosaicing remains a
challenging area of very active research. This work poses the
underlying reconstruction problem as a convolutional sparse
coding problem that is solved using optimization. The next
section provides a brief review of related optimization methods
in imaging.

D. Image Optimization

Research in the field of natural image statistics suggests that
natural images contain statistical structures that set them apart
from purely random signals [23]. Therefore, characterizing the
inherent structure of natural images and formulating efficient
representations based on these structures provides essential
insights into the recovery of natural images [24], in the
form of image priors under a Bayesian model. Sparse coding
algorithms have been proposed for learning image patches as
the basic structures of natural images [24], [25]. Each patch
can be represented by a sparse linear combination of the
learned atoms [26], [27]. Beyond 2D image processing, patch-
based sparse coding has also been applied to 3D hyperspectral
imaging [28] and 4D light field imaging [29]. Unfortunately,
patch-based representations ignore the spatial invariance of
images. Shifted versions of the same image patch have to
be represented, causing patch-based dictionaries to be highly
redundant. Convolutional sparse coding has been proposed as
an alternative to patch-based sparse coding, which resolves
this redundancy [30]–[32]. In contrast to patch-based methods,
CSC operates on whole images, thereby seamlessly capturing
the correlation between local neighborhoods. CSC was intro-
duced in the context of modeling receptive fields in human
vision [33]. It has since been demonstrated to have applications
in a wide range of computer vision problems, such as low/mid-
level feature learning [34], [35], image restoration [36], [37],
and computational imaging problems [38]–[41]. In this work,
we learn convolutional sparse representations for RGB+NIR
images and rely on these as efficient priors resolving the
ill-posedness of RGB+NIR image reconstruction.

III. CONVOLUTIONAL SPARSE DEMOSAICING,
DECONVOLUTION, AND SPECTRAL UNMIXING

In this section, we describe the proposed reconstruction
method. First, we briefly introduce the image formation model
for single-sensor RGB+NIR imaging. Next, the convolutional
sparse representation and learning of the proposed image
prior are described. We then outline the proposed image
reconstruction method and finally provide in-depth derivations
for the reconstruction algorithm and calibration methods.

A. Image Formation Model

We adopt the image formation model proposed by
Tang et al. [6]. For completeness, we briefly review this
model before deriving a novel reconstruction framework for
estimating RGB+NIR channels from a single sensor image.
Following [6], we assume that the camera measurements do
not saturate, i.e. they are not under- or overexposed. This
could be handled by an additional masking operator [41]

Fig. 1. (a) Measured spectral response of the OmniVision OV4682 sensor.
(b) Optimized, ideal narrow-band spectral responses. Note that the crosstalk
in the IR range is eliminated. (c) Convergence plot of the crosstalk matrix
estimation. (d)-(g) are the R, G, B, I spectral response R, and the fitted results
C ∗ Q at the estimated crosstalk matrix C. (h) Estimated crosstalk matrix C,
corresponding to (b). (i) Calibrated point spread functions for all channels.

that effectively inpaints saturated regions. We denote a 2D
measurement image as J and its vectorized form as j , which
can be modeled as

j =
∑

i∈{R,G,B,I}
Si

(∫
ri (λ)K λlλ d λ

)
+ n, (1)

where all images are represented by column vectors. The latent
full resolution image for a given wavelength λ is denoted as
lλ ∈ R

N , with N representing the total number of pixels in
the image. K λ ∈ R

N×N is the convolution matrix modeling
wavelength-dependent blur in the imaging optics. The light
incident at the sensor is multiplied with ri (λ) ∈ R, which
is the spectral response of color filter i (i ∈ {R, G, B, I}) at
wavelength λ, as shown in Fig. 1(a). We use R, G, B, I to
denote the red, green, blue, and NIR color channel; n denotes
additive sensor noise. Finally, Si ∈ R

N×N describes the
subsampling operator corresponding to color channel i and
is a diagonal matrix. Defining this operator as

Si [t, t] =
{

1 if pixel at position t has color filter i,

0 otherwise,
(2)

allows modeling the captured image j in Eq. (1) as a
sum of four linear transforms. Here, the index t denotes a
coefficient location in the vector j , which corresponds to
the position of the pixel in J . The ideal color filter for
R, G, B would only have spectral support in the respective
visible wavelength range and the NIR color filter to only
have spectral support in the NIR range. In particular, each
ideal color filter would have a spectral response concentrated
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around a peak spectral response, only covering a narrow band-
pass range in the visible-to-NIR wavelength range, as shown
in Fig. 1(b). However, manufacturing constraints prevent the
filters of a color mosaic from being ideal narrow band-pass
filters. The measured filter responses in Fig. 1(a) show that
the spectral response of the R, G, B cause crosstalk in
the NIR range. Assuming that the color spectrum r(λ) =
[rR(λ), rG(λ), rB(λ), rI(λ)]T, which is a 4 × 1 column vector,
it is q(λ) = [qR(λ), qG(λ), qB(λ), qI(λ)]T, and this crosstalk
can be expressed as the 4 × 4 matrix C

r(λ) = Cq(λ), (3)

where

C =

⎡
⎢⎢⎣

CRR CGR CBR C IR
CRG CGG CBG C IG
CRB CGB CBB C IB
CRI CGI CBI C II

⎤
⎥⎥⎦. (4)

C models the superposition of the ideal narrow band-pass
response to the actual color filter spectral response [6].

As observed in Fig. 1(a), the response of the red color
filter rR, for example, can be seen as the superposition of
the ideal red spectral response qR weighted by CRR and the
ideal NIR spectral response qI weighted by C IR.

Eq. (3) and Eq. (1) yield

j =
∑

i∈{R,G,B,I}
Si

⎛

⎝
∫ ∑

i �∈{R,G,B,I}
C i � i qi � (λ)Kλlλ d λ

⎞

⎠+n. (5)

For the ideal narrow band-pass color filters, the blur kernel of
each color channel is assumed to be wavelength-independent,
denoted by the convolution matrices K R, K G, K B and K I.
Now, inserting K R, K G, K B and K I into Eq. (5) and changing
the integrand, we rewrite Eq. (5) as

j =
∑

i∈{R,G,B,I}
Si

⎛

⎝
∑

i �∈{R,G,B,I}
C i � i K i �

∫
qi � (λ)lλ d λ

⎞

⎠+n. (6)

Since qi � (λ) is the ideal spectral response, the ideal image
that we seek to recover is

∫
qi �(λ)lλ d λ. Denoting this ideal

image as hi � , we can reformulate Eq. (6) as

j =
∑

i∈{R,G,B,I}
Si

⎛

⎝
∑

i �∈{R,G,B,I}
C i � i K i � hi �

⎞

⎠ + n. (7)

To get a compact image formation model, we stack the four
latent variables hR , hG , hB , hI into a single variables h, that
is h = [

hT
R, hT

G, hT
B, hT

I

]T
, and use S = [SR, SG, SB, SI] and

K = diag (K R, K G, K B, K I), which changes Eq. (7) to

j = S(C ⊗ IN )K h + n. (8)

Here, the image formation operator is composed of the con-
volution matrix K i that convolves each channel with the
respective blur kernel, followed by a crosstalk matrix C ⊗ IN

that applies crosstalk mixing between the blurred channels,
and finally a subsampling matrix S. The convolution matrix K
is a block-diagonal matrix that has the individual convolution
matrices for each channel as diagonal elements.

Using the expression F = S(C ⊗ IN )K , we can compactly
formulate the image formation model as

j = Fh + n. (9)

All components of the image formation in Eq. (9) are assumed
to be known for the inference of h from j . The convolution
matrix K and the crosstalk matrix C are estimated in a pre-
calibration step, which we will discuss below in Sec. III-E,
while S is known from the sensor layout, as defined in Eq. (2).

Given the image formation model from Eq. (9),
the RGB+NIR imaging task that this paper addresses is to
recover the ideal channel images h from the input measure-
ment j , which is an ill-posed joint demosaicing, spectral
unmixing and deconvolution problem.

The ill-posedness of this problem can be resolved by
adopting a Bayesian model that relies on image priors. To take
advantage of the structure in natural images, we rely on
convolutional sparse priors that recently have been shown
to achieve high-quality results across a variety of imaging
results [31], [41]. Next, we describe how we learn these image
priors.

B. Convolutional Sparse Prior

CSC models a vectorized image x ∈ R
N as a sum of

sparsely distributed convolutional features [30], that is, x is
modeled as

x =
K∑

k=1

dk ∗ zk . (10)

In other words, a convolutional representation for images is
formed using the filter dictionary dk ∈ R

P , k ∈ {1, . . . , K }.
The filter dictionaries dk are capable of representing the
underlying convolutional features of natural images. The con-
volutional codes are highly compressible, which means the
corresponding feature maps zk ∈ R

n, k ∈ {1, . . . , K } are
learned to be sparse. The operator ∗ is the 2D convolutional
operator defined on the vectorized inputs.

The filter dictionary is learned by solving the optimization
problem over a large image database, that is

argmin
dk ,zi

k

n∑

i=1

1

2

∥∥∥∥∥xi −
K∑

k=1

dk ∗ zi
k

∥∥∥∥∥

2

2

+ β

n∑

i=1

K∑

k=1

∥∥∥zi
k

∥∥∥
1

subject to �dk�2
2 ≤ 1 ∀k ∈ {1, . . . , K }, (11)

where xi represents the training images, n is the number of
training images, zi

k is the corresponding feature map of xi , and
β is a weight for balancing the first and second objective term.
Given such a prior learned on an image database, we formulate
the proposed image reconstruction method next.

C. Image Reconstruction

For the image formation model in Eq. (9), the corresponding
inverse problem is to reconstruct h from j , where h is an
unknown 4N ×1 vector and j is a known N ×1 measurement.
In other words, this inverse problem is ill-posed. Adopting a
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TABLE I

NOTATIONS USED IN THIS MANUSCRIPT

Bayesian approach, we use the learned convolutional sparse
coding prior to address this ill-posedness.

Specifically, we first learn the image filter dictionary {dk}
through optimizing Eq. (11) (see [30]) from a database
of natural images. Given the learned filter dictionary {dk},
we next formulate a convolutional sparse representation for
the unknown latent image hi , yielding the convolutional
reconstruction problem

argmin
zi

k

� j − Fh�2
2 + β

∑

i

K∑

k=1

∥∥∥zi
k

∥∥∥
1

subject to hi =
K∑

k=1

dk ∗ zi
k ∀i ∈ {R, G, B, I}. (12)

The constraints encode the convolutional sparse representation
of hi , and zi

k represent the filter map of hi corresponding to
filter dk .

However, directly incorporating the learned CSC filters into
the reconstruction is not possible because the filter dictio-
nary di

k is learned with whitened data using local contrast-
normalization. The whitening removes offset and scaling in
different image locations. While this processing is essential
in the learning process, it prohibits the straightforward use
of the dictionary as a generative model. While the correct
scaling for recovery can be obtained during the optimization
by finding the correct values in the sparse maps, the offset
is not modeled in Eq. (12). To address this, we introduce an
offset variable o as proposed in [41], yielding the following

optimization problem

argmin
zi

k

� j − Fh�2
2 + β

∑

i

(
K∑

k=1

∥∥∥zi
k

∥∥∥
1
+ γ �∇oi�2

2

)

subject to hi =
K∑

k=1

dk ∗ zi
k + oi ∀i ∈ {R, G, B, I}. (13)

By expressing the smoothness term as the convolution
oi = d K+1 ∗ zi

K+1, with d K+1 being a Dirac delta function.
As introduced in Table I, ∇ is the gradient operator. The
problem can be written as

argmin
zi

k

� j − Fh�2
2 + β

∑

i

(
K∑

k=1

∥∥∥zi
k

∥∥∥
1
+ γ

∥∥∥∇ zi
K+1

∥∥∥
2

2

)

subject to hi =
K+1∑

k=1

dk ∗ zi
k ∀i ∈ {R, G, B, I}. (14)

We observe that the noise differs for different color channels.
Typically, the NIR channel is degraded more severely by noise
than the RGB channels. Therefore, we add a weighting matrix
in the data fidelity term as

argmin
zi

k

�W ( j − Fh)�2
2 + β

∑

i

(
K∑

k=1

∥∥∥zi
k

∥∥∥
1
+γ

∥∥∥∇ zi
K+1

∥∥∥
2

2

)

subject to hi =
K+1∑

k=1

dk ∗ zi
k ∀i ∈ {R, G, B, I}, (15)

where W is a diagonal matrix balancing the reconstruction
of the four channels. W is estimated in a pre-calculation step
through noise estimation for each color channel. Eq. (15) is a
convex optimization problem and here we use the Alternating
Direction Method of Multipliers [42] algorithm (ADMM) to
solve it. In the next subsection, we describe the reconstruction
algorithm in detail.

D. ADMM Reconstruction Algorithm

This section describes the optimization algorithm we pro-
pose to solve Eq. (15). For notational simplicity, we define

z=[
(

zR
1

)T
, . . . ,

(
zR

K+1

)T
, . . . ,

(
z I

1

)T
, . . . ,

(
z I

K+1

)T ]. (16)

Furthermore, we introduce y = K Dz as a slack variable that
allows to separately optimize all convolutional variables in
the frequency domain and solve for the other variables in
the spatial domain. The matrix D expresses the sum of the
convolution with the filters, that is Dz = ∑K+1

k=1 dk ∗ zk .
We also introduce v = z as a slack variable for the sparsity
constraint. With these substitutions, the problem from Eq. (15)
becomes

argmin
y

�W ( j − S(C ⊗ IN )y)�2
2

+ β

K∑

k=1

�vk�1 + γ �∇ zK+1�2
2

subject to y = K Dz, v = z, (17)
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Algorithm 1 ADMM Algorithm for Convolutional Sparse RGB+NIR Imaging

where we solve only for the sparse feature maps z. The
reconstruction result is then h = Dz. This modified objective
can be solved with ADMM algorithm given in Algorithm 1.

Note that in line 4, optimizing y is a large-scale quadratic
problem. However, it is separable into groups aligned with the
2 × 2 CFA pattern. The small quadratic sub-problems can be
solved using a fast direct method in parallel for all separable
problems. Specifically, we first rewrite the problem as

argmin
y

�W S(C ⊗ IN )y − b1�2
2 + ρ

2
�y − b2�2

2 , (18)

where b1 = W j and b2 = K Dzk+1 + λk
1 are known

variables. This large quadratic convex optimization can nor-
mally be solved by finding the zero point of the derivative
of the objective function. However, it requires inverting a
large matrix, which is computationally infeasible, especially
when the image resolution N is high. This is a common
problem with the image reconstruction work. Exploiting the
structure of the forward image formation matrix, we can
further reduce the computational cost of the large quadratic
problem.

As the subsampling matrix S and the weighting matrix
W are replicated for each 2 × 2 CFA unit and the crosstalk
matrix C models the crosstalk of the NIR light to the RGB
color channel within each CFA, this large quadratic problem
is separable into each small color filter unit and can be solved
efficiently as follows

argmin
yu

∥∥Wu Su(Cu ⊗ I4)yu − bu
1

∥∥2
2 + ρ

2

∥∥yu − bu
2

∥∥2
2 , (19)

assuming the “BGIR” CFA pattern, then

Wu = diag
(
wb,wg,wi ,wr

)
(20)

Su = [
diag (0, 0, 0, 1) , diag (0, 1, 0, 0) ,

diag (1, 0, 0, 0) , diag (0, 0, 1, 0)
]

(21)

Cu = C ⊗ I4 (22)

yu =
[

yu1,u1
R , yu2,u1

R , yu1,u2
R , yu2,u2

R ,

yu1,u1
G , yu2,u1

G , yu1,u2
G , yu2,u2

G ,

yu1,u1
B , yu2,u1

B , yu1,u2
B , yu2,u2

B ,

yu1,u1
I , yu2,u1

I , yu1,u2
I , yu2,u2

I

]T
, (23)

where u1, u2 index for the matrix position in the 2 × 2 CFA
sub-group. The analytical optimum is

yu
opt =

[(
SuCu)T (

SuCu) + ρ
]−1

(
(
SuCu)T bu

1 + ρbu
2). (24)

The optimum of v in line 5 is solved using shrinkage,
as in [31]. Because K , D and ∇ are all convolutional opera-
tions and therefore can be implemented efficiently in the fre-
quency domain, we solve for z in the frequency domain [31].
Note also, in order to get fast convergence, we update ρ in each
iteration [43]. In the reconstruction algorithm proposed above,
the crosstalk matrix C , the convolutional kernel K i , and the
noise weighting coefficient W are assumed to be known. In the
following, we describe how to pre-calibrate these parameters
before reconstruction.

E. Calibration

We precalibrate the 4 × 4 crosstalk matrix C by solving
a bi-convex optimization problem, alternately estimating the
crosstalk matrix C and the ideal spectral response Q from the
camera’s spectral response R.

In particular, we formulate the problem as

argmin
C, Q

�R − C Q�2
2 + α1

∥∥I p 
 Q
∥∥2

2 + α2||∇ Q||2
subject to C ≥ 0, Q ≥ 0. (25)

The first term is the least square fitting term, and the sec-
ond term enforces the independence of the ideal spec-
tral response of the R, G, B, I channels. The third term
enforces the estimated ideal spectrum distribution Q to be
smooth. Specifically, R is the column concatenated matrix of
[rR, rG, rB, r I], the spectral response matrix of the camera,
and Q is the stacked matrix [qR, qG, qB, qI], that is ideal
spectral response matrix. I p is a penalty matrix penalizing
the spectral responses of qR, qG, qB outside the visible wave-
length range and qI outside of NIR wavelength range. α1, α2
are the balancing coefficients for the second and third term,
respectively.

I p(a, b) is a penalty matrix, where a represents an index
for the wavelength, and b is an index for the color channel.
In the proposed method, we set I p (a, b) for the R, G, B
channel (b = 1, 2, 3) as

I p(a, b)=
{

0 if a in wavelength range 300−700 nm

1 if a in wavelength range 700−900 nm,
(26)
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and for the NIR channel (b = 4)

I p(a, b)=
{

1 if a in wavelength range 300−700 nm

0 if a in wavelength range 700−900 nm.
(27)

∇ denotes the derivative operator along the wavelength dimen-
sion, i.e. the first dimension of matrix Q. The problem (25)
is a biconvex problem and can be solved by alternatively
optimizing C and Q, while fixing the respective other. Each
subproblem is a convex optimization problem and is solved
using a first-order method.

In our implementation, we multiply the crosstalk matrix C
with a white balance diagonal matrix so that the reconstructed
latent image is white balanced. The white-balance coefficients
of the RGB channels are calibrated by capturing a uniform
scene, e.g. white wall, and estimating the mean ratio of the
RGB channels. The white balance coefficient of the NIR
channel is set to 1.

To estimate K , we use the tiling calibration pattern pro-
posed in [44] and estimate the in-focus plane blur of each
channel with the estimation method in [45]. As the most
severe crosstalk occurred from NIR to all three RGB channels,
we use RGB-cutoff and IR-cutoff filters for the PSF estimation
captures. We capture the target image with an NIR-cutoff
filter to calibrate K R, K G, K B, and using an RGB-cutoff filter
to calibrate K I. In Fig. 1(i), we show the estimated blur
kernel of different channels estimated from the center region
of the image. As shown, the blur of the NIR channel differs
substantially from the blur in the RGB channels.

We estimated the noise level of each channel wi with the
method in [46], and the corresponding weighting matrix is

W[t, t] = wi , if pixel at t has color filter i, i ∈ {R, G, B, I}.
(28)

Having described the proposed reconstruction method, next
we validate our method using both numerical simulations and
physical measurements.

IV. ASSESSMENT

This section evaluates the proposed approach on synthetic
and measured experimental data. Comparisons to existing
methods validate that convolutional sparse RGB+NIR recon-
struction outperforms the state-of-the-art quantitatively and
qualitatively in a wide range of scenarios, including challeng-
ing structured illumination cases.

A. Synthetic Evaluation

1) Data Generation and Calibration: We first evaluate
the proposed method in simulation. To this end, we synthe-
size measurements j from the hyperspectral database [47].
From a precalibrated camera response function r(λ) of a
representative reference camera we estimate the crosstalk
matrix C by solving the bi-convex problem in Eq. (25), with
α1 = 0.5 and α2 = 0.1. The convergence plot of the objective
function along the iteration number is shown in Fig. 1(c);
the optimization converges in approximately 15 iterations. The
estimated crosstalk matrix is shown in Fig. 1(h) which is nearly

Fig. 2. (a) Learned convolutional kernels. (b) Horizontal and vertical
scanlines picked from the dictionaries in (a). (c) Convergence plot of the
learning procedure, showing a monotonically-decreasing decay.

diagonal except for the fourth column, indicating the influence
of the NIR channel to the RGB channels. The blur kernels
K R, K G, K B, K I of each channel are calibrated from chart
images, as described in Sec.III-E. Note that for the scenes
with structured NIR illumination, we replaced the NIR channel
from the hyperspectral input data with synthetically generated
high-frequency dot patterns that accurately resemble the ones
we measured from the Intel RealSense measurements.

With the simulated measurements at hand, we next
learn a dictionary of convolutional kernels from the “fruit”
dataset of [34]. The learned convolutional codes are shown
in Fig. 2(a). Each of the 100 kernels is of size 11 × 11. The
training error is plotted in Fig. 2(c), which shows that the
learned filters are converged. Some of the learned dictionary
elements represent low-frequency structure in the image, while
others model high-frequency structure, such as edges or cor-
ners. Figs. 2(a, b) highlight filters aid the reconstruction of
high-frequency content in the proposed convolutional sparse
RGB+NIR imaging method.

2) Qualitative Evaluation: Given the measurements and
learned priors, we compare the proposed method against
three existing reconstruction methods. As a baseline we
compare against naive bi-cubic upsampling. Furthermore,
we also compare the proposed method against two state-
of-the-art reconstruction approaches: a hand-crafted recovery
algorithm [21] and an optimization-based MAP estimation
method [6]. Figs. 3 and 4 show qualitative results for NIR
ambient light and high-frequency structured NIR illumination.
In all scenarios, the proposed approach achieved substantially
improved image quality in all spectral channels compared
to the reference methods. In particular, high-frequency color
structures around edges and small features are accurately
recovered. In the structured illumination scenarios, severe
artefacts are observable in the RGB channels of all existing
approaches. The proposed method is the only one that achieves
high quality in this challenging illumination case.

3) Parameter Evaluation: Next, we analyze the effect of
different parameters of the proposed reconstruction algorithm.
We performed a parameter sweep of β and γ , and plot the
best recovery performance with respect to β and γ , shown
in Figs. 5(a-d), and at different noise levels, corresponding to a
range of 0.006, 0.013, 0.019, 0.042, 0.06 in standard deviation.
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Fig. 3. Recovery results for the “flowers” scene with different methods,
without structured NIR illumination (a) and with structured illumination (b).
GT, BUS, Martinello, Tang, Ours:nw and Ours denote the ground truth and
the reconstructed results of basic bilinear upsampling method, [21], [6],
the proposed method without and with weighting W .

Fig. 4. Recovery results for the “fruits” scene. The same methods as in Fig. 3
are compared.

As the noise level increases, the best performance parame-
ters βbest and γbest, marked with a red diamond, increase
correspondingly to balance the three terms in the optimiza-
tion problem. As the ground truth image does not change,
the ratio of βbest and γbest are approximately constant, which
translates the robustness of the parameter selection when
estimating the noise level ahead of the RGB+NIR recovery.
In other words, the main purpose of β and γ is to balance
the second prior term and the third prior term. To demonstrate
that this behavior generalizes across different illumination
scenarios, we performed the same analysis with structured
NIR illumination (Figs. 5(a, b)) and with structured NIR
illumination (Figs. 5(c, d)).

Furthermore, comparing Figs. 5(a) and (c) with
Figs. 5(b) and (d), we further observe that the prior
coefficient β plays a key role in the reconstruction. When β is

Fig. 5. Parameters analysis. (a) Reconstruction performance with
respect to different β, with no structured NIR illumination. (b) Recon-
struction quality for different γ , with no structured NIR illumination.
(c) and (d) simulate the same setting as (a) and (b) but with structured NIR
illumination. (e, f) Reconstruction quality for different methods using the same
method shortcuts as in Fig. 3.

not in a proper range, quality is poor no matter what the
parameter γ is set to. Intuitively, the parameter γ fine-tunes
the reconstruction performance when β is in the proper range.

In addition to the parameter experiments discussed above,
we also explored the effect of the noise weighting. Noise
weighting balances the objective term and it is used for
whitening the objective of the four channels in the first data
fidelity term in Eq. (15). For a fixed noise level of standard
deviation 0.019, we choose the deconvolution parameters of
the method [21] to be α = 2e3 and λ = 2/3 (deconvo-
lution method in [5]), σ = 1/400, τ = 40, and α = 5
for method [6] and β = 5e − 3, γ = 1e − 1 for the
proposed method. Note that these parameters are the best
parameters of an extensive parameter sweep for the given
image. As shown in Fig. 3 and Fig. 4, without the noise level
weighting, the reconstruction performance of the proposed
method in the NIR and RGB channels are unbalanced and the
NIR channel reconstruction is noisy. Figs. 5(e) and (f) show
these comparisons for different hyperspectral input images.
With noise weighting, the described approach performs the
best. While without noise weighting, the proposed method
sometimes is only on par with existing methods, highlighting
that this weighting is essential for balancing convolutional
sparse coding across channels.
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TABLE II

PSNR COMPARISONS (dB)

Fig. 6. Analysis of the step size e in Algorithm 1. We process the flower
scene from Fig. 3(a) here and show: (a) the objective values, (b) PSNR, and
the 	2-norm of the primal (c) and dual (d) residuals [42].

We also analyzed the effects of the step size parameter e in
Algorithm. 1. As discussed in [48], dynamically adapting the
penalty parameter ρ can substantially improve convergence in
practice. Fig. 6 compares convergence behavior for varying e,
with all parameters except for e fixed. For e > 1, the 	2
norm of the primal and the dual residuals [42] are reduced
at a higher rate with increasing e > 1. Specifically, while
for e = 1, about 250 iterations are required for both the
primal residuals and dual residuals to converge below 1e − 3,
using 1 < e < 1.1 required only half of the iterations to
converge to the same accuracy. Therefore, updating the penalty
parameter ρ using e > 1 substantially improves convergence.
However, when e becomes large, the ρ update rate is very fast,
hence consensus is enforced aggressively and the optimization
algorithm is seemingly stuck, making only very slow progress.
For the experimental results, we choose a small e = 1.01 to
speed up the convergence of ADMM.

Finally, we provide recipes for selecting the remaining
objective hyper-parameters. To select β and γ we run the pro-
posed method on separate test datasets. First, we optimize β in
the large range [10−6, 1] with fixed γ = 10−3. Subsequently,
we optimize for γ in the range [10−3, 1] with β now fixed.
The optimal size of the dictionary kernel depends on the scale
of the images. Adopting the setting from [31], we use filters
of spatial extent 11 × 11.

4) Quantitative Evaluation on Benchmark
Datasets: Performance results of all methods on a benchmark
dataset are shown in Table II and Fig. 7. When there is no
structured NIR illumination, the proposed method performs
much better in preserving details, such as the text in the
book scene, the wax crayon, the toy eye, the banana textures,
the small holes on the strawberry, the eyebrows in the human
faces, the outdoor tree textures, the Stanford dish, and the
texture on the Church. When the image is piece-wise smooth,
the described method performs similarly to [6] as their TV
prior is sufficient in these cases. Furthermore, we notice
that [21] introduces structured illumination artefacts into the
RGB channel, severely affecting the reconstruction quality.
In contrast, for structured NIR illumination, the proposed
method preserves the high-frequency details introduced by
the NIR illumination. The NIR reconstruction of the proposed
method is the most accurate compared to existing previous
approaches. Having validated the RGB+NIR reconstruction
approach using numerical simulations, we next assess the
proposed method using experimental measurements.

B. Physical Experiments

Reconstruction results from captured measurements without
structured illumination are shown in Figs. 8, 9, and 10. For
the example shown in Fig. 8 we compare the proposed method
with bilinear upsampling, the method of Martinello et al. [21],
and Tang et al. [6]. The bilinear upsampled results suffer
from severe color artefacts because an appropriate model for
the color crosstalk is missing. We have included magnified
crops on the right of Fig. 8(d), demonstrating the details
we recover are not noise but the actual texture in the bill.
The proposed method is capable of reconstructing fine scene
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Fig. 7. Reconstruction results on the hyperspectral database described in the text, without (columns 2-6) and with (columns 7-11) structured NIR illumination.

structures of the bills and table that are not recovered by
Tang’s or Martinello’s approaches. Specifically, [6] tends to
smooth out the IR channel when there is small intensity
contrast, whereas the proposed CSC method is able to recover

sharper edges of the number 5 on the bill and the scratches on
the table. The approach of [21] tends to recover noisy RGB
and IR channels, where the CSC method was able to recover
high-quality RGB and NIR channel.
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Fig. 8. Indoor scene without structured illumination. (a) Captured raw image, (b) extracted color channels, (c) the reconstructed RGB image of the proposed
method. (d) Cropped photography of the figure 5 on the bill. We compare reconstructions with bilinear upsampling, Martinello et al., Tang et al. and the
proposed approach. In each close-up in (e) and (f), the figures we show are bilinear upsampling (first column), Martinello et al. (second column), Tang et al.
(third column), and the proposed method (fourth column) of RGB (first row) and NIR (second row) channel respectively.

Fig. 9. Outdoor scene without structured illumination. The denotation of (a)-(e) is the same as Fig. 8 (a)-(c) and (e)-(f).

In Figs. 9 and 10, we show several results captured with
an OmniVision OV4682 sensor. As shown in the magnified
crops for the indoor scene from Figs. 10(d)-(f), fine detail,
such as the human eye region, the stairway, and the text on the
newspaper are recovered in the RGB and NIR channels with
sharper edges and more accurate colors compared to existing
approaches. Fig. 9 shows results from an outdoor scene with
natural sunlight illumination. In contrast to the other methods,
the proposed approach is capable of recovering sharp image
features and accurate colors of both the crossbeam (Fig. 9(e)),
and the iron fence and the scene behind it in Fig. 9(f).
All these experiments without structured NIR illumination
have been computed with the following algorithm parameters:
β = 0.001, γ = 0.01, and ρ0 = 1.

We have also evaluated the robustness of the proposed
reconstruction method in relation to structured illumination in
the NIR domain. In Fig. 11 the scene is illuminated with ambi-
ent light but also with a high-frequency NIR dot pattern. This
setup emulates a condition where scene depth can be recovered
from the NIR channel along with a high-quality RGB image.
The result from bilinear upsampling, shown in Fig. 11 does
not remove the high-frequency NIR pattern in the color
channels, leading to severe chromatic artefacts, in contrast
to the proposed method, which recovers high-quality RGB
reconstruction results. As shown in Figs. 11(e)-(f), the struc-
tured illumination contaminates the RGB channels, which can
be seen in the bilinear upsampled result, for example the
speckle-like pattern on the toy’s back and the checkerboard.
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(a) (b) (c)

(d)

(e)

(f)

Fig. 10. Indoor scene without structured NIR illumination. (a) Captured raw image of an indoor scene, (b) extracted color channels, (c) the reconstructed
RGB image of the proposed method. We compare reconstructions of bilinear upsampling, Martinello et al. (second column), Tang et al. (third column), and
the proposed method (fourth column) of RGB (first row) and NIR (second row) channel respectively. The smaller close-up are shown on the right of each
figure for further comparison.

In contrast to Tang et al. [6], the proposed approach recovers
more details, such as the water ripples on the oil paints and the
leaves. Closely following the trend from the simulation results,
the details in the NIR channel are smoothed out by Tang’s
method. The method of Martinello et al. [21] cannot handle
the case where there is structured illumination. These results

are encouraging and could inform future approaches to joint
RGB and depth imaging from structured NIR illumination.
For the above experiments, we use the following algorithmic
parameters: β = 0.0001, γ = 0.1, and ρ0 = 1. For the
physical experiments, we use the noise weighting coefficient
[wR, wG , wB , wI ] = [1, 1, 1, 0.5].
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Fig. 11. Indoor scene with structured NIR illumination. The denota-
tion of (a)-(e) is the same as in Fig. 8, except that in each close-up,
the columns correspond to color channels, first column for RGB and second
column for NIR. Four rows correspond to: bilinear upsampling (first row),
Martinello et al. (second row), Tang et al. (third row) and the proposed
method (fourth row).

We would like to point out that for a given noise level,
we have fixed the parameters for the complete dataset. The
relative weighting between the data term and prior depends
on the standard deviation of the noise and therefore has
to be tuned differently for different noise scenarios. Note
again that this is not specific to the proposed method, but
applies to all comparable MAP estimation methods. We adopt
a computationally cheap noise estimation method [49] to
estimate the noise parameters.

Having validated the proposed image formation model and
reconstruction method in this section, we next discuss the
benefits and limitations of the proposed approach, and identify
potential future directions building on this work.

V. DISCUSSION

In summary, we have presented a novel framework for
recovering multi-channel image data from spatially multi-
plexed measurements. The learned convolutional sparse prior
for RGB+NIR images, represents a stronger prior than gra-
dient priors, which are often used in image reconstruction
and are suggested in [6]. Note that rather than using just
two hard-coded, engineered [2 × 1] derivative filters, we learn
100 filters with [11 × 11] coefficients. It becomes obvious
that our model is orders of magnitude more expressive than
previous approaches. We have evaluated the proposed method
in simulation and with data captured by a RGB+NIR sensor.
We demonstrate improved reconstruction quality compared to
state-of-the-art approaches. Furthermore, we have evaluated

camera systems that use structured illumination in the NIR
range. Such systems are increasingly used by commercial
depth cameras that scan the scene using invisible patterns. The
structured illumination patterns are observed as artefacts in
the other channels, making it difficult to recover RGB images
alongside the coded NIR channel. We demonstrate high-
quality RGB image recovery for these challenging scenarios.

A. Limitations

The resolution of all captured images is 1520 × 2688 and
we split them up into 4 × 8 blocks, each 380 × 336 in size.
We subsequently run our reconstruction on each block for
50 iterations. On an Intel Xeon E5 machine, our unoptimized
MATLAB implementation runs currently in about 10 minutes
for each block. All individual blocks are run in parallel.
We also compared our approach to a conventional TV prior-
based reconstruction, but without the denoising and inpainting
strategies described in [6]. This approach took about 25 iter-
ations to converge in 8.5 minutes per block. The proposed
method shares with other optimization-based methods that it
is not computationally cheap. While an immediate solution
is cloud processing, a more practical mobile approach are
emerging low-power image processing units, such as the
Movidius Myriad 2 which evaluates the VGG16 convolutional
net at real-time frame rates at low power consumption.3 Note
that the proposed method shares striking similarities with
convolutional nets, which makes it map well to such emerging
architectures.

B. Future Work

The proposed image formation model does not model
saturation, a limitation shared with [6]. Saturated data
can be masked in the objective function, which then will
be effectively be inpainted by the masked reconstruction
approach. To make the proposed framework practical for
widespread mobile and robotic applications, an implementa-
tion using field-programmable gate arrays or an application-
specific integrated circuit is left for future work. In the near
future, we are planning to incorporate a depth-from-structured-
NIR-illumination reconstruction step into our framework. This
is possible by either accessing calibration data on existing
consumer devices or by building a structured illumination
projector–camera system from scratch. Although interesting,
we leave this engineering effort for future work. Finally,
we believe that exploring hierarchical filtering would also be
a very interesting direction of future research.
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