
Consensus Convolutional Sparse Coding

Biswarup Choudhury∗

KAUST
biswarup.choudhury@kaust.edu.sa

Robin Swanson∗

KAUST, University of Toronto
robin@cs.toronto.edu

Felix Heide ∗

Stanford University
fheide@stanford.edu

Gordon Wetzstein
Stanford University

gordon.wetzstein@stanford.edu

Wolfgang Heidrich
KAUST

wolfgang.heidrich@kaust.edu.sa

Abstract

Convolutional sparse coding (CSC) is a promising direc-
tion for unsupervised learning in computer vision. In con-
trast to recent supervised methods, CSC allows for convolu-
tional image representations to be learned that are equally
useful for high-level vision tasks and low-level image recon-
struction and can be applied to a wide range of tasks with-
out problem-specific retraining. Due to their extreme mem-
ory requirements, however, existing CSC solvers have so far
been limited to low-dimensional problems and datasets us-
ing a handful of low-resolution example images at a time.

In this paper, we propose a new approach to solving CSC
as a consensus optimization problem, which lifts these limi-
tations. By learning CSC features from large-scale image
datasets for the first time, we achieve significant quality
improvements in a number of imaging tasks. Moreover,
the proposed method enables new applications in high-
dimensional feature learning that has been intractable us-
ing existing CSC methods. This is demonstrated for a va-
riety of reconstruction problems across diverse problem
domains, including 3D multispectral demosaicing and 4D
light field view synthesis.

1. Introduction

Natural image statistics lie at the core of a wide variety
of discriminative and generative computer vision tasks. In
particular, convolutional image representations have proven
essential for supervised learning using deep neural networks
– the de-facto state-of-the-art for many high-level vision
tasks [20, 29, 28, 13]. While these models are successful
for supervised discriminative problems, the same architec-
tures do not easily transfer to generative tasks.

Generative models have some significant advantages

∗Denotes equal contribution

over discriminative models for low level vision and image
reconstruction tasks. The most important distinction is that
generative approaches learn models of the data that can act
as priors for a wide range of reconstruction tasks without
retraining, while discriminative methods learn specific re-
construction tasks, and cannot be easily applied to other
tasks. As a consequence patch-based sparse coding tech-
niques [7, 23, 1] have been very popular for low-level tasks
such as denoising, inpainting, demosaicing, deconvolution
and similar problems [11, 34, 30, 24, 21, 2], Unfortunately,
patch-based dictionaries are highly redundant because they
have to capture all shifted copies of the sparsifying filters.

Introduced as a model for receptive fields in human vi-
sion [26], convolution sparse coding (CSC) [14, 17, 32, 33]
has been demonstrated to remove much of the overhead of
patch-based sparse coding by using a convolution image
formation model for a range of different applications [11,
34, 30, 24, 21, 2]. CSC techniques are fast, because many

Traditional CSC Consensus CSC
Figure 1: Large-scale unsupervised feature learning. Left:
Convolutional features from [15] can only be learned from a
handful of example images since existing CSC methods are
limited by memory. Right: CCSC overcomes these limita-
tions, and allows to learn features on ImageNet [9]. These
features contain less specialized structures, leading to sig-
nificant improvements across a variety of vision tasks.

High Dimensional
Coefficients

Monolithic SolverHigh Dimensional
Data

Traditional Convolutional Sparse Coding Consensus Convolutional Sparse Coding

High Dimensional
Filters

Block
Partitioning

High Dimensional
Data

High Dimensional
Filters

...

B

b1

b2
B

D

Z

Consensus
Optimization

z1

z2

zN

D

Z

dN

d2

d1

bN

Low Dimensional
Coefficients

PetaByte
Memory

GigaByte Memory

Figure 2: Illustration of traditional CSC (left) and the proposed CCSC (right). CCSC lifts the prohibitive memory limita-
tions of existing algorithms by breaking large, high dimensional datasets into tractable subproblems, each of which can be
efficiently solved with a low memory footprint.

implementations efficiently perform convolutions in the fre-
quency domain [5, 6, 15].

While fast, existing CSC approaches are not scalable due
to their extreme memory requirements (Fig. 3). For exam-
ple, existing methods would require terabytes of physical
memory for learning light field data from only 100 exam-
ples (Sec. 4), and datasets comparable to ImageNet would
require petabytes of memory. As a result, it has been in-
tractable to learn convolutional filters from large datasets,
and to apply CSC to high-dimensional image reconstruc-
tion problems that arise in 3D video, 3D multispectral, or
4D light field image processing.

In this paper, we revisit unsupervised, generative learn-
ing using CSC, and propose a consensus-based optimiza-
tion framework that makes CSC tractable on large-scale
datasets, and enables high-dimensional feature learning.
We call our approach consensus convolutional sparse cod-
ing (CCSC). CCSC splits a single large-scale problem into
a set of smaller sub-problems that fit into available mem-
ory resources. Due to the convex nature of the problem and
the enforced consensus between the sub-problems, global
convergence is guaranteed. We demonstrate convolutional
dictionary learning on datasets that are orders of magnitude
larger than what has previously been possible, and show that
the resulting sparsifying filters are, in fact, different from
those learned from smaller datasets (Fig. 1). Moreover, we
show that these new features also lead to significant im-
provements in a variety of image reconstruction tasks. To
validate the proposed method for high-dimensional data,
we evaluate CCSC on a number of high-dimensional re-
construction problems that are intractable for existing CSC
solvers. In particular, we make the following contributions:

• We derive a consensus optimization method that en-
ables convolutional sparse coding problems of arbi-
trary size with limited memory to be solved efficiently.

• We extend traditional CSC to allow for non-

convolutional data dimensions, greatly reducing mem-
ory requirements for high-dimensional datasets.

• We verify the scalability of CCSC by learning from
large-scale 2D datasets as well as from several high-
dimensional datasets.

• We show that the features learned on large-scale
datasets are more general, and lead to better recon-
structions than existing methods.

• We evaluate CCSC using several high-dimensional
reconstruction problems across diverse problem do-
mains, including 3D multispectral demosaicing, 3D
video deblurring, and 4D light field view synthesis.

Finally, the full source code will be made available on-
line for evaluation and improvements in the future.

2. Mathematical Framework
Traditionally, convolutional sparse coding is formulated

as the following optimization problem

argmin
d,z

J∑
j=1

1

2
‖bj −

W∑
w=1

dw ∗ zjw‖22 + β

W∑
w=1

‖zjw‖1

subject to ‖dw‖22 ≤ 1 ∀ w ∈ {1, . . . ,W},

(1)

where each example image bj is represented as the sum
of sparse coefficient feature maps zjw convolved with filters
dw of fixed spatial support. The superscripts indicate the
example index j = 1 . . . J , and the subscripts indicate the
filter/coefficient map index w = 1 . . .W . The variables
bj ∈ RD and zjw ∈ RD are vectorized images and feature
maps, respectively, dw ∈ RM represents the vectorized m-
dimensional filters, and ∗ is the m-dimensional convolution
operating on the vectorized inputs. The constraint on dw
ensures the dictionary does not absorb all of the system’s
energy.

To solve Eq. (1) we first reformulate it as an uncon-
strained optimization problem, following [15]. Absorbing
the constraint in an additional indicator penalty indC(·)
for each filter, defined on the convex set of constraints
C = {x | ‖Sx‖22 ≤ 1}, where S is the RM×D Fourier
submatrix that computes the inverse Fourier transform and
projects the result onto the spatial support of each filter,
yields

argmin
d,z

1

2

J∑
j

(‖bj − Zjd‖22 + β‖Zj‖1 + indC(d)). (2)

Here, d = [dT1 . . .d
T
W]T , where d ∈ RDW×1. Similarly, Zj

= [Zj1 . . .Z
j
W] is a concatenation of Toeplitz matrices, each

one expressing the convolution with the respective sparse
coefficient map zjw (Zj ∈ RD×DW). Note that we can ex-
press the convolutional term from Eq. (1) in this way be-
cause convolution is a commutative operator. Eliminating
the sum over the examples (index J) by stacking the vec-
torized images in b′ = [b1

T . . .bJ
T]T and coefficient maps

Z′ = [Z1T . . .ZJ
T
]T accordingly results in

argmin
d,z

1

2
‖b′ − Z′d‖22 + β‖Z′‖1 + indC(d). (3)

We jointly solve for both the filters d and coefficient maps
z in Equation 3 using a coordinate descent approach [15]
that alternates between updates to d and z while keeping
the other fixed (described later in Alg. 2). For this spatial
formulation, the filters can be represented in a memory-
efficient way, due to their small spatial support. However,
the full set of coefficients zw must be stored which incurs
an enormous memory footprint. Furthermore, convolutions
in the spatial domain are computationally expensive.

Recent work [5, 6, 18, 15] has demonstrated that Eq. (3)
can be solved efficiently in the frequency domain by ap-
plying Parseval’s theorem, which states that the energy
of a signal is equivalent to that of its Fourier transform
up to a constant. In this frequency domain formulation,
the previously costly spatial convolutions become efficient
Hadamard (component-wise) products. Although computa-
tionally efficient, the Fourier formulation still requires fre-
quency representations over the full domain of all frequen-
cies to be held in memory, both for filters and coefficient
maps. The size of the coefficient maps grows linearly with
the number of filters and images, but exponentially with the
dimensionality. For these reasons, classical convolutional
sparse coding, and especially its efficient Fourier formu-
lation, do not scale beyond 2D images and small training
datasets.

In the following, we derive a consensus optimization
method for CSC, allowing to split large-scale and high-
dimensional CSC into smaller sub-problems, each of which

can be solved with a limited memory budget. Furthermore,
the individual sub-problems can be solved efficiently using
the Fourier-domain formulation, and in a distributed fash-
ion using parallel workers. Consensus optimization makes
CSC tractable for large problems sizes, which we verify by
learning from large-scale and high-dimensional datasets.

2.1. Consensus Optimization

To account for large, high-dimensional datasets, we split
the problem of learning from the entire dataset b′ into learn-
ing from smaller subsets which can be solved individu-
ally with modest memory and computational requirements.
Specifically, we partition the data vector b′ and their cor-
responding sparse feature matrix Z′ across all of the exam-
ples1 into N blocks arranged by rows,

b′ =

 b1

...
bN

 , Z′ =

 Z1

...
ZN

 , (4)

with bi ∈ RBi and Zi ∈ RBi×MW , where
∑N
i=1Bi =

JD. Here, bi represents the ith data block along with its
respective filters Zi. In the following we first demonstrate
how to solve Eq. (3) using this block splitting with respect
to the filters d, and subsequently for the coefficients z.

2.1.1 Filter Subproblem

Using the partition from Eq. (4), we can solve Eq. (3) for d
for a given Z′ as follows

argmin
d

1

2

N∑
i=1

‖bi − Zid‖22 + indC(d)

⇔ argmin
y

1

2

N∑
i=1

‖bi − Zidi‖22 + indC(y)

subject to di − y = 0 ∀i ∈ {1, . . . , N}.

(5)

This is a convex problem in the global consensus form [3].
Introducing local variables di allows us to turn the joint ob-
jective from the first row of Eq. (5), which cannot be split
due to the joint variable d, into separable terms that can be
split during the optimization. This also facilitates the han-
dling of the i-th set (bi,Zi,di) independently by parallel
workers. The shared global variable y ∈ RMW introduced
as a slack variable enables solving Eq. (5) using the Al-
ternate Direction Method of Multipliers (ADMM) [3, 22],
which we derived from the augmented Lagrangian

L(d1 . . .dN ,y, λ1 . . . λN) =

N∑
i=1

1

2
‖bi − Zidi‖22

+ indC(y) + λTi (di − y) +
ρ

2
‖di − y‖22,

(6)

1Please see the supplemental for other splitting strategies.

where λi is a set of a Lagrange multipliers for each of the
N consensus constraints. ADMM alternately minimizes
Eq. (6) with respect to all of its variables, yielding Alg. 1.

Algorithm 1 ADMM for the Filters d

1: while Not Converged do
2: for i = 1 to N do
3: dk+1

i = argmin
di

1
2‖bi−Zidi‖

2
2+

ρ
2‖di−y

k+λki ‖22
4: end for
5: yk+1 = argmin

y
indC(y)+

Nρ
2 ‖y−d

k+1−λk‖22
6: for i = 1 to N do
7: λk+1

i = λki + dk+1
i − yk+1

8: end for
9: end while

10: d = yk+1

Line 5 uses the average d
k+1

= 1
N

∑N
i=1 d

k+1
i and

λ
k
= 1

N

∑N
i=1 λ

k
i as a notational shortcut. It becomes clear

that the subproblems in the first inner for-loop around Line 3
are now independent of each other. TheN subproblems can
be solved on a single machine sequentially, or in parallel on
up toN workers, each worker i handling only the i-th block
of data. After the parallel solve a global synchronization
step in Line 5 fuses all individual filter dictionaries, while
enforcing the constraint C = {x| ‖Sx‖22 ≤ 1}. Line 7 up-
dates the Lagrange multipliers for each data-block based on
the running error of the fused filters. In the following, we
define the individual subproblems of Alg. 1 in detail.

Line 3 is a least-squares problem with the solution

dk+1
i = (Z†iZi + ρI)−1(Z†ibi + ρ(yk − λki)), (7)

where ·† denotes the conjugate transpose, and I denotes
the identity matrix. As described in [5, 6, 15] one can
find a variable reordering which makes (Z†iZi + ρI) block-
diagonal which we directly invert using Cholesky factoriza-
tion for the individual blocks, in parallel. The update in
Line 5 of Alg. 1 is in the form of a proximal operator for
which a rich body of literature exists [27]. Specifically, it is
yk+1 = prox 1

Nρ
(d
k+1

+ λ
k
), with

proxθ indC(·)(v) =

{ Sv
‖Sv‖2 : ‖Sv‖22 ≥ 1

Sv : else
(Projection)

(8)

2.1.2 Coefficient Subproblem

The coefficient subproblem can be written as

argmin
z

1

2
‖b′ −D′z‖22 + β‖z‖1

⇔ argmin
zi

1

2

N∑
i=1

‖bi −Dzi‖22 + β‖zi‖1
. (9)

The sparse coefficient maps z can be solved analogous to
the filters d. This is a result of the convolution from Eq. (1)
being commutative, which allows to rewrite Z′d = D′z
in Eq. (3), with D′ is a block diagonal matrix with D =
blkdiag[D1 . . .DW] repeated along its diagonal J times,

and z = [z1 . . . zJ]T and zj = [zj1
T
. . . zjW

T
]. Hence,

when solving for z, we can follow the recipe from the pre-
vious section, using the same block partition. The resulting
algorithm can be found in the supplemental material.

2.1.3 Joint Optimization

The previous paragraphs describe optimization methods
for solving the joint objective from Eq. (1) for d and z.
We solve for both unknowns jointly by solving the bi-
convex optimization problem using coordinate descent, fol-
lowing [5, 15].

Algorithm 2 Large Scale CCSC Learning

1: Initialize parameters ρd ∈ R+, ρz ∈ R+

2: Initialize variables d0, z0, λ0d, λ
0
z, β.

3: repeat{Outer Iterations}
4: Filter Update:

dk, λkd ← Solve with Alg. 1 and ρ = ρd, λ = λk−1d
5: Coefficient Update:

zk, λkz ← Detailed in supplemental ρ = ρz, λ = λk−1z
6: until No more progress in both directions.

The respective Lagrange multipliers are initialized with
those from the previous iteration. ρ is a parameter of the
Lagrangian which intuitively is the step size enforcing the
Lagrangian step. For any positive ρ, the primal residual
(di − y) converges to zero, thereby guaranteeing that the
algorithm converges to a saddle point. We refer to [3] for a
detailed discussion and proof of convergence. Specifically,
for our implementation, running the sub-step algorithms for
a fixed number of P steps achieved good progress in the
coordinate descent step. We terminate the execution when
neither sub-step can further decrease the objective.

2.2. Non-Convolutional Dimensions

Above, we have considered all dimensions of the ex-
ample data b to be convolutional. However, some image
modalities exist only at very low resolution, e.g. the color
dimension of an RGB image. In these cases it is common
that no convolutional structure can be found. We represent
non-convolutional dimensions by introducing an additional
replication operator Rep(·) which repeats the sparse coef-
ficient maps, that do not contain the non-convolutional di-
mensions, along the missing dimensions. The original con-
volutional sparse coding problem from Eq. 1 becomes

argmin
d,z

J∑
j=1

1

2
‖bj −

W∑
w=1

dw ∗ Rep(zjw)‖22 + β

W∑
w=1

‖zjw‖1

subject to ‖dw‖22 ≤ 1 ∀w ∈ {1, . . . ,W},
(10)

For example, considering a single dimension with length
µ = 3 for RGB image data, Rep(·) expands the 2D feature-
maps to the full three-channel data by replicating the fea-
ture map 3 times along the 3rd dimension. The convolution
operator is still a 2D convolution, but with full color RGB
filters. In Eq. (3), the operator Rep(·) can be represented
by an additional matrix P = [I1 . . . Iµ]T such that D and
PZ are then of complimentary dimensions. Redefining the
coefficient matrix as Z̃ = PZ, the described Alg. 1 and 2
generalize to this setting. P being stacked identity matrices,
the efficient inverse from Eq. (7) can be applied.

3. Memory and Complexity Analysis

This section analyzes the memory and runtime of the
proposed approach. The consensus optimization from the
previous section enables splitting CSC problems of arbi-
trary size into subproblems that fit into physical memory.
Fig. 3 shows the memory consumption of the proposed
CCSC approach compared to existing CSC [15], as well as
classic patch-based sparse coding [1]. Even on a machine
with 128 GB of physcial memory these existing methods
become infeasible for learning from medium datasets in 2D,
and fail for small data-sets in higher-dimensions. CCSC
makes large-scale convolutional sparse coding feasible by
efficiently solving smaller subproblems with memory re-
quirements which scale slowly as dataset size and dimen-
sions increase. However, splitting the CSC problem comes
at the cost of increased iterations which are necessary to
enforce consensus between local variables.

Each subproblem can now be solved sequentially or in
parallel, affecting the runtime of the individual iterations.
With full parallelization CCSC closely matches classical,
non-distributed runtimes, while at the same time allowing
CSC to scale. We first present the theoretical computational
cost for a single iteration in Figure 4 (top), with P being the
number of inner iterations (of the substeps in Alg. 2) and
U ≤ N being the number of parallel workers. Assuming N
blocks of equal size, splitting and distributing drastically re-
duces the cost of the linear system solves and of the Fourier
transforms. In terms of runtime, this smaller per-iteration
cost allows more iterations in the proposed consensus op-
timization, while at the same time enabling scalability in
terms of the memory requirements.

In Figure 4 (bottom) we provide empirical evidence of
the high computational efficiency of the proposed approach
by comparing the best competing CSC technique [15] with

Pe
ak
M
em
or
y
[G
B
]

Number of Images 4100x100px6

Number of Videos 4100x100x100px6

3D Convolutional Feature Learning

2D Convolutional Feature Learning

2000 4000 6000 8000 100000
0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0 5 10 15 2520

128 GB MAX

KSVD
CSC
CCSC

Pe
ak
M
em
or
y
[G
B
]

128 GB MAX

Figure 3: Memory Consumption for large 2D image
datasets (top) and video data (bottom). CSC (blue) as well
as popular patch-based coding methods (green) become in-
feasible with increasing size of the dataset (top plot). This
effect is even more significant in higher dimensions (bottom
plot). Note the very small number of example videos in the
bottom plot.

Method Cost (in flops)
Zeiler et al. [32] PJ · (WD︸︷︷︸

Conjugate gradient

· WDM︸ ︷︷ ︸
Spatial convolutions

+ WD︸︷︷︸
Shrinkage

)

Bristow et al. [5, 6] PJ · (W 3D︸ ︷︷ ︸
Linear systems

+WD log(D)︸ ︷︷ ︸
FFTs

+ WD︸︷︷︸
Shrinkage

)

Heide et al. [15] W 3D + (P − 1)W 2D︸ ︷︷ ︸
Linear systems

+ PJ · (WD log(D)︸ ︷︷ ︸
FFTs

+ WD︸︷︷︸
Shrinkage

)

CCSC 1
U (W 3D + (P − 1)W 2D)︸ ︷︷ ︸

Linear systems

+ 1
U PJ · (WD log(

D

N
)︸ ︷︷ ︸

FFTs

+ WD︸︷︷︸
Shrinkage

)

Dataset CSC CCSC (U = Number of PCs)
Size [15] U=5 U=10 U=50
100 203.56 sec 35.35 sec 25.69 sec 25.20 sec
500 1530.71 sec 259.30 sec 82.69 sec 28.57 sec
1000 Out of Memory 387.68 sec 255.38 sec 35.63 sec

Figure 4: Complexity and Runtime Analysis. Top: The-
oretical per-iteration cost of CCSC and other current CSC
methods. Bottom: Runtime comparisons between the best
competing CSC method [15] and CCSC. We demonstrate
the runtime gain for a varying number of parallel working
threads (U) and increasing dataset size. Note: These val-
ues apply only where Z can be naturally split into equal
partitions such that the FFT can be efficiently performed.

CCSC for increasing sizes of 2D dataset with varying num-
ber of parallel workers. For example, with a 2D dataset
composed of 500 examples (each 100 × 100 pixels), we
observe a speedup of 19× for 10 workers, and a 54× for
50 workers over existing CSC methods. Please note that,
for datasets of larger size, current CSC techniques are in-
tractable. All algorithms were executed on Intel Xeon 2.7
GHz Dual-core processor with 128GB RAM.

Channels

Fi
lte

rs

Figure 5: Multispectral (2D convolutional + 1D non-
convolutional) dictionary. We show examples of 10 filters
learned across all 31 channels on the CAVE dataset. Note
the similarity in the kernels across channels which depict
the inherent redundancy along multi-channel image data.

4. Learning

Large-scale Feature Learning on ImageNet: To test
CCSC on large-scale image data, we use it to learn a dictio-
nary for 5000 images from ImageNet [9] which is at least
an order of magnitude more images than previously feasi-
ble with CSC methods. The dictionary itself consists of 100
filters of size 11×11, and can be seen in Figure 1. For com-
parison we have included a similar dictionary trained on a
very small fruit dataset. Although superficially similar, the
large scale dictionary contains more general features which
lead to better reconstruction results (Sec. 5). Our dictionary
also contains noise-like filters similar to those learned by
discriminative feature learning models [8].

Multi-Spectral Feature Learning: Next, we test CCSC
on multispectral data. Each image is now a 3-dimensional
entity, with the wavelength as the extra dimension. How-
ever, this third dimension is typically much smaller (31
channels in our case) than the two spatial dimensions, and
thus we chose to convolve only along the spatial dimensions
while the third dimension is non-convolutional in the CCSC
dictionary. We therefore force each pixel in the image to
share the same coefficients for each element in the dictio-
nary which promotes similarity among all channels without
the need for any group sparsity constraints. We found that
this method was greatly superior to solving each channel
individually with 2D CSC, particularly in the presence of
missing data where the proposed method is able to pull in-
formation across all channels. For details please refer to the
supplementary material.

We trained the dictionaries on a select number of images
from the Foster et al. [12] and CAVE [31] hyperspectral
datasets, each learning 100, 11×11×31 filters. An exam-
ple of the CAVE filters can be seen in Figure 5 which show
how the proposed framework learns a variety of features
that slowly vary from channel to channel.

Video Feature Learning: Unlike multispectral data
which contains a fixed number of channels, videos are com-
posed of an arbitrary number of frames which lends itself to
a fully convolutional 3D filter. Therefore, we learned a set

Time

Fi
lte

rs

Figure 6: Learned Video Features (3D-Convolutional).
Each row shows a single 3D convolutional video kernel
whose features slowly change over time from left to right.

of 49 3D filters of size 11×11×11 from a varied set of 64
HD video clips. A sample set of these filters can be seen
in Figure 6, which demonstrates the variety of CCSC filters
as well as their smooth spatial and color transitions across
time frames. For reconstruction results please refer to the
supplemental material.

Light Field Feature Learning: Although typically cap-
tured as a single image, light fields can be represented as
a 4D tensor with two spatial dimensions and two angu-
lar dimensions. Because the two angular dimensions are
small (typically only 5 to 8 angles), we chose to train dic-
tionary filters which were convolutional spatially, but non-
convolutional in the angular dimensions. The final dictio-
nary was trained on a set of 64 light fields truncated to 5 an-
gular views in both x and y, and contained 49 filters of size
11×11×5×5. A sample set of these filters can be found in
Figure 7 which clearly demonstrates the angular structure
learned by CCSC. Each 5×5 group of filters slowly varies
across the angular dimensions while exhibiting general fea-
tures for reconstruction throughout.

5. Reconstruction

M-Operator: Similar to Heide et al. [15], we employ a
binary mask M as a general linear operator which can be

Filter 6 Filter 7 Filter 8 Filter 9 Filter 10

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

Figure 7: Example of 10 Learned Light Field Features (2D
convolutional + 2D non-convolutional). Each group of 5x5
filters shows all 25 angular features learned.

2D Inpainting
Image CCSC CSC[15] NLR [10]
Wind Mill 35.13 33.49 27.30
Sea Rock 28.45 27.29 23.38
Parthenon 31.36 29.79 24.99
Rolls Royce 29.15 27.34 22.05
Fence 30.83 29.59 22.41
Car 34.06 32.57 22.86
Kid 29.41 28.05 23.08
Tower 29.97 28.30 24.86
Fish 31.68 30.26 20.92
Food 36.77 35.09 23.78

2D Poisson Deconvolution
Image CCSC CSC [15] Krishnan [19]
Agama 28.05 27.87 24.26
Gypful 29.36 29.31 24.52
Kathmandu 23.14 22.86 20.19
Laser 31.59 31.57 28.10
Libelle 27.56 27.17 22.86
Melinaea 28.36 28.05 24.16
Mototaxis 23.41 23.34 20.87
Painted 22.47 21.89 18.84
Platycercus 25.93 24.94 21.12
Porsche 27.11 26.21 19.60

3D Multispectral Demosaicing
Image CCSC IID [25] SD [4] WB [4]
Balloons 28.62 27.38 25.83 25.91
Beads 23.87 23.33 14.18 14.57
CD 30.54 23.38 18.23 18.39
Chart 24.64 21.56 13.92 13.84
Clay 29.74 14.25 12.53 12.57
Cloth 23.50 20.96 13.91 14.02
Statue 33.38 20.83 16.97 17.12
Face 28.12 17.50 12.91 13.00
Beer 23.72 18.33 9.21 9.23
Food 28.91 25.50 17.38 17.61

Figure 8: Quantitative analysis of 2D Image Reconstruction and Multispectral Demosaicing. Left: Inpainting results for 50%
randomly subsampled observations of images randomly selected from ImageNet [9]. The filters learned using CCSC (shown
in Fig. 1) lead to significantly prediction results compared to the ones from [15], as well as recent patch-based methods
such as the non-local low-rank method from [10]. Center: 2D Poisson Deconvolution. Comparisons of CCSC against the
state of the art deconvolution method [19] and the classical CSC method. Right: Multispectral Demosaicing results for the
CAVE dataset comparing CCSC against the state of the art Iterative Intensity Difference (IID) [25], and the previous standard
Spectral Difference (SD) [4] and Weighted Bilinear (WB) [4] interpolation methods. All values reported as PSNR in dB.
Please see supplement for comparisons of CCSC with other state of the art techniques.

used for a variety of purposes, such as boundary handling,
and masking incomplete data. Note that, typically M is a
diagonal or block diagonal matrix, such that it decouples
linear systems of the form (MTM + I)x = v into many
small independent systems that can be efficiently solved.

Inpainting and Deconvolution: To compare the CCSC
large-scale dictionary with conventional CSC, and demon-
strate applicability to different noise and image formation
models, we evaluated their performance in both inpainting
and Poisson noise deconvolution with the Poisson proximal
operator described in the supplement. Quantitative results
can be found in Figure 8 (left and center), and sample re-
constructions can be found in Figure 9 & 10. In all cases

SubsampleSubsample OriginalOriginal CCSCCCSC CSCCSC

OriginalOriginal CCSC (29.97dB)CCSC (29.97dB) CSC (28.30dB)CSC (28.30dB)

Figure 9: Inpainting results using 2D filters for the “Clock”
example. Top row show from left to right: (a) Subsampled
image, (b) Ground Truth, (c) CCSC, (d) Conventional CSC.
Bottom shows insets from (b-d) respectively. It is evident
that conventional filters fail for difficult contrast edges such
as the vertical clock features.

the CCSC large-scale features outperformed both classical
CSC as well as state of the art alternatives. Please see sup-
plement for additional comparisons of our algorithm with
other state of the art techniques.

Multi-Spectral Demosaicing: We compare the pro-
posed method to the state of the art multispectral demosaic-
ing technique [25]. To emulate the demosaicing process
we process the raw data to conform to a multispectral filter
array (MSFA) pattern with 16 evenly spaced channels cor-
responding to data from the 400 to 700 nm range. We then
reconstruct the data as a sub-sampling problem where the
missing data from each channel is masked by the M opera-
tor. We compared the CCSC results with the code provided
by [25] on the original CAVE dataset [31] and calculated

BlurredBlurred OriginalOriginal CCSCCCSC CSCCSC

OriginalOriginal CCSC (27.11dB)CCSC (27.11dB) CSC (26.21dB)CSC (26.21dB)

Figure 10: Deconvolution results using 2D filters for the
Car example. Top row show from left to right: (a) Blurred
image, (b) Ground Truth, (c) CCSC, (d) Conventional CSC.
Bottom shows insets from (b-d) respectively. In darker re-
gions such as the car text conventional CSC hallucinates
features which are not present resulting in poor deconvolu-
tion results.

OriginalOriginal

IID (21.56dB)IID (21.56dB)

CCSC (24.64dB)CCSC (24.64dB)

420nm 460nm 500nm 540nm

Figure 11: Multispectral demosaicing results from four
wavelengths of the chart dataset. Note that while the pro-
posed algorithm does contain demosaicing artifacts it is bet-
ter able to reconstruct the high frequency details found in
the background chart while preserving spectral differences.
Find a comparison to additional methods, WB (13.84 dB)
and SD (13.92 dB), in the supplement.

the PSNR of the entire reconstructed image. The results in
Figure 8 (right) show that CCSC outperforms state of the art
techniques, an example of which can be seen in Figure 11.

Light Field View Synthesis: Here we compare CCSC
using the learned light field dictionary with state of the art
light field view synthesis algorithms. The results can be
found in Figure 12 along with sample output. Using the
M operator to mask the unknown views we wish to synthe-
size, we can employ our general reconstruction algorithm to
generate the missing data. Using the dictionary described in
previous sections with 5×5 angular views and testing data
provided by [16], we synthesized the second and fourth an-
gular views in both x and y after removing them from the
data. Although this is not the experimental setup used in
[16], which may account for some degradation in their per-
formance, it demonstrates the versatility of the proposed ap-
proach. One dictionary trained with CCSC can be used to
synthesize any number or orientation of light field views.

6. Discussion
Conclusion We have shown that CSC has the potential
to be applied in many high and low level computer vision
applications. Our distributed CCSC algorithm is both mem-
ory efficient and capable of high quality representations of
N-Dimensional image data. Furthermore, by reducing and
distributing the memory requirements compared to previous
CSC methods, our algorithm is capable of handling much
larger datasets thereby generating more generalized feature

OriginalOriginal CCSC (30.05dB)CCSC (30.05dB) Kalantari (25.21dB)Kalantari (25.21dB)

OriginalOriginal CCSC (28.82dB)CCSC (28.82dB) Kalantari (22.87dB)Kalantari (22.87dB)

Scene Cars Flower 1 Flower 2 Rock Seahorse
CCSC 27.57 30.05 29.89 28.82 31.77
Kalantari [16] 21.41 25.21 24.13 22.87 25.67

Figure 12: Top: Example of synthesized views from the
Flower dataset. From left to right, (a) Ground Truth, (b)
CCSC, (c) Kalantari [16]. The proposed algorithm produces
less noticeable ghosting artifacts due to far away objects and
better reconstructs fine detail in nearby objects such as the
leaf edges and stalk tip. Bottom: Quantitative reconstruc-
tion results in PSNR (dB).

spaces. With our proposed method, we hope to provide a
step towards practical and efficient approaches to solving
high-dimensional sparse coding problems.

Future Work Although we have shown that CCSC is ca-
pable of tackling many computer vision problems, there are
many further possible applications. Because our algorithms
produce high-dimensional per-pixel coefficients, they could
be incorporated into classification, segmentation, or spec-
tral unmixing techniques.

Unlike previous CSC implementations, our distributed
framework is amenable to GPU implementation which of-
ten have extreme memory constraints. Such an implementa-
tion would dramatically increase performance and, for ex-
ample, bring our multispectral demosaicing algorithm run
time in line with other methods.

Acknowledgements: Thanks to Huixuan Tang for discus-
sions, and Katie Black for help with figures. Computer
Tower2 icon by Melvin3 is licensed under CC-BY 3.0. This
work was supported by KAUST baseline funding. Gordon
Wetzstein was supported by a Terman Faculty Fellowship,
the Intel Compressive Sensing Alliance, the National Sci-
ence Foundation (IIS 1553333), and the NSF/Intel Partner-
ship on Visual and Experiential Computing (IIS 1539120).

2https://thenounproject.com/term/computer-tower/544705/
3https://thenounproject.com/nichtcedric/

References
[1] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algo-

rithm for designing overcomplete dictionaries for sparse rep-
resentation. IEEE Trans. Signal Processing, 54(11):4311–
4322, 2006. 1, 5

[2] N. Akhtar, F. Shafait, and A. Mian. Bayesian sparse repre-
sentation for hyperspectral image super resolution. In Proc.
IEEE CVPR, pages 3631–3640, 2015. 1

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1):1–122, 2011. 3, 4

[4] J. Brauers and T. Aach. A color filter array based multispec-
tral camera. In 12. Workshop Farbbildverarbeitung. Ilmenau,
2006. 7

[5] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional
sparse coding. In Proc. CVPR, pages 391–398, 2013. 2, 3,
4, 5

[6] H. Bristow and S. Lucey. Optimization methods for convo-
lutional sparse coding. arXiv:1406.2407, 2014. 2, 3, 4, 5

[7] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse
solutions of systems of equations to sparse modeling of sig-
nals and images. SIAM review, 51(1):34–81, 2009. 1

[8] Y. Chen, W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In Proc.
IEEE CVPR, pages 5261–5269, 2015. 6

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
Proc. IEEE CVPR, pages 248–255, 2009. 1, 6, 7

[10] W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang. Compressive
sensing via nonlocal low-rank regularization. IEEE Trans.
Image Processing, 23(8):3618–3632, 2014. 7

[11] M. Elad and M. Aharon. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Trans. Image Processing, 15(12):3736–3745, 2006. 1

[12] D. H. Foster, K. Amano, S. M. Nascimento, and M. J. Fos-
ter. Frequency of metamerism in natural scenes. JOSA A,
23(10):2359–2372, 2006. 6

[13] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recog-
nition with deep recurrent neural networks. In Proc. IEEE
ASSP, pages 6645–6649. IEEE, 2013. 1

[14] R. B. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-
invariance sparse coding for audio classification. In Proc.
UAI, pages 149–158, 2007. 1

[15] F. Heide, W. Heidrich, and G. Wetzstein. Fast and flexible
convolutional sparse coding. In Proc. IEEE CVPR, pages
5135–5143, 2015. 1, 2, 3, 4, 5, 6, 7

[16] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi.
Learning-based view synthesis for light field cameras. arXiv
preprint arXiv:1609.02974, 2016. 8

[17] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor,
M. Mathieu, and Y. LeCun. Learning convolutional feature
hierachies for visual recognition. In Proc. NIPS, 2010. 1

[18] B. Kong and C. C. Fowlkes. Fast Convolutional Sparse Cod-
ing (FCSC). Technical report, UCI, May 2014. 3

[19] D. Krishnan and R. Fergus. Fast image deconvolution us-
ing hyper-laplacian priors. In Proc. NIPS, pages 1033–1041,
2009. 7

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Proc. NIPS, pages 1097–1105, 2012. 1

[21] X. Lin, Y. Liu, J. Wu, and Q. Dai. Spatial-spectral encoded
compressive hyperspectral imaging. ACM Trans. Graphics,
33(6):233, 2014. 1

[22] Z. Lin, R. Liu, and H. Li. Linearized alternating direction
method with parallel splitting and adaptive penalty for sepa-
rable convex programs in machine learning. Machine Learn-
ing, 99(2):287–325, May 2015. 3

[23] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary
learning for sparse coding. In Proc. ICML, pages 689–696.
ACM, 2009. 1

[24] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar. Com-
pressive light field photography using overcomplete dictio-
naries and optimized projections. ACM Trans. Graph. (SIG-
GRAPH), 32(4):46:1–46:12, 2013. 1

[25] S. Mihoubi, O. Losson, B. Mathon, and L. Macaire. Multi-
spectral demosaicing using intensity-based spectral correla-
tion. In Proc. IEEE IPTA, pages 461–466, 2015. 7

[26] B. A. Olshausen and D. J. Field. Sparse coding with an over-
complete basis set: A strategy employed by v1? Vision Re-
search, 37(23):3311 – 3325, 1997. 1

[27] N. Parikh and S. Boyd. Proximal algorithms. Foundations
and Trends in Optimization, 1(3):123–231, 2013. 4

[28] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013. 1

[29] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1

[30] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-
resolution via sparse representation. IEEE Trans. Image Pro-
cessing, 19(11):2861–2873, 2010. 1

[31] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar. General-
ized assorted pixel camera: postcapture control of resolution,
dynamic range, and spectrum. IEEE Trans. Image Process-
ing, 19(9):2241–2253, 2010. 6, 7

[32] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. De-
convolutional networks. In Proc. CVPR, pages 2528–2535,
2010. 1, 5

[33] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-
volutional networks for mid and high level feature learning.
In Proc. ICCV, pages 2018–2025, 2011. 1

[34] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In Proc. ICCV,
pages 479–486, 2011. 1

