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Sub-wavelength diffractive meta-optics have emerged as a versatile platform to manipulate light fields at will, due to
their ultra-small form factor and flexible multifunctionalities. However, miniaturization and multimodality are typi-
cally compromised by a reduction in imaging performance; thus, meta-optics often yield lower resolution and stronger
aberration compared to traditional refractive optics. Concurrently, computational approaches have become popular
to improve the image quality of traditional cameras and exceed limitations posed by refractive lenses. This in turn often
comes at the expense of higher power and latency, and such systems are typically limited by the availability of certain
refractive optics. Limitations in both fields have thus sparked cross-disciplinary efforts to not only overcome these
roadblocks but also to go beyond and provide synergistic meta-optical–digital solutions that surpass the potential of
the individual components. For instance, an application-specific meta-optical frontend can preprocess the light field
of a scene and focus it onto the sensor with a desired encoding, which can either ease the computational load on the
digital backend or can intentionally alleviate certain meta-optical aberrations. In this review, we introduce the fun-
damentals, summarize the development of meta-optical computational imaging, focus on latest advancements that
redefine the current state of the art, and give a perspective on research directions that leverage the full potential of sub-
wavelength photonic platforms in imaging and sensing applications. The current advancement of meta-optics and
recent investments by foundries and technology partners have the potential to provide synergistic future solutions for
highly efficient, compact, and low-power imaging systems. © 2025 Optica Publishing Group under the terms of the Optica

Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.546382

1. INTRODUCTION

The rapid advent of the Internet of Things, wearable technolo-
gies, and autonomous navigation systems has accelerated the
demand for low-power, low-latency imagers with ultra-compact
form factors [1]. A similar need exists for biomedical instruments,
where reductions in system volume are critical to reach clinically
significant targets inside the body [2,3]. Despite the demand for
compact cameras in next-generation technologies, current solu-
tions still rely on century-old optical designs based on refractive
components. However, these are often insufficient for emerging
applications. While reductions in size, weight, and volume are pos-
sible using Fresnel lenses, multilevel diffractive, or binary optics,
these concepts exhibit significant aberrations and/or generate
multiple diffracted orders, decreasing their overall efficiency. These
limitations have fortified a sentiment in the photonics community
that diffractive optics are essentially nonimaging optics and limited
their utility to niche applications, such as aberration correction
in conjunction with refractive optics [4]. By countering these
shortcomings of diffractive optics, meta-optics have garnered

substantial attention within the research community over recent
years [5]. These are sub-wavelength diffractive components, which
ensure that all diffracted light is concentrated in the zeroth order,
while higher-order diffracted beams are evanescent. Meta-optics
are composed of nano- to micron-scale scatterers, which impart
different phase shifts on the incident wavefront depending on
their geometry and orientation. This enables fabrication with a
single lithography stage, significantly reducing the number of
masks in the fabrication process. The sub-wavelength periodicity
also provides an extremely large space-bandwidth product, and
consequently, an extremely large number of degrees of freedom for
designing optics. Hence, researchers tout the benefit of meta-optics
to achieve multifunctionality, including controlling the polariza-
tion and spectrum of light. Finally, the small volume of meta-optics
and enhanced light–matter interaction via resonant effects offer an
important opportunity to create reconfigurable optics with low-
power and higher-speed operation compared to existing free-space
reconfigurable optics. While the benefits were known for a long
time, and several works existed at least two decades ago [6,7], the
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interest in meta-optics has reemerged in recent years for two pri-
mary reasons: 1) the availability of sophisticated nanofabrication
facilities, including semiconductor foundries, and 2) the ubiquity
of computational resources and electromagnetic simulators to
design meta-optics. Despite this burgeoning interest and numer-
ous demonstrations of their versatility, their performance remains
inferior to state-of-the-art imaging systems that use refractive
lenses, even after a decade of renewed research.

While meta-optic concepts have largely been spearheaded by
optical scientists and engineers, a parallel effort to reduce the size of
imaging systems is happening in the computer science community.
With the ubiquity of image sensors in consumer electronics, along
with the availability of powerful computing resources in almost all
imaging devices, there is a unique opportunity to enhance image
quality via computation [8]. By using computational imaging
[9], researchers have drastically miniaturized complex imaging
systems by replacing sophisticated compound optics with sim-
ple lenses [10,11] and leveraged software to mitigate aberrations
[12–15]. Although this started with simple linear deconvolution
and denoising routines, in recent years, there has been a growth in
learned reconstruction techniques and artificial neural networks
(ANNs) to enhance imaging performance. Unfortunately, com-
putational reconstruction algorithms typically increase power
consumption and latency, which may render them unsuitable for
power-constrained, real-time applications. Additionally, many
tasks in machine vision applications only require specific features
or subregions of a frame for inference [16]; thus, only a section or
a downsampled version of the full image is necessary to support
digital feature extraction [17]. Beyond that, many applications
require information embedded in other light-field parameters
(e.g., polarization, spectrum, and incidence angle), which may
require significant computation or can only be applied within
specific scenarios [18–23].

While a large body of research exists on both meta-optics and
computational imaging [24], these two fields have remained largely
separated, and only very recently, their synergistic effects become
apparent. Largely fueled by the desire to exceed limitations in both
domains, researchers have devised architectures for partition-
ing the imaging process into both the optical and digital realms

(Fig. 1). In this mini review, we first provide a brief tutorial on both
meta-optics and computational imaging. We then discuss the cur-
rent state of meta-optics-based computational imaging. Although
still in its infancy, the combination of meta-optics with compu-
tational imaging has already resulted in imaging performance
surpassing expectations of image quality with diffractive optics.
Finally, we discuss several promising future research directions,
where the advantages of meta-optics and computational imaging
can be further exploited. As such, in our opinion, the exploration
of multifunctionality and hardware-software co-optimization
will constitute two key future research directions in the field of
meta-optics.

2. BASICS OF META-OPTICS AND
COMPUTATIONAL IMAGING

We will start with a brief tutorial on the fundamentals of meta-
optics design and computational imaging. A primer on the
fabrication and characterization of meta-optics is in Supplement 1.
While in recent years, there are several papers highlighting the
difference between meta-optics and traditional diffractive optics
[25,26]; in our opinion, meta-optics is just a special class of
sub-wavelength diffractive optics. In practice, by going to sub-
wavelength features, a meta-optic can implement a higher phase
gradient and thus offers a more diverse platform for various phase
functions compared to their coarser-pitch, super-wavelength
diffractive counterparts. The sub-wavelength periodicity also
allows controlling the phase via lateral geometry of the scatterers,
allowing single-stage lithography to fabricate the meta-optics.
Finally, the small periodicity mitigates higher-order diffraction
compared to traditional diffractive optics and can potentially pro-
vide higher efficiency and less spurious light when multiple optics
are cascaded [27].

A. Computational Design of Meta-Optics

Meta-optics pose a tremendous multiscale electromagnetic design
challenge. Due to their sub-wavelength feature size, capturing
their response accurately requires a full-wave simulation, such

Fig. 1. A synergistic combination of meta-optics (hardware) and digital computational backend (software) can result in imaging performance,
not achievable with pure optics and computational imaging alone. Current research in this field has primarily been focused on high-quality imaging,
multimodal imaging (depth and spectral sensing), and object detection.

https://doi.org/10.6084/m9.figshare.28903679
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Fig. 2. Design paradigm of meta-optical computational imaging systems: via full-wave simulation of the sub-wavelength meta-atoms, we can abstract
out the scatterers as a phase mask. This allows simulating a large aperture meta-optics and calculate the PSF, which is then passed to a computational block.
At different abstraction levels (either scatterers or phase mask or after computational block), we can perform inverse design of the meta-optical computa-
tional imaging system.

as a finite-difference time-domain (FDTD) method or rigorous
coupled-wave analysis (RCWA) [28]. However, their large aperture
size on the order of ∼ 103

−104λ (λ is the optical wavelength)
makes such methods impractical. Thus, ray or wave optical meth-
ods are typically employed. In Fig. 2, we outline typical design
approaches to illustrate common challenges, starting at the left end
with the elemental scatterers (meta-atoms), which impart a com-
plex phase on the impinging wavefront. By arranging scatterers
of various sizes and shapes, a global phase profile is implemented,
which generates a point spread function (PSF) for the transmitted
(reflected) light. The absolute Fourier transform of the PSF pro-
vides the modulation transfer function (MTF), which indicates
that the contrast at certain spatial frequencies is preserved as the
scene is captured with the optical system and sensor. At the other
end of this design framework, we can consider the sensor and a
computational backend, which allow us to leverage computational
postprocessing algorithms to reconstruct a final image or extract
data beyond simple image captures.

In forward design, the phase and amplitude response of the scat-
terer are first calculated and then mapped to a global phase profile
that is given by a closed-form expression or based on intuition. The
most common analytical functions for lenses are those of a hyper-
boloid [29–32], square [33–35], extended depth of focus (EDOF)
[36,37], and vortex profiles [38–40]. Up to a certain degree, the
functionality of the system can be expanded by combining multi-
ple phase masks, enabling spectroscopy [41–43], polarization
imaging [44,45], Moiré lenses [46–48], Alvarez lenses [49,50],
and depth-sensitive imaging [51–53]. A common assumption
made is the locally periodic (phase) approximate (LPA), whereas
coupling between neighboring dissimilar scatterers is considered
negligible [54]. Empirically, this approximation works well for
smoothly varying, low-gradient phase profiles, while for structural
discontinuities and rapid variation, strong wavefront distortion
and undesired scattering may occur [55–58]. This is primarily
because, with a rapidly varying phase, the neighboring scatterers
are more dissimilar, weakening the locally periodic approximation.
Another aspect that should be considered is the sampling rate
for the implementation of the phase profile, which can limit the
implementable phase gradient among neighboring scatterers or

even lead to undesired aliasing effects [59,60]. A caveat of forward
design approaches is their limitation to a single or few wavelengths
[61,62], as phase wrapping induces chromatic aberrations [61,63].
To counteract this, dispersion engineering approaches have been
developed, where an essentially larger variation in the scatterer
geometry yields a larger phase diversity to satisfy the phase condi-
tions for multiple wavelengths simultaneously [64–71]. However,
this approach is fundamentally limited to small Fresnel numbers
(small numerical aperture and/or small aperture) [72].

To expand the landscape of device functionalities, the design
methodology can be reversed, which allows functionalities that
are not intuitively known. We can define a custom figure of merit,
or an intensity distribution/PSF, and then obtain the scatterer
distribution that will generate this response [73]. Somewhere in
between forward and inverse design methods fall approaches where
a global phase profile is derived inversely (e.g., through ray-tracing
or phase-retrieval algorithms, such as the Gerchberg–Saxton
method [74]), and scatterers are mapped to that global phase pro-
file, as often used for meta-optic holography. These approaches are
particularly powerful for single-wavelength applications, where in
a subsequent step, a scatterer library can be readily mapped onto
that specific derived phase profile. However, for broadband or
polychromatic applications, this methodology suffers from the
same limitations as forward design approaches.

The crux of inverse design approaches for broadband and
polychromatic operation is the requirement of a differentiable
relation between the structural parameters of scatterers and the
corresponding phase shift, which accurately incorporates the
scatterer dispersion. There are several other methods, such as
genetic algorithms, which do not require differentiability; how-
ever, differentiability helps with efficient optimization and is also
more amenable to end-to-end design. Due to the sub-wavelength
size, the optical response of the meta-atoms is often governed by
resonances, and an analytical or differentiable relation between
meta-atoms and the phase cannot be readily established. This
problem becomes more severe with complex scatterer shapes,
which are expected to provide better functionality. Recent works
have overcome this problem by implementing proxy functions or
neural networks to make this relationship differentiable [75,76].



Review Vol. 12, No. 6 / June 2025 / Optica 777

Once this function is established, one can consider a full end-to-
end design pipeline, where the computational backend and the
meta-optics are optimized concurrently. From a system level, this
allows to fully leverage and complement strengths and weaknesses
of constituent parts.

B. Computational Imaging

Computational imaging encompasses techniques that exploit
attributes of the imaging system itself to enhance, augment, or
extract additional information from the captured sensor data
[9]. The breadth of approaches has enabled various modalities,
which utilize various optical elements (or no optical element at
all [77–79]), such as common refractive lenses [15,80], diffus-
ers [81], and designed coded phase masks [82]. These optical
systems work in tandem with software that can either manipu-
late/enhance/reconstruct or extract more information. While this
field has developed steadily over the last two to three decades, in
recent years, there has been significant growth with the devel-
opment of improved and ubiquitous smartphone cameras,
better graphics processing units (GPUs), and the advancement
of machine learning (ML)/artificial intelligence (AI). Some exam-
ples include the advanced imaging capabilities/modalities available
in smartphones, which enable on-the-fly high-quality imaging
with ∼10 to 100 megapixel images with low noise, imaging at
extremely low light conditions, depth-sensing capabilities, and
other exciting developments [8,83].

To give readers intuition regarding this approach, we illustrate a
simple strategy to improve image quality using a standard nonblind
deconvolution method, Wiener deconvolution, which considers
a known PSF. As outlined in Equation 1, an image y is formed as
a convolution of a shift-invariant PSF with a ground truth x and
additive sensor noise n:

y = PSF ~ x + n.

One approach to deconvolve the image is given using an
inverse filter in the Fourier domain, where F describes the Fourier
transform,∗denotes the complex conjugate, and SNR is the signal-

to-noise ratio in the measurement: x̃ = F −1

{
F {PSF}∗·F {y }
|F {PSF}|2+ 1

SNR

}
.

While this approach has been successful, the breadth of deconvolu-
tion approaches has increased in recent years, significantly covering
inverse filters [15], iterative approaches [81], neural networks
[75,84,85], and optics with spatially varying PSFs [86].

Smartphone-based imaging and significant developments in
biomedical imaging applications have driven this field to a point
where computational imaging has been successfully used for
super-resolution microscopy [87,88], depth-sensitive microscopy
[89–91], and gigapixel imaging [80,92]. We note that this field is
far too extensive to be covered in this section and refer the reader to
various extensive reviews from recent years [9].

3. CURRENT STATE OF THE ART OF
META-OPTICS-BASED COMPUTATIONAL
IMAGING

The field of meta-optical computational imaging is less than a
decade old, and its full potential is yet to be explored, as we will dis-
cuss later. Current works on meta-optical computational imaging
can be broadly classified into three categories: achromatic, large

field-of-view imaging; multimodal imaging; and meta-optical
encoding to aid computer vision tasks.

A. Achromatic Large Field-of-View Imaging System

The most ubiquitous use of optics is to capture high-quality
images. In fact, almost all current consumer electronic devices
come with a visible camera, which relies on multiple optical
elements to capture high-quality images. A similar need for surveil-
lance, defense, and national security applications necessitates
capturing high-quality images in the infrared range. Almost all
these applications require broadband imaging with a large field of
view and often with large apertures to maximize light collection.
The size of the aperture can range from ∼2 mm (for consumer
electronics) to ∼50 cm (for defense applications). A common
desire is to reduce the size, weight, power, and cost (SWaP-C) of
these systems. Given their thinness and the ability to implement
high-phase gradients, meta-optics can potentially reduce the thick-
ness of imaging systems. Additionally, their weight does not scale
with volume like refractive optics, providing an advantage for large
aperture optics. However, it is imperative that the SWaP-C benefit
does not come at the cost of degraded imaging performance.

Unfortunately, meta-optics suffer from strong chromatic
aberrations. While several works have tried to solve this problem
using dispersion engineering [64–66,69,93–95], it is limited to
small aperture sizes on the order of 10’s of microns for even mod-
erate numerical apertures. This problem can be alleviated using
computational imaging. In fact, computational imaging was first
used in conjunction with EDOF cubic meta-optics for full-color
visible imaging [37]. A traditional hyperboloid metalens focuses
light on a diffraction-limited spot for a single wavelength, but the
focal length f lens of the lens changes with the optical wavelength
λ following λ× f lens being constant. Thus, for a fixed lens-sensor
distance, one wavelength is well focused, while all other wave-
lengths are strongly defocused. With an EDOF meta-optic, the
depth of focus is increased such that even with the associated chro-
matic focal shit, all wavelengths in the target band reach the sensor
in an identical fashion. If the response of the optics is “invertible”
(as governed by their MTF), then we can reconstruct the image
computationally from the captured scene. An “invertible” response
essentially means that the signal-to-noise contrast is large enough
that its reciprocal is finite. As such, any optical response will be
invertible up to a certain spatial frequency, as the signal contrast
will decrease with larger spatial frequencies. Initial works involved
cubic phase masks to achieve an EDOF, while later works explored
the utility of radially symmetric meta-optics, such as log-asphere
phase profiles [36,96]. Limitations, in terms of image quality, ulti-
mately led to the use of inverse design to enable EDOF meta-optics
and full-color imaging [97]. While EDOF meta-optics correct
for chromatic aberrations, their overall image quality remains
relatively poor, with distortions, such as background noise, residual
deconvolution artifacts, and uncorrected aberrations at higher field
angles [37]. The image quality of single meta-optics improved dra-
matically with a co-optimized computational backend, which also
considered larger field angles [75]. Here, a differentiable pipeline
was used to optimize the image quality after considering a compu-
tational backend. This work reported high-quality imaging with
a 0.5 mm aperture f /2 meta-optics [Figs. 3(a) and 3(b)] [75]. A
key innovation was a differentiable mapping between meta-atoms
and their phase response. While initial works relied on a poly-
nomial mapping, recently deep learning-based approaches have
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Fig. 3. Full-color imaging exploiting co-designed meta-optics and computational backend: (a) design framework to co-optimize the meta-optic and
reconstruction algorithm via a differentiable pipeline. Reproduced with permission from Springer Nature [75]; (b) images captured using a single 500 µm,
f/2 meta-optics. Reproduced with permission from Springer Nature [75]; (c) same images captured using a six-element compound optic [75]. (d) Similar
design method is used to create 1 cm aperture meta-optics, which can be directly integrated with an image sensor (without relying on a relay optics).
Reproduced with permission from Springer Nature [100]. (e) The large aperture allows capturing video rate full-color images using a single end-to-end
designed meta-optics with comparable image quality of a refractive optics. Reproduced with permission from Springer Nature [100].

enabled modeling complex scatterer shapes with resonances, which
provide larger phase diversity [98,99]. For image reconstruction,
several methods, including Wiener deconvolution and neural
networks, were employed. For neural network-based approaches,
a feature propagator was used to ensure high-quality reconstruc-
tion while maintaining generalizability. The feature propagator
network was based roughly on a U-Net structure, the early layers
of which extracted features at multiple resolution scales. These
features were then passed through a filtering step akin to Wiener
deconvolution, but rather than acting on the image, the features
themselves were filtered, hence the name “Feature Propagator” as
the blurred and noisy features were propagated through a filtering
operation. The final stages of the network then mirrored the early
layers, mapping the filtered features back into a high-resolution
image that is deconvolved and denoised. Compared to traditional
U-Nets, this architecture is more general, leveraging aspects of
more traditional filtering approaches like Wiener deconvolution,
while maintaining many of the denoising advantages of a neural
network approach, wherein the introduction of nonlinear opera-
tions helps to mitigate noise. Recently, a similar end-to-end design
framework has been extended to report full-color imaging in the
visible using a 1 cm aperture f /2 meta-optic with a ∼ 30◦ field
of view [Figs. 3(c) and 3(d)] [100]. An extensive characterization
of the meta-optic revealed that the end-to-end design preserves
high spatial frequency information by trading off the low spatial
frequency contrast. Such a trade-off maintains a similar MTF over
the full wavelength range of interest, and the reduced contrast can

be retrieved computationally. Such a trade-off is similar to what is
seen in diffraction-free beam propagation, where the optical beam
maintains its shape over an extended depth but at the cost of being
more spatially delocalized compared to a diffraction-limited spot.
While Wiener deconvolution-based approaches already preserve
color information, diffusion neural networks produce image qual-
ity comparable to that of a state-of-the-art smartphone camera
[100]. Of course, the caveat is that the diffusion network’s latency
precludes real-time processing at video rates. While end-to-end
design demonstrated the efficacy of a co-designed meta-optic with
a computational backend, several recent works reported full-color
imaging using a hyperboloid metalens (i.e., an analytical phase
profile and the lens were not optimized for broadband operation)
and a deep learning backend [84,101]. While most broadband
meta-optics works primarily focused on the visible wavelength
range, recently broadband imaging has been reported in the
long-wave infrared regime (8−12 µm) using an all-silicon single
meta-optic [98]. Here, only the optics is optimized to increase the
volume under the MTF curve, and the computational backend was
separately designed.

We emphasize that while computational meta-optics enhance
the performance, the image quality remains inferior to that of a
compound refractive lens. However, current smartphone lenses
consist of ∼8−10 refractive optics, and it is expected that a single
surface may not be able to achieve the functionalities of all these. A
more promising route would be to use meta-optics as a corrector
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Fig. 4. Multimodal imaging using meta-optics: (a) computational spectroscopy using meta-optics exhibiting wavelength-dependent PSF. Reprinted
with permission from Ref. [42]. Copyright 2023 American Chemical Society; (b) using two meta-optics (one with depth-invariant PSF and one with
depth-varying PSF) placed on a single surface and computational reconstruction, researchers demonstrated depth sensing. Reprinted with permission from
Ref. [51]. Copyright 2020 American Chemical Society; (c) by multiplexing different meta-optics exploiting polarization depth and polarization imaging
has been reported. Reprinted with permission from Ref. [52] under a Creative Commons Attribution 4.0 International License [113]; (d) by using two
meta-optics (depending on polarization) with different focal lengths, researchers demonstrated depth sensing. Reproduced with permission from Ref.
[112]. Copyright 2019 National Academy of Science.

[102] and to combine these with refractive lenses to achieve broad-
band performance and alleviate aberrations. To that end, a 6 mm
hybrid refractive/meta-optic was reported for broadband imaging
[103]. Nevertheless, achieving all performance criteria, in terms of
field of view, achromatic operation, aberration-free imaging, image
size, and pixels per degree, remains elusive thus far. We believe that
new innovations and engineering approaches will be required to
solve this problem, and as such, more future work will be needed.

B. Multimodal Imaging System

Among other imaging modalities, meta-optics have been used
to measure various light-field parameters, such as polarization,
spectra, and phase. Several of these works, such as polarimetric
imaging with meta-optics [44], however, did not involve a com-
putational approach, and we therefore did not further discuss
them in this review. Exploiting the chromaticity of meta-optics,
researchers have also reported spectroscopy and hyperspectral
imaging [41,104,105]. Notably, with a computational imaging
approach, the complexity of the optics can be reduced [106].
For instance, researchers recently demonstrated dual-band spec-
troscopy, exploiting an engineered, wavelength-dependent PSF
[90,91] [Fig. 4(a)]. Rather than having a separate refractive lens
or relay in conjunction with a phase mask or spatial light modu-
lator (SLM) that imparts a wavefront coding term, by including
a power term in the meta-optic itself, the chromatic focal shift
induces a misfocus that in turn rotates two lobes of the PSF. While
a phase mask and a separate focusing optic may exhibit similar
behavior (this has been used extensively for depth sensing [90,91,
107–110]), the effect is more pronounced in a meta-optic owing to
its severe chromatic aberration, which can be exploited to improve
the sensitivity of a spectrometer design. For an unknown spectrum,
a captured image will have the information encoded as a weighted

average of different PSFs for each wavelength. By precalibrating
the PSFs, the unknown spectrum can then be computationally
extracted using techniques, such as Tikhonov regularization [42]
or learning-based methods. By using SiN on silicon meta-optics
and computational reconstruction, researchers demonstrated
spectroscopy with a spectral resolution of ∼3 nm at two different
bands centered at 1550 and 1310 nm.

Beyond spectroscopy, meta-optics have also been used for depth
sensing. One of the first works in this domain used a meta-optic
with a depth-dependent, rotating PSF [51]. In this demonstration,
two metasurfaces were used [Fig. 4(b)], one producing a depth-
variant PSF, whereas the second meta-optic was depth invariant,
enabling reconstruction of both spatial and depth information in
an image. A set of corrections to compensate for off-axis aberra-
tions, such as field curvature, was included such that a fractional
ranging error close to 1% was maintained over the full field of
view. Subsequently, a recent work combined two apertures into a
single one, exploiting polarization-dependent scatterers [111]. In
another work, a similar polarized scatterer approach was used to
multiplex two lenses with different focal lengths in one aperture
[Fig. 4(d)], where images at two different depths are captured
with a different defocus, enabling computational depth measure-
ment. The combination of polarized multiplexing and a DH-PSF
was further used to demonstrate a compact monocular camera
equipped with a single-layer metalens that captures 4D images,
including 2D all-in-focus intensity, depth, and polarization of
a target scene [Fig. 4(c)]. The metalens is optimized to have a
conjugate pair of polarization-decoupled rotating single-helix
PSFs that are strongly dependent on the depth of the target object.
Combined with an image retrieval algorithm, the camera can
simultaneously perform high-accuracy depth sensing and high-
fidelity polarization imaging over an extended depth of field [52].
The chromatic aberration inherent in a hyperboloid metalens was
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also employed for depth sensing, exploiting focusing at different
depths for different wavelengths. By collecting images over a large
spectral range, one can thus obtain sufficient information to recon-
struct depth. This concept, coupled with the transport of intensity
equation, has been used to quantitatively estimate phase in an
endoscope [114].

Meta-optic arrays have also been used for light-field imaging
applications [115]. Holsteen and co-authors utilized an inter-
leaved design to perform single-particle tracking [116]. In that
work, laterally separated views of the same scene enable spatial
localization of a fluorescent bead. Separately, a 60× 60 array of
dispersion-engineered meta-optic has also been used to demon-
strate depth imaging [115]. While most current works essentially
replicate refractive lenslet arrays (and thus suffer from the typical
low resolution associated with light-field imaging), metalenses can
potentially enable lenslets with overlapping apertures, providing
new opportunities.

Computational imaging has been used for varifocal imaging
systems, where conventional tuning mechanisms entail moving
parts or complex control circuitry. In one example, a cubic meta-
surface was utilized in combination with a deconvolution routine
for depth-invariant imaging exceeding 1 cm at a high numerical
aperture [117]. The cubic metasurface provides a depth-invariant
PSF, which allows imaging at different object and image distances
in a finite conjugate system. Due to the sub-wavelength periodicity,
such varifocal imaging can be performed while maintaining a large
numerical aperture.

C. Meta-Optical Encoder

In the photonics community, there has been significant interest
in optical neural networks in the past decade, while one of the
most important and challenging problems in computer vision is
detecting and identifying objects within a scene. Although these
systems have shown promising results [118–120], they have been
severely limited from a system’s perspective in terms of practicality
for low-power, low-latency processing of data from real-world
scenes under ambient illumination.

An alternative approach to most photonic neural networks
relies on using a meta-optic as a preprocessing component, an
optical frontend, that performs computation before converting
intensity signals into the electronic domain for subsequent process-
ing [120,121]. This approach by contrast has the potential to
provide a true photonic advantage for optical neural networks
from a system’s perspective when considering latency and power.
Current efforts in designing meta-optical frontends can be broadly
classified in two categories: arbitrary vector–matrix multiplication
using multiple optics and PSF engineering to perform convolution
using a single optic. In both cases, the performance benefit at a
system level remains questionable, as benchmarking with existing
GPU-based inference shows little benefit in terms of latency and
power to implement only the first layer [121]. One possible avenue
to improve this is to implement multiple linear layers with optics
by taking the information back and forth between the optics (for
linear operation) and the digital domain (for nonlinear opera-
tion). However, the large latency and power associated with signal
transduction (in display and image sensors) render such a hybrid
approach sub-optimal. Transferring a large number of linear oper-
ations to the frontend by implementing them in optics and then
performing digital operations can provide a benefit, though. We

emphasize that pure linear operations can also provide some classi-
fication in simple systems, e.g., the handwritten dataset in MNIST
is linearly separable, and researchers have demonstrated classi-
fication with only linear operations using multilayer diffractive
optics [122].

To understand the efficacy of a meta-optical frontend,
a recent work performed an end-to-end design of a hybrid
meta-optics/digital neural network [123]. Their experimental
framework quantified the energy and latency of the network by the
input dimension being passed to the digital backend [Fig. 5(a)].
An empirical finding from this work is that an optical frontend can
be beneficial for computer vision when the latency and power are
both highly constrained. However, such an advantage is achieved
when the overall accuracy is lower than what can be obtained using
the best-trained digital ANN. By using an end-to-end designed
meta-optical frontend, researchers recently demonstrated high
classification accuracy with the CIFAR-10 dataset [124]. While a
purely digital version needs 57M parameters (with a classification
accuracy of ∼72.64%), a hybrid optical–digital version requires
only 2K parameters while maintaining a similar classification accu-
racy (∼73.80%). Here, the end-to-end design exploits the spatially
varying PSF of the meta-optics, which is considered a limitation of
meta-optics for imaging.

While end-to-end design can potentially provide the best
possible performance and an optimal load distribution between
an optical frontend and a digital backend, such a design requires
significant computational resources to model the meta-optic. A
simpler solution would be to train the network using a traditional
digital pipeline and then implement specific digital operations
using optics. By identifying that under incoherent illumination,
the formed image is a convolution between the object and the
incoherent PSF of the optics; we can pose the convolution as a
PSF engineering problem. However, an incoherent PSF is always
positive, but a convolution in an ANN generally has both positive
and negative values in the associated kernels. We can mitigate this
problem by separating the convolution kernel into positive and
negative parts and then digitally subtracting the separate convo-
lutions. Such a dual-pupil synthesis approach had been employed
in the past [125], but the noise from the two separate apertures
is additive when the convolutions are subtracted, complicating
already existing challenges with the overall signal-to-noise ratio.
Fortunately, by exploiting a digital backend more robust to noise,
such a dual-pupil synthesis approach can work for meta-optical
encoding. However, translating a single convolution layer from
the digital to the optical domain does not provide enough benefit
in terms of power and latency. To circumvent that, researchers
reported a knowledge distillation-inspired training algorithm,
which allows effectively removing some of the nonlinear layers
to create a single linear convolution operation that effectively
implements multiple linear layers of an ANN [126]. Using such a
method, researchers recently reported a compressed meta-optical
frontend that allowed at least four orders of magnitude reduction
in the operations while suffering a classification accuracy reduction
of only 3% for the MNIST dataset [Figs. 5(b) and 5(c)]. While this
work implements only one color, exploiting the chromaticity of the
meta-optics, one can implement three different kernels for three
different meta-optics to further increase the information process-
ing capability of the meta-optics [Fig. 5(d)] [129]. Another way
to perform convolution is to employ two meta-optics [Fig. 5(e)]
[120,131]: one of them acts as a lenslet array (implemented using
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Fig. 5. Meta-optical encoder: (a) by end-to-end designing a single meta-optic and computational backend, a regime for photonic advantage has been
identified. While photonic frontend can provide higher classification accuracy as we pass less data to the computational backend (which lowers the latency
and power), the overall classification accuracy in this advantageous regime turned out to be lower. Reprinted with permission from Ref. [123] under a
Creative Commons Attribution 4.0 International License ([113]). (b) By knowledge distillation, multiple convolutional layers can be collapsed into one
convolutional layer, which can be implemented using meta-optics. The meta-optics is designed (via holographic technique) to have a PSF that matches
the spatial shape of the desired kernel. Reproduced with permission from Ref. [127] under a Creative Commons Attribution 4.0 International License
([113]). (c) Multiple convolution operations can be performed in parallel using spatially separated meta-optics. The use of only single metasurface drasti-
cally reduces the complexity of the optical frontend. Reprinted with permission from Ref. [128]. (d) Exploiting inherent chromaticity of the meta-optics,
different convolution operations can be realized for different colors using a single meta-optics. Such capability can implement multichannel convolution
and perfectly suited for real-world imaging. Reproduced from Ref. [130]. (e) Instead of a single meta-optics, the convolution operation can be realized using
two meta-optics: one creating multiple copies of the image and one implementing the matrix. Reproduced with permission from Ref. [131].

multiplexed meta-atoms, such as polarization-selective meta-
atoms), which creates multiple copies of an image. The second
meta-optics has the necessary matrix element. When the second
meta-optic is placed at the image plane of the first meta-optic, one
can perform the necessary vector–matrix multiplication. While
such an approach can potentially provide more accurate convo-
lutional operations, the use of two meta-optics may increase the
alignment and packaging complexity.

4. CHALLENGES AND OPPORTUNITIES: FUTURE
RESEARCH DIRECTIONS

A. Programmable Meta-Optics

Reconfigurable meta-optics can offer complex functionalities
unachievable with static optics, overcoming some of the trade-offs
in multimodal imaging. For example, instead of achieving both a
large field of view and full-color imaging in a single static aperture,
an achromatic lens could scan across the whole field of view. Such
reconfiguration could also help to collect different parameterized
images at different times and yield high-resolution multimodal
images. Even for encoding, a reconfigurable frontend can increase
the information processing density. Especially, more complex
ANN architectures, such as vision transformers [132], will require
a dynamic frontend.

Given the high potential and need, various works on tun-
able meta-optics have already demonstrated their large potential
[133,134]. High-speed free-space modulation has been reported
using free-carrier effects in degenerately doped semiconduc-
tors [135,136] and organic electro-optic polymers [137]. Many of
these works touted the possibility of creating a large space-temporal

bandwidth product (product of the number of pixels and refresh
rate of the phase plate signifying the number of optical beams being
tuned in unit time) over state-of-the-art SLMs based on liquid
crystal or micro-electro-mechanical systems (MEMS). While
LC and MEMS systems are indeed slow, the current limitation of
space-temporal bandwidth product (∼ 109) primarily comes from
electronic control, and as such it is unlikely to improve without sig-
nificant progress in co-packaged electronics and photonics [138].
We emphasize that, while large-scale electronic control is routine
in display applications, to achieve ∼MHz−GHz modulation
per pixel will require fundamental innovations in co-packaging
electronic integrated circuits and photonics. This problem is exac-
erbated by the need to modulate a large number of pixels, posing a
serious problem for routing both electronic and photonic signals
[137]. Additionally, feeding in a large amount of data, as is impera-
tive for the large space-temporal bandwidth product SLM, will be
extremely power hungry. We believe that instead of a large modu-
lation speed, a large effective change in index is more desirable to
tune the meta-optical frontend in most emerging applications.
Especially for imaging or encoding applications under ambient
light, the speed of operations is often limited to∼kHz. However, in
each iteration, a completely new phase mask is needed, and simple
global tuning of meta-optics is not sufficient. To that end, in our
opinion, the conventional techniques of liquid crystal and MEMS
are still very powerful, and combining them with meta-optics
can provide the added advantage of energy efficiency and higher
speed due to the small feature size. For example, in current liquid
crystal-based SLMs, the speed is limited due to the large volume of
each pixel. We need a long propagation length to ensure the full 2π
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Fig. 6. Reconfigurable meta-optics: (a) by integrating liquid crystal with meta-optics, researchers demonstrated independent control of 96 meta-atoms.
Reprinted with permission from Ref. [143]. Copyright 2023 American Chemical Society; (b) independently controlled 1D SLM using nanomechanical
meta-optics. Reprinted with permission from Ref. [144]. Copyright 2021 American Chemical Society; (c) by integrating wide bandgap phase-change mate-
rial Sb2Se3, a rudimentary 1D SLM with 17 elements have been reported. Reprinted with permission from Ref. [152]. Copyright 2024 American Chemical
Society. All these structures exploit resonances, and the operating optical bandwidth is low.

phase shift. The lateral size of the pixels is then limited by the thick-
ness to minimize cross talk between pixels. By exploiting the local
resonances in meta-atoms, the required thickness can be signifi-
cantly reduced, which in turn helps reduce the lateral dimension
of the liquid crystal pixels. This increases the spatial-bandwidth
product (due to sub-wavelength periodicity) and the energy to
control each pixel. Similarly, the ultra-thin and lightweight nature
of the meta-optics is key to enabling mechanical tuning with
low energy. In fact, several groups have already reported tunable
meta-optics using liquid crystal [139] and MEMS [140–142].
Specifically, in recent work, researchers demonstrated independent
tuning of 96 meta-atoms integrated with liquid crystal [Fig. 6(a)]
[143]. For any practical applications, however, we need a much
larger number of control signals, and a tight collaboration between
electronics and optics will be needed. For MEMS, most of the
reported works have so far been limited to globally tunable varifo-
cal lenses and rudimentary independent control of 1D meta-optics
[Fig. 6(b)] [144]. While a 2D MEMS-based SLM is very similar
to grating light valve technology [145], the scaling of each element
to the sub-wavelength scale can provide higher energy efficiency,
albeit this will significantly increase the complexity of routing
and control circuits. Another promising direction for program-
mable meta-optics is to employ chalcogenide-based phase-change
materials (PCMs), which exhibit a large nonvolatile change in
refractive index (1n ∼ 0.7−1) under phase transition [146–148].
PCMs have also been integrated with meta-optics for free-space
modulation of light [149–151]. One intriguing aspect of PCMs is
their nonvolatile tuning, which has in-built memory in the recon-
figuration process and thus can significantly reduce the control
complexity for independent tuning of a large number of pixels

in a spatial light modulator. Recently, a primitive 1D SLM with
PCM Sb2S3 has been demonstrated with independent control of
17 meta-atoms [Fig. 6(c)] [152]. Here, a guided mode and bound
state in continuum resonance were used to enhance the effective
phase shift from Sb2S3, and a quasi-continuously tunable notch
filter has been reported. As such, scaling the number of pixels
and controlling a 2D array of meta-atoms remain an outstanding
challenge, solving which can dramatically enhance meta-optical
computational imaging systems. An additional challenge for a
PCM-based SLM is the reconfiguration mechanism which is
current driven, unlike MEMS or liquid crystals (which are field
driven), and requires high power consumption during switching.

B. Synthetic Aperture Imaging

Conventional lens-based imaging systems face stringent trade-offs
between light throughput, resolution, depth of field, and size
(volume/weight) primarily because all these variables are funda-
mentally directly related to the diameter of the lens. Synthetic
aperture imaging provides a way to break away from these con-
straints by using a collection of sub-apertures. In the optical
regime, these methods have not substantially impacted achievable
performance thus far, but meta-optics offer a path to exploit this
approach further.

The first examples of such synthetic aperture imaging using
meta-surfaces have been in lower-frequency radar systems [153],
utilizing dynamic metasurface antennas to generate tailored
electromagnetic waveforms, achieving stripmap and spotlight
synthetic aperture radar imaging. The use of metasurface antennas
eliminates the need for mechanical gimbals and phase shifters,
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simplifying the hardware architecture of a synthetic aperture
system.

More recently, these techniques have been adapted to higher-
frequency visible, infrared, and thermal imaging scenarios. Xu
et al . [154] demonstrated a polarization-independent all-dielectric
multifoci metalens by spatially integrating single-foci optical
sparse-aperture sub-metalenses. Such a design allows the system
to attain multiple focal points while retaining spatial resolution
and other imaging characteristics comparable to a single-foci
system [Figs. 7(a)–7(c)]. Zhao et al . [155] demonstrated that a
synthetic aperture metalens composed of multiple metalenses
with a relatively small aperture size can achieve an imaging reso-
lution comparable to a conventional lens with an equivalent large
aperture [Fig. 7(d)], validated via outdoor imaging using natural
sunlight for target illumination.

These emerging approaches are only scratching the surface, and
the potential for positive disruption based on these emerging syn-
thetic aperture metalenses is quite encouraging. We would finally
be able to break free from some of Lohman’s scaling laws [156] for
optical systems, and that would be transformative. Additionally,
the synthetic aperture concept can potentially allow creating
extremely large aperture optics, applicable for long-range imaging
and laser-based space communications. Importantly, in such large
systems, meta-optics can provide a significant weight advantage
compared to bulky refractive optics.

C. Fourier Ptychography

Optical imaging systems are conventionally separated into inco-
herent and coherent systems. Incoherent systems form physical
images using lenses and assume that field points are uncorrelated.
Coherent systems use holography or phase retrieval and assume
that all field points can interfere. Fourier ptychography (FP)
may be viewed as an intermediary solution between these two

extremes that combines focal processing to simplify and regular-
ize the computational problem, but that also enables coherent
wavefront reconstruction. FP has much less stringent coher-
ence requirements than holography, enabling interferometric
imaging with incoherent light-emitting diodes [157,158]. FP
achieves coded irradiance oversampling by shifting the passband
of imaging systems due to changes in the illumination pattern or
imager perspective. A common approach is to shift the position
of the capture lens in increments of A/4, where A is the aperture
diameter. Unfortunately, this approach requires scanning with
conventional optics, which makes snapshot imaging impossible.
Meta-optics uniquely enable phase-diverse measurement from
lenses with overlapping apertures, which enables snapshot Fourier
ptychography. Such overlapping meta-lenslet arrays are possible
due to the sub-wavelength periodicity of meta-optics, and as such
very difficult, if not impossible, to realize using refractive or tradi-
tional diffractive optics. While the overlapping region is expected
to suffer from lower transmission efficiency, the computational
backend can be modified to overcome this issue, as demonstrated
by others [116]. For coherent imaging applications, meta-optics
are well suited given their chromatic sensitivity. The design and
utility of meta-optics for coherent imaging are still preliminary, but
early results suggest that meta-optics may enable a new category
of imaging systems. For example, it is routine to make meta-optics
operating at f/1, and using an array, it is possible to create systems
operating with f/# well below 1, which enables high-resolution
thin imagers. The optimal coding strategy and appropriate array
design to enable such a thin camera will be a fascinating area of
research.

D. High-Dynamic-Range Imaging

High-dynamic-range (HDR) imaging is essential for a wide range
of applications in uncontrolled environments, including autono-
mous driving, robotics, and mobile phone cameras. Currently, the

Fig. 7. (a) Schematic illustration of a multifocal sparse aperture metalens [154]. (b) Schematic of the all-dielectric MSA metalens with two focal points,
f1 = 0.5 mm and f2 = 1.0 mm, respectively [154]. (c) Experimentally captured image of the USAF test target using the multifocal sparse aperture metalens
at λ= 650 nm. (a)–(c) are reprinted with permission from Ref. [154] under Creative Commons Attribution license. (d) (left) Examples of three different
sparse aperture array configurations, (middle) their corresponding two-dimensional MTFs, and (right) 1D plot lines of the MTFs (corresponding to dashed
white lines in middle). Reprinted with permission from Ref. [155]. Copyright 2021 Optica Publishing Group.
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dynamic range of a camera is limited by the sensor well capacity,
fundamentally limiting conventional CMOS image sensors to a
dynamic range of around ∼ 60−70 dB. Conventional sensors are
unable to simultaneously capture a bright and a dark region outside
of the sensor dynamic range in a single image, resulting in saturated
bright regions or low SNR in dark regions. A large body of work
explores different computational approaches to tackle these chal-
lenges. Traditionally, multiple low-dynamic-range (LDR) images
are captured with different exposures to be combined into an HDR
image [159,160]. Deep learning networks [161–163] have been
used to generate plausible HDR content from a single LDR image
based on imaging priors but are prone to hallucinating content and
fail to recover saturated details faithfully.

Several works [164–166] proposed to distribute the otherwise
saturated information into unsaturated regions, aiming primarily
to recover small, saturated regions (3+ exposure value (EV)) in
night-time photography. Applying reconfigurable meta-optics
in this application could enable further improvements as well.
Additionally, arrays of meta-optics, as recently explored for wide
field-of-view broadband imaging [85], promise a new direction
for HDR imaging. An immediate extension of existing methods
[165] could employ an array of optical encodings tailored to several
luminance bands spanning the target dynamic range. Further, co-
designing these array elements along with temporal observations
might offer fundamentally new insights. Here, the array elements
could be learned to collaboratively cover the broadband spectrum
and dynamic range, combining the capabilities of existing meta-
surfaces for capturing narrow spectral regions along with optical
encodings that map saturated regions to unsaturated nearby spec-
tral or spatial regions. Relying on temporal observations further
increases the design space of this direction: in the form of a short or
long burst, or exposure-bracketed acquisition along with the opti-
cal array encoding, which potentially could also be reconfigured
per capture with reconfigurable metasurfaces.

E. Co-Optimized Meta-Optics with Sensors

Almost all existing computational cameras that rely on optical
encodings have to solve a challenging inverse reconstruction prob-
lem for image recovery—they have to recover scene information
that is encoded into the sensor measurements. Combining dual-
pixel sensors with optical encodings that split the aperture into
two halves could potentially allow us to simplify this problem
by capturing two images simultaneously: one which applies an
application-specific modulation to the incident light via a coded
optical element to produce a coded image capture, and one that
applies no modulation to produce a conventional image capture
[167,168]. With such an uncoded conventional image as privi-
leged information alongside the optically coded image in hand, we
could investigate image reconstruction methods that are condi-
tioned on the conventional image, making it possible to eliminate
artifacts and compute costs that existing methods struggle with.
Moreover, co-designing pixel circuitry on the sensor together with
optics is an exciting direction for research. Co-designed spectrally
sensitive dual-gain sensors with reconfigurable temporally switch-
able metasurfaces may offer insights into an exciting hybrid design
space. Specifically, designing the spectral sensitivity of individual
pixel sites jointly with metasurface optics, which are inherently
diffractive, may allow for novel ways of spatially multiplexed
measurements and hence improved spectral resolution [169] and
dynamic range without giving up substantial spatial resolution.

Together with temporal multiplexing, which switchable meta-
surfaces could enable, hybrid cameras allow for multispectral,
full-dynamic-range cameras without the loss of any resolution.

While traditional sensors can be employed for such appli-
cations, a more intriguing direction will be to co-design pixel
circuitry with the optics. Co-designed spectrally sensitive dual-gain
sensors with reconfigurable temporally switchable metasurfaces
may offer insights into an exciting hybrid design space. Recently,
researchers reported human vision-inspired sensors to perform
dual functionality: a cognition-oriented pathway for accurate
cognition and an action-oriented pathway for rapid response
[170]. Integrating such sensors with multifunctional meta-optics
for foveated imaging [171] could provide true human-like vision.
Integration of meta-optics with event cameras [172] can also
provide ultra-low-power sensing. For example, several works exist
on meta-optics-based edge detection [173,174]. However, from
a system level, such edge detection provides little benefit in terms
of power consumption, as we need to read out all the pixels in a
conventional sensor. An event camera, on the other hand, only
reads out changes in pixel intensities, substantially reducing energy
consumption. As such, end-to-end design of the meta-optics,
sensors, and computational backend will enable new sensing and
imaging modalities and constitute a fertile research direction.

5. DISCUSSION

Current research on meta-optical computational imaging is
primarily focused on full-color imaging, multimodal imaging
(spectral and depth), and optical encoding for computer vision.
While the field has progressed and the performance of the systems
has improved dramatically, almost all demonstrations still lack
the performance (in terms of resolution or accuracy) that can be
achieved using state-of-the-art systems. While meta-optics can
reduce size and weight, it remains unclear whether the perform-
ance degradation is acceptable. Hence, along with improving the
performance, it is imperative to find applications where the pros of
size reduction outweigh the cons of performance degradation. Two
such applications could be endoscopy/angioscopy and also space-
based imaging. While the first one requires an ultra-small aperture,
the second one requires an extremely large aperture. As the field
matures and advances in both computation and nanofabrication,
a number of startups have begun commercializing meta-optics.
Given the degrees of freedom offered by meta-optics, we anticipate
this field to continue to grow and expect computational imag-
ing to offer a pathway for mitigating some of the key challenges
encountered by existing meta-optics.

Funding. Defense Advanced Research Projects Agency (W31P4Q21C0043);
National Science Foundation (NSF-2127235).

Disclosures. Arka Majumdar is the co-founder of the startup Tunoptix,
which is commercializing related technology.

Data availability. Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the authors upon reason-
able request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES
1. T. Ryhänen, M. A. Uusitalo, O. Ikkala, et al., Nanotechnologies for

FutureMobile Devices (Cambridge University, 2010).

https://doi.org/10.6084/m9.figshare.28903679


Review Vol. 12, No. 6 / June 2025 / Optica 785

2. L. E. Savastano, Q. Zhou, A. Smith, et al., “Multimodal laser-based
angioscopy for structural, chemical and biological imaging of
atherosclerosis,” Nat. Biomed. Eng. 1, 0023 (2017).

3. L. E. Savastano and E. J. Seibel, “Scanning fiber angioscopy: a mul-
timodal intravascular imaging platform for carotid atherosclerosis,”
Neurosurgery 64, 188–198 (2017).

4. T. Stone andN. George, “Hybrid diffractive-refractive lenses and achro-
mats,” Appl. Opt. 27, 2960–2971 (1988).

5. M. Kamali Seyedeh, E. Arbabi, A. Arbabi, et al., “A review of dielec-
tric optical metasurfaces for wavefront control,” Nanophotonics 7,
1041–1068 (2018).

6. P. Lalanne, S. Astilean, P. Chavel, et al., “Design and fabrication of
blazed binary diffractive elements with sampling periods smaller than
the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999).

7. S. Astilean, P. Lalanne, P. Chavel, et al., “High-efficiency subwave-
length diffractive element patterned in a high-refractive-index material
for 633 nm,” Opt. Lett. 23, 552–554 (1998).

8. M. Delbracio, D. Kelly, M. S. Brown, et al., “Mobile computational pho-
tography: a tour,” Annu. Rev. Vision Sci. 7, 571–604 (2021).

9. J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,”
Adv. Opt. Photonics 10, 409–483 (2018).

10. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-
front coding,” Appl. Opt. 34, 1859–1866 (1995).

11. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,”
Appl. Opt. 41, 6080–6092 (2002).

12. P. R. Gill and D. G. Stork, “Lensless ultra-miniature imagers using
odd-symmetry spiral phase gratings,” in Imaging and Applied Optics,
OSA Technical Digest (online) (Optical Society of America, 2013),
paper CW4C.3.

13. P. Gill, Enabling a Computer to Do the Job of a Lens (SPIE, 2013).
14. E. L. Erickson, M. D. Kellam, P. R. Gill, et al., “Miniature lensless compu-

tational infrared imager,” Electron. Imaging 28, 1–4 (2016).
15. F. Heide,M. Rouf, M. B. Hullin, et al., “High-quality computational imag-

ing through simple lenses,” ACM Trans. Graph. 32, 1–14 (2013).
16. M. A. Neifeld and P. Shankar, “Feature-specific imaging,” Appl. Opt. 42,

3379–3389 (2003).
17. C. Xia, J. Zhao, H. Cui, et al., “DNNTune: automatic benchmarking DNN

models for mobile-cloud computing,” ACM Trans. Archit. Code Optim.
16, 49 (2019).

18. L. Guolan and F. Baowei, “Medical hyperspectral imaging: a review,” J.
Biomed. Opt. 19, 010901 (2014).

19. D.-W. Sun, H. Pu, and J. Yu, “Applications of hyperspectral imaging
technology in the food industry,” Nat. Rev. Electr. Eng. 1, 251–263
(2024).

20. S. Zhou, T. Zhu, K. Shi, et al., “Review of light field technologies,” Vis.
Comput. Ind. Biomed. Art 4, 29 (2021).

21. R. Guo, Q. Yang, A. S. Chang, et al., “EventLFM: event camera inte-
grated Fourier light field microscopy for ultrafast 3D imaging,” Light
Sci. Appl. 13, 144 (2024).

22. L. Hu, S. Hu, W. Gong, et al., “Learning-based Shack-Hartmann wave-
front sensor for high-order aberration detection,” Opt. Express 27,
33504–33517 (2019).

23. D. Wang, J. Song, J. Gao, et al., “Computational polarization imaging in
vivo through surgical smoke using refined polarization difference,” Adv.
Sci. 11, 2309998 (2024).

24. J. N. Mait, R. A. Athale, J. van der Gracht, et al., “Exploiting meta-
material characteristics for computational imaging,” in OSA Optical
Design and Fabrication 2021 (Flat Optics, Freeform, IODC, OFT), OSA
Technical Digest (Optica Publishing Group, 2021), paper FW5B.5.

25. J. Engelberg and U. Levy, “The advantages of metalenses over diffrac-
tive lenses,” Nat. Commun. 11, 1991 (2020).

26. S. Banerji, M. Meem, A.Majumder, et al., “Imaging with flat optics: met-
alenses or diffractive lenses?” Optica 6, 805–810 (2019).

27. A. Wirth-Singh, A. M. Jimenez, M. Choi, et al., “Meta-optics triplet for
zoom imaging at mid-wave infrared,” Appl. Phys. Lett. 125, 211705
(2024).

28. V. Liu and S. Fan, “S4: a free electromagnetic solver for layered periodic
structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).

29. F. Aieta, P. Genevet, M. A. Kats, et al., “Aberration-free ultrathin flat
lenses and axicons at telecom wavelengths based on plasmonic
metasurfaces,” Nano Lett. 12, 4932–4936 (2012).

30. M. Khorasaninejad, W. T. Chen, R. C. Devlin, et al., “Metalenses at
visible wavelengths: diffraction-limited focusing and subwavelength
resolution imaging,” Science 352, 1190 (2016).

31. A. Arbabi, Y. Horie, A. J. Ball, et al., “Subwavelength-thick lenses with
high numerical apertures and large efficiency based on high-contrast
transmitarrays,” Nat. Commun. 6, 7069 (2015).

32. A. Zhan, S. Colburn, R. Trivedi, et al., “Low-contrast dielectric metasur-
face optics,” ACS Photonics 3, 209–214 (2016).

33. M. Pu, X. Li, Y. Guo, et al., “Nanoapertures with ordered rotations: sym-
metry transformation and wide-angle flat lensing,” Opt. Express 25,
31471–31477 (2017).

34. A. Martins, K. Li, J. Li, et al., “Onmetalenses with arbitrarily wide field of
view,” ACS Photonics 7, 2073–2079 (2020).

35. F. Yang, M. Shalaginov, H.-I. Lin, et al., “Wide field-of-view metalens: a
tutorial,” Adv. Photonics 5, 033001 (2023).

36. L. Huang, J. Whitehead, S. Colburn, et al., “Design and analysis of
extended depth of focus metalenses for achromatic computational
imaging,” Photonics Res. 8, 1613–1623 (2020).

37. S. Colburn, A. Zhan, and A. Majumdar, “Metasurface optics for
full-color computational imaging,” Sci. Adv. 4, eaar2114 (2018).

38. N. Yu, P. Genevet, M. A. Kats, et al., “Light propagation with phase
discontinuities: generalized laws of reflection and refraction,” Science
334, 333–337 (2011).

39. Y. Yang, W. Wang, P. Moitra, et al., “Dielectric meta-reflectarray
for broadband linear polarization conversion and optical vortex
generation,” Nano Lett. 14, 1394–1399 (2014).

40. H. Ahmed, H. Kim, Y. Zhang, et al., “Optical metasurfaces for gener-
ating and manipulating optical vortex beams,” Nanophotonics 11,
941–956 (2022).

41. M. Faraji-Dana, E. Arbabi, A. Arbabi, et al., “Compact folded metasur-
face spectrometer,” Nat. Commun. 9, 4196 (2018).

42. J. E. Fröch, S. Colburn, A. Zhan, et al., “Dual band computational
infrared spectroscopy via large aperture meta-optics,” ACS Photonics
10, 986–992 (2022).

43. A. Y. Zhu, W.-T. Chen, M. Khorasaninejad, et al., “Ultra-compact vis-
ible chiral spectrometer with meta-lenses,” APL Photonics 2, 036103
(2017).

44. N. A. Rubin, G. D’Aversa, P. Chevalier, et al., “Matrix Fourier optics
enables a compact full-Stokes polarization camera,” Science 365,
eaax1839 (2019).

45. Z. Yang, Z. Wang, Y. Wang, et al., “Generalized Hartmann-Shack array
of dielectric metalens sub-arrays for polarimetric beam profiling,” Nat.
Commun. 9, 4607 (2018).

46. C. Ogawa, S. Nakamura, T. Aso, et al., “Rotational varifocal moiré
metalens made of single-crystal silicon meta-atoms for visible
wavelengths,” Nanophotonics 11, 1941–1948 (2022).

47. Z. Liu, Z. Du, B. Hu, et al., “Wide-angle Moiré metalens with continuous
zooming,” J. Opt. Soc. Am. B 36, 2810–2816 (2019).

48. Y. Luo, C. H. Chu, S. Vyas, et al., “Varifocal metalens for optical section-
ing fluorescencemicroscopy,” Nano Lett. 21, 5133–5142 (2021).

49. A. Zhan, S. Colburn, C. M. Dodson, et al., “Metasurface freeform
nanophotonics,” Sci. Rep. 7, 1673 (2017).

50. S. Colburn, A. Zhan, and A. Majumdar, “Varifocal zoom imaging with
large area focal length adjustable metalenses,” Optica 5, 825–831
(2018).

51. S. Colburn and A. Majumdar, “Metasurface generation of paired accel-
erating and rotating optical beams for passive ranging and scene
reconstruction,” ACS Photonics 7, 1529–1536 (2020).

52. Z. Shen, F. Zhao, C. Jin, et al., “Monocular metasurface camera for pas-
sive single-shot 4D imaging,” Nat. Commun. 14, 1035 (2023).

53. D. K. Sharma, K. H. Lai, A. V. Baranikov, et al., “Stereo imaging with
a hemispherical field-of-view metalens camera,” ACS Photonics 11,
2016–2021 (2024).

54. R. Pestourie, C. Pérez-Arancibia, Z. Lin, et al., “Inverse design of large-
areametasurfaces,” Opt. Express 26, 33732–33747 (2018).

55. C. Pérez-Arancibia, R. Pestourie, and S. G. Johnson, “Sideways adi-
abaticity: beyond ray optics for slowly varying metasurfaces,” Opt.
Express 26, 30202–30230 (2018).

56. Z. Lin and S. G. Johnson, “Overlapping domains for topology opti-
mization of large-area metasurfaces,” Opt. Express 27, 32445–32453
(2019).

57. M. Zhelyeznyakov, J. Fröch, A. Wirth-Singh, et al., “Large area opti-
mization of meta-lens via data-free machine learning,” Commun. Eng.
2, 60 (2023).

58. V. Egede Johansen, U. M. Gür, J. Martínez-Llinás, et al., “Nanoscale
precision brings experimental metalens efficiencies on par with
theoretical promises,” Commun. Phys. 7, 123 (2024).

https://doi.org/10.1038/s41551-016-0023
https://doi.org/10.1093/neuros/nyx322
https://doi.org/10.1364/AO.27.002960
https://doi.org/10.1515/nanoph-2017-0129
https://doi.org/10.1364/JOSAA.16.001143
https://doi.org/10.1364/OL.23.000552
https://doi.org/10.1146/annurev-vision-093019-115521
https://doi.org/10.1364/AOP.10.000409
https://doi.org/10.1364/AO.34.001859
https://doi.org/10.1364/AO.41.006080
https://doi.org/10.2352/ISSN.2470-1173.2016.12.IMSE-269
https://doi.org/10.1145/2516971.251697
https://doi.org/10.1364/AO.42.003379
https://doi.org/10.1145/3368305
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1117/1.JBO.19.1.010901
https://doi.org/10.1038/s44287-024-00033-w
https://doi.org/10.1186/s42492-021-00096-8
https://doi.org/10.1186/s42492-021-00096-8
https://doi.org/10.1186/s42492-021-00096-8
https://doi.org/10.1038/s41377-024-01502-5
https://doi.org/10.1038/s41377-024-01502-5
https://doi.org/10.1038/s41377-024-01502-5
https://doi.org/10.1364/OE.27.033504
https://doi.org/10.1002/advs.202309998
https://doi.org/10.1002/advs.202309998
https://doi.org/10.1002/advs.202309998
https://doi.org/10.1038/s41467-020-15972-9
https://doi.org/10.1364/OPTICA.6.000805
https://doi.org/10.1063/5.0227368
https://doi.org/10.1016/j.cpc.2012.04.026
https://doi.org/10.1021/nl302516v
https://doi.org/10.1126/science.aaf6644
https://doi.org/10.1038/ncomms8069
https://doi.org/10.1021/acsphotonics.5b00660
https://doi.org/10.1364/OE.25.031471
https://doi.org/10.1021/acsphotonics.0c00479
https://doi.org/10.1117/1.AP.5.3.033001
https://doi.org/10.1364/PRJ.396839
https://doi.org/10.1126/sciadv.aar2114
https://doi.org/10.1126/science.1210713
https://doi.org/10.1021/nl4044482
https://doi.org/10.1515/nanoph-2021-0746
https://doi.org/10.1038/s41467-018-06495-5
https://doi.org/10.1021/acsphotonics.2c01017
https://doi.org/10.1063/1.4974259
https://doi.org/10.1126/science.aax1839
https://doi.org/10.1038/s41467-018-07056-6
https://doi.org/10.1038/s41467-018-07056-6
https://doi.org/10.1038/s41467-018-07056-6
https://doi.org/10.1515/nanoph-2021-0690
https://doi.org/10.1364/JOSAB.36.002810
https://doi.org/10.1021/acs.nanolett.1c01114
https://doi.org/10.1038/s41598-017-01908-9
https://doi.org/10.1364/OPTICA.5.000825
https://doi.org/10.1021/acsphotonics.0c00354
https://doi.org/10.1038/s41467-023-36812-6
https://doi.org/10.1021/acsphotonics.4c00087
https://doi.org/10.1364/OE.26.033732
https://doi.org/10.1364/OE.26.030202
https://doi.org/10.1364/OE.26.030202
https://doi.org/10.1364/OE.26.030202
https://doi.org/10.1364/OE.27.032445
https://doi.org/10.1038/s44172-023-00107-x
https://doi.org/10.1038/s42005-024-01598-6


Review Vol. 12, No. 6 / June 2025 / Optica 786

59. J. Engelberg and U. Levy, “Achromatic flat lens performance limits,”
Optica 8, 834–845 (2021).

60. A.Wirth-Singh, J. E. Fröch, F. Yang, et al., “Wide field of view large aper-
ture meta-doublet eyepiece,” arXiv, (2024).

61. E. Arbabi, A. Arbabi, S. M. Kamali, et al., “Multiwavelength
polarization-insensitive lenses based on dielectric metasurfaces
with meta-molecules,” Optica 3, 628–633 (2016).

62. Z. Shi, M. Khorasaninejad, Y.-W. Huang, et al., “Single-layer meta-
surface with controllable multiwavelength functions,” Nano Lett. 18,
2420–2427 (2018).

63. L. Huang, S. Colburn, A. Zhan, et al., “Full-color metaoptical imaging in
visible light,” Adv. Photonics Res. 3, 2100265 (2022).

64. W. T. Chen, A. Y. Zhu, V. Sanjeev, et al., “A broadband achromatic met-
alens for focusing and imaging in the visible,” Nat. Nanotechnol. 13,
220–226 (2018).

65. S. Shrestha, A. C. Overvig, M. Lu, et al., “Broadband achromatic dielec-
tric metalenses,” Light Sci. Appl. 7, 85 (2018).

66. S. Wang, P. C. Wu, V.-C. Su, et al., “A broadband achromatic metalens
in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).

67. W. T. Chen, A. Y. Zhu, J. Sisler, et al., “A broadband achro-
matic polarization-insensitive metalens consisting of anisotropic
nanostructures,” Nat. Commun. 10, 355 (2019).

68. F. Balli, M. Sultan, S. K. Lami, et al., “A hybrid achromatic metalens,”
Nat. Commun. 11, 3892 (2020).

69. A. Ndao, L. Hsu, J. Ha, et al., “Octave bandwidth photonics
fishnet-achromatic-metalens,” Nat. Commun. 11, 3205 (2020).

70. Y. Hu, Y. Jiang, Y. Zhang, et al., “Asymptotic dispersion engineering for
ultra-broadbandmeta-optics,” Nat. Commun. 14, 6649 (2023).

71. W. T. Chen, A. Y. Zhu, and F. Capasso, “Flat optics with dispersion-
engineeredmetasurfaces,” Nat. Rev. Mater. 5, 604–620 (2020).

72. F. Presutti and F. Monticone, “Focusing on bandwidth: achromatic met-
alens limits,” Optica 7, 624–631 (2020).

73. Z. Li, R. Pestourie, Z. Lin, et al., “Empowering metasurfaces with
inverse design: principles and applications,” ACS Photonics 9,
2178–2192 (2022).

74. R. W. Gerchberg, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

75. E. Tseng, S. Colburn, J. Whitehead, et al., “Neural nano-optics for high-
quality thin lens imaging,” Nat. Commun. 12, 6493 (2021).

76. Z. Li, R. Pestourie, J.-S. Park, et al., “Inverse design enables large-
scale high-performance meta-optics reshaping virtual reality,” Nat.
Commun. 13, 2409 (2022).

77. A. Sinha, J. Lee, S. Li, et al., “Lensless computational imaging through
deep learning,” Optica 4, 1117–1125 (2017).

78. G. Kim and R. Menon, “Computational imaging enables a “see-
through” lens-less camera,” Opt. Express 26, 22826–22836
(2018).

79. A. Ozcan and E. McLeod, “Lensless imaging and sensing,” Annu. Rev.
Biomed. Eng. 18, 77–102 (2016).

80. O. S. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computa-
tional imaging,” in IEEE International Conference on Computational
Photography (ICCP) (2011), pp. 1–8.

81. N. Antipa, G. Kuo, R. Heckel, et al., “DiffuserCam: lensless
single-exposure 3D imaging,” Optica 5, 1–9 (2018).

82. M. S. Asif, A. Ayremlou, A. Sankaranarayanan, et al., “FlatCam: thin,
lensless cameras using coded aperture and computation,” IEEE Trans.
Comput. Imaging 3, 384–397 (2017).

83. J. Suo, W. Zhang, J. Gong, et al., “Computational imaging and artifi-
cial intelligence: the next revolution of mobile vision,” Proc. IEEE 111,
1607–1639 (2023).

84. Y. Dong, B. Zheng, H. Li, et al., “Achromatic singlemetalens imaging via
deep neural network,” ACS Photonics 11, 1645–1656 (2024).

85. P. Chakravarthula, J. Sun, X. Li, et al., “Thin on-sensor nanophotonics
array cameras,” ACM Trans. Graph. 42, 249 (2023).

86. J. Yeo, D. Loh, R. Paniagua-Dominguez, et al., “EigenCWD: a spatially-
varying deconvolution algorithm for single metalens imaging,” arXiv,
(2025).

87. S. Dong, R. Horstmeyer, R. Shiradkar, et al., “Aperture-scanning
Fourier ptychography for 3D refocusing and super-resolution
macroscopic imaging,” Opt. Express 22, 13586–13599 (2014).

88. R. Heintzmann and M. G. L. Gustafsson, “Subdiffraction resolution in
continuous samples,” Nat. Photonics 3, 362–364 (2009).

89. K. Yanny, N. Antipa, W. Liberti, et al., “Miniscope3D: optimized single-
shot miniature 3D fluorescence microscopy,” Light Sci. Appl. 9, 171
(2020).

90. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted
rotation,” Opt. Lett. 31, 181–183 (2006).

91. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, et al., “Three-
dimensional, single-molecule fluorescence imaging beyond the
diffraction limit by using a double-helix point spread function,” Proc.
Natl. Acad. Sci. USA 106, 2995–2999 (2009).

92. D. J. Brady, M. E. Gehm, R. A. Stack, et al., “Multiscale gigapixel pho-
tography,” Nature 486, 386–389 (2012).

93. E. Arbabi, A. Arbabi, S. M. Kamali, et al., “Controlling the sign of chro-
matic dispersion in diffractive optics with dielectric metasurfaces,”
Optica 4, 625–632 (2017).

94. M. Khorasaninejad, Z. Shi, A. Y. Zhu, et al., “Achromatic metalens over
60 nm bandwidth in the visible and metalens with reverse chromatic
dispersion,” Nano Lett. 17, 1819–1824 (2017).

95. S. Wang, P. C. Wu, V.-C. Su, et al., “Broadband achromatic optical
metasurface devices,” Nat. Commun. 8, 187 (2017).

96. W. Chi and N. George, “Electronic imaging using a logarithmic
asphere,” Opt. Lett. 26, 875–877 (2001).

97. E. Bayati, R. Pestourie, S. Colburn, et al., “Inverse designed extended
depth of focus meta-optics for broadband imaging in the visible,”
Nanophotonics 11, 2531–2540 (2022).

98. L. Huang, Z. Han, A. Wirth-Singh, et al., “Broadband thermal imaging
usingmeta-optics,” Nat. Commun. 15, 1662 (2024).

99. F. Yang, S. An, M. Y. Shalaginov, et al., “Design of broadband and wide-
field-of-viewmetalenses,” Opt. Lett. 46, 5735–5738 (2021).

100. J. E. Fröch, P. K. Chakravarthula, J. Sun, et al., “Beating spectral band-
width limits for large aperture broadband nano-optics,” Nat Commun
16, 3025 (2025).

101. R. Maman, E. Mualem, N. Mazurski, et al., “Achromatic imaging sys-
tems with flat lenses enabled by deep learning,” ACS Photonics 10,
4494–4500 (2023).

102. W. T. Chen, A. Y. Zhu, J. Sisler, et al., “Broadband achromatic
metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).

103. S. Pinilla, J. E. Fröch, S. R. Miri Rostami, et al., “Miniature color camera
via flat hybrid meta-optics,” Sci. Adv. 9, eadg7297 (2023).

104. M. Faraji-Dana, E. Arbabi, H. Kwon, et al., “Hyperspectral imager with
foldedmetasurface optics,” ACS Photonics 6, 2161–2167 (2019).

105. A. McClung, S. Samudrala, M. Torfeh, et al., “Snapshot spectral imag-
ing with parallel metasystems,” Sci. Adv. 6, eabc7646 (2020).

106. H. Arguello, S. Pinilla, Y. Peng, et al., “Shift-variant color-coded diffrac-
tive spectral imaging system,” Optica 8, 1424–1434 (2021).

107. S. R. P. Pavani and R. Piestun, “Three dimensional tracking of fluores-
cent microparticles using a photonics-limited double-helix response
system,” Opt. Express 16, 22048–22057 (2008).

108. M. Badieirostami, M. D. Lew, M. A. Thompson, et al., “Three-
dimensional localization precision of the double-helix point spread
function versus astigmatism and biplane,” Appl. Phys. Lett. 97, 161103
(2010).

109. M. A. Thompson, M. D. Lew, M. Badieirostami, et al., “Localizing and
tracking single nanoscale emitters in three dimensions with high spa-
tiotemporal resolution using a double-helix point spread function,”
Nano Lett. 10, 211–218 (2010).

110. S. Quirin and R. Piestun, “Depth estimation and image recovery using
broadband, incoherent illumination with engineered point spread func-
tions [Invited],” Appl. Opt. 52, A367–A376 (2013).

111. F. Yang, H.-I. Lin, P. Chen, et al., “Monocular depth sensing usingmetal-
ens,” Nanophotonics 12, 2987–2996 (2023).

112. Q. Guo, Z. Shi, Y.-W. Huang, et al., “Compact single-shot metalens
depth sensors inspired by eyes of jumping spiders,” Proc. Natl. Acad.
Sci. USA 116, 22959–22965 (2019).

113. https://creativecommons.org/licenses/by/4.0/.
114. A. Shanker, J. Froech, S.Mukherjee, et al., “Quantitative phase imaging

with ametalens,” arXiv, (2024).
115. R. J. Lin, V.-C. Su, S. Wang, et al., “Achromatic metalens array for full-

colour light-field imaging,” Nat. Nanotechnol. 14, 227–231 (2019).
116. A. L. Holsteen, D. Lin, I. Kauvar, et al., “A light-field metasurface for

high-resolution single-particle tracking,” Nano Lett. 19, 2267–2271
(2019).

117. J. E. M. Whitehead, A. Zhan, S. Colburn, et al., “Fast extended depth of
focus meta-optics for varifocal functionality,” Photonics Res. 10, 828–
833 (2022).

https://doi.org/10.1364/OPTICA.422843
https://doi.org/10.48550/arXiv.2406.14725
https://doi.org/10.1364/OPTICA.3.000628
https://doi.org/10.1021/acs.nanolett.7b05458
https://doi.org/10.1002/adpr.202100265
https://doi.org/10.1038/s41565-017-0034-6
https://doi.org/10.1038/s41377-018-0078-x
https://doi.org/10.1038/s41565-017-0052-4
https://doi.org/10.1038/s41467-019-08305-y
https://doi.org/10.1038/s41467-020-17646-y
https://doi.org/10.1038/s41467-020-17015-9
https://doi.org/10.1038/s41467-023-42268-5
https://doi.org/10.1038/s41578-020-0203-3
https://doi.org/10.1364/OPTICA.389404
https://doi.org/10.1021/acsphotonics.1c01850
https://doi.org/10.1038/s41467-021-26443-0
https://doi.org/10.1038/s41467-022-29973-3
https://doi.org/10.1038/s41467-022-29973-3
https://doi.org/10.1038/s41467-022-29973-3
https://doi.org/10.1364/OPTICA.4.001117
https://doi.org/10.1364/OE.26.022826
https://doi.org/10.1146/annurev-bioeng-092515-010849
https://doi.org/10.1146/annurev-bioeng-092515-010849
https://doi.org/10.1146/annurev-bioeng-092515-010849
https://doi.org/10.1364/OPTICA.5.000001
https://doi.org/10.1109/TCI.2016.2593662
https://doi.org/10.1109/TCI.2016.2593662
https://doi.org/10.1109/TCI.2016.2593662
https://doi.org/10.1109/JPROC.2023.3338272
https://doi.org/10.1021/acsphotonics.3c01870
https://doi.org/10.1145/3618398
https://doi.org/10.48550/arXiv.2502.03790
https://doi.org/10.1364/OE.22.013586
https://doi.org/10.1038/nphoton.2009.102
https://doi.org/10.1038/s41377-020-00403-7
https://doi.org/10.1364/OL.31.000181
https://doi.org/10.1073/pnas.0900245106
https://doi.org/10.1073/pnas.0900245106
https://doi.org/10.1073/pnas.0900245106
https://doi.org/10.1038/nature11150
https://doi.org/10.1364/OPTICA.4.000625
https://doi.org/10.1021/acs.nanolett.6b05137
https://doi.org/10.1038/s41467-017-00166-7
https://doi.org/10.1364/OL.26.000875
https://doi.org/10.1515/nanoph-2021-0431
https://doi.org/10.1038/s41467-024-45904-w
https://doi.org/10.1364/OL.439393
https://doi.org/10.1038/s41467-025-58208-4
https://doi.org/10.1021/acsphotonics.3c01349
https://doi.org/10.1021/acs.nanolett.8b03567
https://doi.org/10.1126/sciadv.adg7297
https://doi.org/10.1021/acsphotonics.9b00744
https://doi.org/10.1126/sciadv.abc7646
https://doi.org/10.1364/OPTICA.439142
https://doi.org/10.1364/OE.16.022048
https://doi.org/10.1063/1.3499652
https://doi.org/10.1021/nl903295p
https://doi.org/10.1364/AO.52.00A367
https://doi.org/10.1515/nanoph-2023-0088
https://doi.org/10.1073/pnas.1912154116
https://doi.org/10.1073/pnas.1912154116
https://doi.org/10.1073/pnas.1912154116
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2309.11348
https://doi.org/10.1038/s41565-018-0347-0
https://doi.org/10.1021/acs.nanolett.8b04673
https://doi.org/10.1364/PRJ.434681


Review Vol. 12, No. 6 / June 2025 / Optica 787

118. C.-C. Tsai, X. Huang, Z. Wu, et al., “Metasurface smart glass for object
recognition,” arXiv, (2022).

119. T. Wang, S. Y. Ma, L. G. Wright, et al., “An optical neural network using
less than 1 photonics per multiplication,” Nat. Commun. 13, 123
(2022).

120. H. Zheng, Q. Liu, Y. Zhou, et al., “Meta-optic accelerators for object
classifiers,” Sci. Adv. 8, eabo6410 (2022).

121. S. Colburn, Y. Chu, E. Shilzerman, et al., “Optical frontend for a convo-
lutional neural network,” Appl. Opt. 58, 3179–3186 (2019).

122. X. Lin, Y. Rivenson, N. T. Yardimci, et al., “All-optical machine learn-
ing using diffractive deep neural networks,” Science 361, 1004–1008
(2018).

123. L. Huang, Q. A. A. Tanguy, J. E. Fröch, et al., “Photonics advantage of
optical encoders,” Nanophotonics 13, 1191–1196 (2023).

124. K. Wei, X. Li, J. Froech, et al., “Spatially varying nanophotonics neural
networks,” arXiv, (2023).

125. J. N.Mait andW. T. Rhodes, “Pupil function design algorithm for bipolar
incoherent spatial filtering,” Appl. Opt. 28, 1474–1488 (1989).

126. J. Xiang, S. Colburn, A. Majumdar, et al., “Knowledge distillation cir-
cumvents nonlinearity for optical convolutional neural networks,” Appl.
Opt. 61, 2173–2183 (2022).

127. A. Wirth-Singh, J. Xiang, M. Choi, et al., “Compressed meta-optical
encoder for image classification,” arXiv, (2024).

128. K. Wei, X. Li, J. Froech, et al., “Spatially varying nanophotonics neural
networks,” Sci. Adv. 10, eadp0391 (2024).

129. C. M. V. Burgos, T. Yang, Y. Zhu, et al., “Design framework for meta-
surface optics-based convolutional neural networks,” Appl. Opt. 60,
4356–4365 (2021).

130. M. Choi, J. Xiang, A. Wirth-Singh, et al., “Transferable polychromatic
optical encoder for neural networks,” arXiv, (2024).

131. H. Zheng, Q. Liu, I. I. Kravchenko, et al., “Multichannel meta-imagers
for accelerating machine vision,” Nat. Nanotechnol. 19, 471–478
(2024).

132. A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16
words: transformers for image recognition at scale,” arXiv, (2020).

133. A. H. Dorrah and F. Capasso, “Tunable structured light with flat optics,”
Science 376, eabi6860 (2022).

134. Q. He, S. Sun, and L. Zhou, “Tunable/reconfigurable metasurfaces:
physics and applications,” Research 2019, 1849272 (2019).

135. J. Park, B. G. Jeong, S. I. Kim, et al., “All-solid-state spatial light
modulator with independent phase and amplitude control for three-
dimensional LiDAR applications,” Nat. Nanotechnol. 16, 69–76
(2021).

136. G. K. Shirmanesh, R. Sokhoyan, P. C. Wu, et al., “Electro-optically tun-
able multifunctional metasurfaces,” ACSNano 14, 6912–6920 (2020).

137. I.-C. Benea-Chelmus, M. L. Meretska, D. L. Elder, et al., “Electro-
optic spatial light modulator from an engineered organic layer,” Nat.
Commun. 12, 5928 (2021).

138. R. Chen, V. Tara, A.-W. Singh, et al., “A hybrid solution for spatial light
modulators with a large space-bandwidth product: opinion,” Opt.
Mater. Express 13, 2416–2421 (2023).

139. S.-Q. Li, X. Xu, R. Maruthiyodan Veetil, et al., “Phase-only transmis-
sive spatial light modulator based on tunable dielectric metasurface,”
Science 364, 1087–1090 (2019).

140. E. Arbabi, A. Arbabi, S. M. Kamali, et al., “MEMS-tunable dielectric
metasurface lens,” Nat. Commun. 9, 812 (2018).

141. Z. Han, S. Colburn, A. Majumdar, et al., “MEMS-actuated metasurface
Alvarez lens,” Microsyst. Nanoeng. 6, 79 (2020).

142. H. Kwon, T. Zheng, and A. Faraon, “Nano-electromechanical spa-
tial light modulator enabled by asymmetric resonant dielectric
metasurfaces,” Nat. Commun. 13, 5811 (2022).

143. P. Moitra, X. Xu, R. Maruthiyodan Veetil, et al., “Electrically tunable
reflective metasurfaces with continuous and full-phase modulation for
high-efficiency wavefront control at visible frequencies,” ACS Nano 17,
16952–16959 (2023).

144. H. Kwon, T. Zheng, and A. Faraon, “Nano-electromechanical tuning of
dual-mode resonant dielectric metasurfaces for dynamic amplitude
and phasemodulation,” Nano Lett. 21, 2817–2823 (2021).

145. D. Bloom, “Grating light valve: revolutionizing display technology,”
Proc. SPIE 3013, 165–171 (1997).

146. S. Abdollahramezani, O. Hemmatyar, H. Taghinejad, et al., “Tunable
nanophotonics enabled by chalcogenide phase-change materials,”
Nanophotonics 9, 1189–1241 (2020).

147. Z. Fang, R. Chen, V. Tara, et al., “Non-volatile phase-change materials
for programmable photonics,” Sci. Bull. 68, 783–786 (2023).

148. Y. Zhang, C. Ríos, M. Y. Shalaginov, et al., “Myths and truths about
optical phase change materials: a perspective,” Appl. Phys. Lett. 118,
210501 (2021).

149. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, et al., “Electrically
driven reprogrammable phase-change metasurface reaching 80% effi-
ciency,” Nat. Commun. 13, 1696 (2022).

150. M. Y. Shalaginov, S. An, Y. Zhang, et al., “Reconfigurable all-dielectric
metalens with diffraction-limited performance,” Nat. Commun. 12,
1225 (2021).

151. Y. Wang, P. Landreman, D. Schoen, et al., “Electrical tuning of phase-
change antennas and metasurfaces,” Nat. Nanotechnol. 16, 667–672
(2021).

152. Z. Fang, R. Chen, J. E. Fröch, et al., “Nonvolatile phase-only transmis-
sive spatial light modulator with electrical addressability of individual
pixels,” ACSNano 18, 11245–11256 (2024).

153. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, et al., “Synthetic aper-
ture radar with dynamic metasurface antennas: a conceptual develop-
ment,” J. Opt. Soc. Am. A 34, A22–A36 (2017).

154. B. Xu, W. Wei, P. Tang, et al., “A multi-foci sparse-aperture metalens,”
Adv. Sci. 11, 2309648 (2024).

155. F. Zhao, Z. Shen, D. Wang, et al., “Synthetic aperture metalens,”
Photonics Res. 9, 2388–2397 (2021).

156. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–
4998 (1989).

157. G. Zheng, C. Shen, S. Jiang, et al., “Concept, implementations and
applications of Fourier ptychography,” Nat. Rev. Phys. 3, 207–223
(2021).

158. P. C. Konda, L. Loetgering, K. C. Zhou, et al., “Fourier ptychography:
current applications and future promises,” Opt. Express 28, 9603–9630
(2020).

159. P. E. Debevec and J. Malik, “Recovering high dynamic range radi-
ance maps from photographs,” in Seminal Graphics Papers: Pushing
the Boundaries (Association for Computing Machinery, 2023), Vol. 2,
p. 67.

160. E. Reinhard, G. Ward, S. Pattanaik, et al., High Dynamic Range
Imaging: Acquisition, Display, and Image-Based Lighting, The
Morgan Kaufmann Series in Computer Graphics (Morgan Kaufmann,
2005).

161. S. K. Chen, H. L. Yen, Y. L. Liu, et al., “Learning continuous expo-
sure value representations for single-image HDR reconstruction,” in
IEEE/CVF International Conference on Computer Vision (ICCV) (2023),
pp. 12944–12954.

162. Z. Khan, M. Khanna, and S. Raman, “FHDR: HDR image reconstruc-
tion from a single LDR image using feedback network,” in IEEE Global
Conference on Signal and Information Processing (GlobalSIP) (2019),
pp. 1–5.

163. M. S. Santos, T. I. Ren, and N. K. Kalantari, “Single image HDR recon-
struction using a CNNwithmasked features and perceptual loss,” ACM
Trans. Graph. 39, 80 (2020).

164. M. Rouf, R. Mantiuk, W. Heidrich, et al., “Glare encoding of high
dynamic range images,” in Conference on Computer Vision and
Pattern Recognition (2011), pp. 289–296.

165. Q. Sun, E. Tseng, Q. Fu, et al., “Learning rank-1 diffractive optics
for single-shot high dynamic range imaging,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020), pp. 1386–1396.

166. C. A. Metzler, H. Ikoma, Y. Peng, et al., “Deep optics for single-shot
high-dynamic-range imaging,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2020), pp. 1372–1382.

167. Z. Shi, I. Chugunov, M. Bijelic, et al., “Split-aperture 2-in-1
computational cameras,” ACM Trans. Graph. 43, 141 (2024).

168. M. Aggarwal and N. Ahuja, “Split aperture imaging for high dynamic
range,” Int. J. Comput. Vis. 58, 7–17 (2004).

169. Z. Shi, X. Dun, H. Wei, et al., “Learned multi-aperture color-coded
optics for snapshot hyperspectral imaging,” ACM Trans. Graph. 43,
208 (2024).

170. Z. Yang, T. Wang, Y. Lin, et al., “A vision chip with complementary path-
ways for open-world sensing,” Nature 629, 1027–1033 (2024).

171. V. Saragadam, Z. Han, V. Boominathan, et al., “Foveated thermal com-
putational imaging prototype using all-silicon meta-optics,” Optica 11,
18–25 (2024).

https://doi.org/10.48550/arXiv.2210.08369
https://doi.org/10.1038/s41467-021-27774-8
https://doi.org/10.1126/sciadv.abo6410
https://doi.org/10.1364/AO.58.003179
https://doi.org/10.1126/science.aat8084
https://doi.org/10.1515/nanoph-2023-0579
https://doi.org/10.48550/arXiv.2308.03407
https://doi.org/10.1364/AO.28.001474
https://doi.org/10.1364/AO.435738
https://doi.org/10.1364/AO.435738
https://doi.org/10.1364/AO.435738
https://doi.org/10.48550/arXiv.2406.06534
https://doi.org/10.1126/sciadv.adp0391
https://doi.org/10.1364/AO.421844
https://doi.org/10.48550/arXiv.2411.02697
https://doi.org/10.1038/s41565-023-01557-2
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1126/science.abi6860
https://doi.org/10.34133/2019/184927
https://doi.org/10.1038/s41565-020-00787-y
https://doi.org/10.1021/acsnano.0c01269
https://doi.org/10.1038/s41467-021-26035-y
https://doi.org/10.1038/s41467-021-26035-y
https://doi.org/10.1038/s41467-021-26035-y
https://doi.org/10.1364/OME.500078
https://doi.org/10.1364/OME.500078
https://doi.org/10.1364/OME.500078
https://doi.org/10.1126/science.aaw6747
https://doi.org/10.1038/s41467-018-03155-6
https://doi.org/10.1038/s41378-020-00190-6
https://doi.org/10.1038/s41467-022-33449-9
https://doi.org/10.1021/acsnano.3c04071
https://doi.org/10.1021/acs.nanolett.0c04888
https://doi.org/10.1117/12.273868
https://doi.org/10.1515/nanoph-2020-0039
https://doi.org/10.1016/j.scib.2023.03.034
https://doi.org/10.1063/5.0054114
https://doi.org/10.1038/s41467-022-29374-6
https://doi.org/10.1038/s41467-021-21440-9
https://doi.org/10.1038/s41565-021-00882-8
https://doi.org/10.1021/acsnano.4c00340
https://doi.org/10.1364/JOSAA.34.000A22
https://doi.org/10.1002/advs.202309648
https://doi.org/10.1364/PRJ.440185
https://doi.org/10.1364/AO.28.004996
https://doi.org/10.1038/s42254-021-00280-y
https://doi.org/10.1364/OE.386168
https://doi.org/10.1145/3386569.3392403
https://doi.org/10.1145/3386569.3392403
https://doi.org/10.1145/3386569.3392403
https://doi.org/10.1145/3658225
https://doi.org/10.1023/B:VISI.0000016144.56397.1a
https://doi.org/10.1145/3687976
https://doi.org/10.1038/s41586-024-07358-4
https://doi.org/10.1364/OPTICA.502857


Review Vol. 12, No. 6 / June 2025 / Optica 788

172. D. Gehrig and D. Scaramuzza, “Low-latency automotive vision with
event cameras,” Nature 629, 1034–1040 (2024).

173. Y. Zhou, H. Zheng, I. I. Kravchenko, et al., “Flat optics for image differ-
entiation,” Nat. Photonics 14, 316–323 (2020).

174. B. T. Swartz, H. Zheng, G. T. Forcherio, et al., “Broadband and large-
aperture metasurface edge encoders for incoherent infrared radiation,”
Sci. Adv. 10, eadk0024 (2024).

https://doi.org/10.1038/s41586-024-07409-w
https://doi.org/10.1038/s41566-020-0591-3
https://doi.org/10.1126/sciadv.adk0024

