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This document provides supplementary information to “Deep-inverse correlography: towards 
real-time high-resolution non-line-of-sight imaging,”  https://doi.org/10.1364/optica.374026. It 
includes a derivation the autocorrelation estimate, a comparison of various training losses, a 
comparison between correlography and previous correlation-imaging methods, a radiometric 
analysis of the experimental NLoS setup, and additional experimental results.

1. DERIVATION OF AUTOCORRELATION ESTIMATE

In this supplement, we derive Eq. (8) and Eq. (9) from the paper,
which relate the autocorrelation of the hidden object’s albedo with
the measurements I1, I2, ...In that we capture with the camera. To
keep notation succinct, we denote the field propagating from the object,
EOout , using the variable f and index the hidden object’s spatial domain
using x rather than xO. Recall from Section 3 that EOout follows a
circular Gaussian distribution with autocorrelation function σ2rδ(∆x).
Without loss of generality, we assume σ2 = 1.

This analysis is almost identical to that of standard, line-of-sight
correlography [1].

A. Useful Properties

The following two properties will prove useful in our derivations.

• The power spectral density of a signal is equal to the Fourier
transform of its autocorrelation.

|F(u)|2 = F(u) ◦ F(u) = F(utime reversed ∗ u) = F(u ? u)
(S1)

where (·) denotes complex conjugation, ◦ denotes a Hadamard
(elementwise) product, ∗ denotes convolution, and ? denotes
autocorrelation.

• If random variables G1, G2, G3, and G4 are jointly Gaussian, we

have that

E[G1G2G3G4] =E[G1G2]E[G3G4]+

E[G1G3]E[G2G4] + E[G1G4]E[G2G3].
(S2)

B. Proof of Eq. (8)

In this appendix, we derive that

lim
N→∞

1
N

N

∑
n=1
|F−1(In)|2(∆x) = r ? r(∆x) + δ(∆x)[

∫ ∞

x1=−∞
r(x1)dx1]

2.

Following the law of large numbers

lim
N→∞

1
N

N

∑
n=1
|F−1(In)|2 = E[|F−1(I)|2]

= E[|F−1(|F( f )|2)|2]
= E[|F−1(F( f ? f ))|2]
= E[|( f ? f )|2]. (S3)
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E[|( f ? f )|2](∆x)

= E[( f ? f )( f ? f )](∆x)

= E[(
∫ ∞

x1=−∞
f (x1 + ∆x) f̄ (x1)dx1)(

∫ ∞

x2=−∞
f (x2 + ∆x) f̄ (x2)dx2)]

= E[
∫ ∞

x1=−∞

∫ ∞

x2=−∞
f̄ (x1 + ∆x) f (x1) f (x2 + ∆x) f̄ (x2)dx1dx2].

(S4)

Integration is linear which implies the following.

E[|( f ? f )|2](∆x)

=
∫ ∞

x1=−∞

∫ ∞

x2=−∞
E[ f̄ (x1 + ∆x) f (x1) f (x2 + ∆x) f̄ (x2)]dx1dx2.

(S5)

Taking advantage of Eq. (S2), we have

E[|( f ? f )|2](∆x)

=
∫ ∞

x1=−∞

∫ ∞

x2=−∞
E[ f̄ (x1 + ∆x) f (x1)]E[ f (x2 + ∆x) f̄ (x2)]dx1dx2

+
∫ ∞

x1=−∞

∫ ∞

x2=−∞
E[ f̄ (x1 + ∆x) f (x2 + ∆x)]E[ f (x1) f̄ (x2)]dx1dx2

+
∫ ∞

x1=−∞

∫ ∞

x2=−∞
E[ f̄ (x1 + ∆x) f̄ (x2)]E[ f (x1) f (x2 + ∆x)]dx1dx2.

(S6)

Assuming that the speckle is fully realized (the autocorrelation
function of f is a Dirac delta) we have

E[ f̄ (x1 + ∆x) f (x1)] = r(x1)δ(∆x)
E[ f (x2 + ∆x) f̄ (x2)] = r(x2)δ(∆x)

E[ f̄ (x1 + ∆x) f (x2 + ∆x)] = r(x1 + ∆x)δ(x2 − x1)

E[ f (x1) f̄ (x2)] = r(x1)δ(x2 − x1)

E[ f̄ (x1 + ∆x) f̄ (x2)] = E[ f̄ (x2)
2]δ(x + x1 − x2)

E[ f (x1) f (x2 + ∆x)] = E[ f (x1)
2]δ(x + x2 − x1).

Note that, because the real and imaginary parts of f are independent,
have zero mean, and have equal variances, we have that

E[ f̄ (x2)
2]

= E[R( f (x2))
2 + 2iR( f (x2))I( f (x2))− I( f (x2))

2] = 0

(S7)

and

E[ f (x1)
2] = E[R( f (x1))

2 + 2iR( f (x1))I( f (x1))− I( f (x1))
2] = 0

whereR(·) and I(·) take the real and imaginary parts of their respec-
tive arguments.

Substituting the above equalities into Eq. (S6), we have that

E[|( f ? f )|2](∆x)

=
∫ ∞

x1=−∞

∫ ∞

x2=−∞
r(x1)δ(∆x)r(x2)δ(∆x)dx1dx2

+
∫ ∞

x1=−∞

∫ ∞

x2=−∞
r(x1 + ∆x)δ(x2 − x1)r(x1)δ(x2 − x1)dx1dx2

= δ(∆x)
∫ ∞

x1=−∞

∫ ∞

x2=−∞
r(x1)r(x2)dx1dx2

+
∫ ∞

x1=−∞
r(x1 + ∆x)r(x1)dx1

= δ(∆x)[
∫ ∞

x1=−∞
r(x1)dx1]

2 + r ? r(∆x).

C. Proof of Eq. (9)

In this appendix, we derive that

lim
N→∞

| 1
N

N

∑
n=1

F−1(In)|2(∆x) = δ(∆x)[
∫ ∞

x1=−∞
r(x1)dx1]

2.

Following the law of large numbers

lim
N→∞

| 1
N

N

∑
n=1

F−1(In)|2 = |E[F−1(I)]|2

= |E[F−1(|F( f )|2)]|2

= |E[F−1(F( f ? f ))]|2

= |E[ f ? f ]|2.

|E[ f ? f ]|2 = |E
∫ ∞

x1=−∞
f (x1 + ∆x) f̄ (x1)dx1|2

= |
∫ ∞

x1=−∞
E[ f (x1 + ∆x) f̄ (x1)]dx1|2

= |
∫ ∞

x1=−∞
r(x1)δ(∆x)dx1|2

= δ(∆x)|
∫ ∞

x1=−∞
r(x1)dx1|2

= δ(∆x)[
∫ ∞

x1=−∞
r(x1)dx1]

2. (S8)

The last of the above equalities holds because the albedo r is non-
negative.

2. COMPARISON OF TRAINING LOSSES

Figure S1 compares the training losses associated with the ‖r̂− r‖1,
‖r̂ − r‖2, ‖r̂ ? r̂ − r ? r‖1, ‖r̂ ? r̂ − r ? r‖2, ‖|F r̂| − |F r|‖1, and
‖|F r̂| − |F r|‖2 losses. Surprisingly, the ‖r̂− r‖1 and ‖r̂− r‖2 losses
can be minimized; the network can memorize the locations of the
training data. Among the translation-invariant losses, the ‖r̂ ? r̂− r ?
r‖1 loss converges the fastest.

Figure S2 compares reconstructions produced by the various net-
works on unseen experimental test data of a hidden “t”. Although they
can minimize the training loss, the ‖r̂− r‖1 and ‖r̂− r‖2 networks
do not generalize to unseen data. In contrast, all four networks trained
with translation-invariant losses produce reasonable reconstructions.
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(a) ‖r̂− r‖1 (b) ‖r̂− r‖2 (c) ‖r̂ ? r̂− r ? r‖1

(d) ‖r̂ ? r̂− r ? r‖2 (e) ‖|F r̂| − |F r|‖1 (f) ‖|F r̂| − |F r|‖2

Fig. S1. Training loss versus number of training epochs with var-
ious loss functions. An `1 loss with respect to the autocorrelation
converged the fastest.

(a) ‖r̂− r‖1 (b) ‖r̂− r‖2 (c) ‖r̂ ? r̂− r ? r‖1

(d) ‖r̂ ? r̂− r ? r‖2 (e) ‖|F r̂| − |F r|‖1 (f) ‖|F r̂| − |F r|‖2

Fig. S2. Reconstructions of a hidden “t” with various training losses.
All the networks trained with translation-invariant losses eventually
produce reasonable results.

3. CORRELOGRAPHY VS. CORRELATION IMAGING

At first blush, NLoS correlography seems very similar to correlation
imaging [2]. Both reconstruct a hidden object by estimating its auto-
correlation from speckle reflected off a virtual source. However, they
have one consequential difference; correlation imaging is based on
temporally coherent, spatially incoherent illumination whereas NLoS
correlography relies upon temporally and spatially coherent illumina-
tion. Both methods are temporally coherent, and so will form speckle.
However, under the former model speckle intensities add while under
the latter model speckle fields add. This has several distinct advantages,
the most important of which are increased contrast and robustness to
ambient illumination.

In this subsection, we attempt to recover the hidden object’s autocor-
relation using spatially incoherent illumination, i.e., the technique used
in [2]. Instead of using a rotating diffusers, we destroy the temporal
coherence of our light source by quickly sweeping the laser’s focus
across the wall.

The estimated autocorrelation is shown in Figure S4. Unlike the es-
timate formed using a spatially coherent light source, the estimate from
the incoherent light source presents no discernible features. Attempts
at reconstructing r from this estimate of r ? r fail.

4. RADIOMETRIC ANALYSIS

Let ρVS, ρobj, and ρVD denote the albedos of the virtual source, hidden
object, and virtual detector respectively. Let~nVS,~nobj, and~nVD denote
the surface normals of the virtual source, hidden object, and virtual
detector respectively. Let ~SO, ~OD, and ~DC denote the vectors from
the virtual source to the hidden object, the hidden object to the virtual
detector, and the virtual detector to the camera, respectively. Let
AVS, Aobj, and Apix denote the surface areas of the virtual source, the
hidden object, and a single pixel on the camera. Let DAp denote the
camera’s aperture diameter. Let N denote the number of pixels at the
detector. Let m denote magnification between the virtual detector and
the camera.

The radiometric throughput of our NLoS imaging system, defined
as the flux at the camera divided by the input power is given by

Throughput =
( ρVSρobjρVD

π3

)
× (S9)(

‖ ~SO‖−2‖ ~DC‖−2‖ ~OD‖−2
)
× (S10)(

|~nt
VS

~SO| × |~nt
obj

~SO|2 × |~nt
VD

~OD|
)
× (S11)(

1obj

Abeam
× π

4
D2

Ap × N × (m−2 Apix)

)
(S12)

where line Eq. (S9) corresponds to the Albedo and Lambertian BRDF
loss, line Eq. (S10) corresponds to the propagation loss, line Eq. (S11)
corresponds to the foreshortening loss, and line Eq. (S12) corresponds
to the area loss.

In our experimental setup, an image of which can be seen in Figure8
of the main text, the hidden object is at 45° with respect to the virtual
source’s surface normal, the virtual source is at 0° with respect to the
hidden object’s surface normal, and the hidden object and camera are at
roughly 70° and 0° with respect to the virtual detector’s surface normal.
The virtual source is .5 meters from the hidden object, the hidden object
is 1 meter from the virtual detector, and the virtual detector is .8 meters
from the camera. Altogether, this results in a radiometric throughput
of -182 dB.

5. TESTING MORE ALGORITHMS

In this section we test out the alternating minimization (Alt) [3], median
truncated Wirtinger flow (MTWF) [4], truncated amplitude flow (TAF)
[5], and truncated Wirtinger flow (TWF) [6] PR algorithms on both
the simulated and experimental data from Section 6. We also test
alternating direction method of multipliers with a total variation prior
(ADMM-TV) [7]. All algorithms were initialized with HIO (spectral
initializers, e.g., [8], fail with Fourier measurement operators) and used
their default parameters.

Figures S5 and S6 demonstrate that the CNN-based method consis-
tently produces the best results with both simulated and experimental
data.

6. IMAGING WITH FEW SPECKLE IMAGES

In this section, we test how the algorihtms handle finite-sample ap-
proximation error by estimating the hidden object’s autocorrelation
using small subsets of the total detector area. These subsets and the
associated noisy autocorrelation estimates are illustrated in Figure S7.
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(a) Spatially Incoherent Speckle (b) Coherent Speckle

Fig. S3. Examples of a speckle images formed using spatially incoherent illumination (left) and spatially coherent illumination (right). The
image captured using spatially coherent illumination has significantly more speckle contrast.

Recall that the finite-sample-approximation error presents as shot-
noise-like, spatially-varying noise in the estimates of r ? r

∧
, not the

Guassian background noise that results from low flux measurements.
Figure S8 demonstrates that, despite being trained on a very different
noise distribution, the CNN-based method is still robust to this form of
noise and offers improved reconstructions across all operating regimes.
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(a) Spatially Incoherent r ? r Estimate

(b) Coherent r ? r Estimate

Fig. S4. Autocorrelation estimates from incoherently illuminated
hidden “F” (a) and coherently illuminated hidden “F” (b). The esti-
mate formed with coherent illumination has distinct features that do
not show up in the estimate formed with spatially incoherent illumi-
nation.
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TWF TWF TWF TWF TWF TWF TWF

TAF TAF TAF TAF TAF TAF TAF

MTWF MTWF MTWF MTWF MTWF MTWF MTWF

Alt Alt Alt Alt Alt Alt Alt

ADMM TV ADMM TV ADMM TV ADMM TV ADMM TV ADMM TV ADMM TV

HIO HIO HIO HIO HIO HIO HIO

CNN

1/4 sec

CNN

1/8 sec

CNN

1/16 sec

CNN

1/32 sec

CNN

1/64 sec

CNN

1/128 sec

CNN

1/256 sec

Fig. S5. Simulated results. Reconstructions from simulated short-exposure measurements. The CNN-based methods consistently produce the
best reconstructions.
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TWF TWF TWF TWF TWF TWF TWF

TAF TAF TAF TAF TAF TAF TAF

MTWF MTWF MTWF MTWF MTWF MTWF MTWF

Alt Alt Alt Alt Alt Alt Alt

ADMM TV ADMM TV ADMM TV ADMM TV ADMM TV ADMM TV ADMM TV

HIO HIO HIO HIO HIO HIO HIO

CNN

1 sec

CNN

1/2 sec

CNN

1/4 sec

CNN

1/8 sec

CNN

1/16 sec

CNN

1/32 sec

CNN

1/64 sec

Fig. S6. Short-exposure experimental results. Reconstructions from experimental short-exposure measurements. The CNNs form recogniz-
able reconstructions with less light.
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Fig. S7. Subsampled speckle regions. We estimated the autocorrelation from sub-sampled 1 second exposure-length speckle images. The
resulting autocorrelation estimates display shot-noise-like finite-sample-approximation error.
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Fig. S8. Sub-sampled speckle experimental results. Reconstructions from subsets of experimental data, which are subject to finite-sample-
approximation error. The CNN-based method can reconstruct using fewer measurements.
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