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This document includes notation table, calibration de-
tails, proof for the rectification method, and detailed evalu-
ation of our method.

1. Pseudo Code and Table
Algorithm 1 describes our image reconstruction process.

Table 1 provides the symbols and notation used in the paper.

Algorithm 1 Our image restoration algorithm.

1: function ImageRestore(Ĩc, z)

2: Î
z,(0)
o = Ĩc

3: ∆̂z,(0) = τA
(
Î
z,(0)
o , r̃o→e(z)

)
4: for n = 0 to N − 1
5: Î

z,(n+1)
o = Î

z,(n)
o − ∆̂z,(n)

6: ∆̂z,(n+1) = −τ2
n

·A
(
Î
z,(n)
o , 2n · r̃o→e(z)

)
7: end for
8: return Îz,(N)

o

9: end function

2. Proof for Depth-invariant Baseline
We describe our observation and proof for the approx-

imation of the original birefractive baseline boe with the
depth-independent baseline b̂oe:

f

z
boe (Po, z) ≈

f

z
b̂oe (Po) .

Observation We first describe the original birefractive
stereo model using the baseline boe as follows:

f

z
boe (Po, z) =

f

z
bod (Po)+

f

z
bde

(
Po + rod(Po, z)

)
. (1)

We analyze the depth-dependent term in the baseline of the
original model: bde(Po + rod(Po, z)) in Equation (1) w.r.t.
our hardware configuration. Given hardware parameters of
the focal length, calcite thickness, o-/e-ray refractive indices
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Symbol Description
f Focal length
z Depth candidate
Z Estimated depth
Ps Scene point
Po Pixel hit by an ordinary ray
Pe Pixel hit by an extraordinary ray
Pd Pixel hit by a direct ray
P A pixel within the image domain
T Rectification transformation function
rod Disparity from Po to Pd

rde Disparity from Pd to Pe

roe Disparity from Po to Pe

r̂oe Disparity from Po to Pe with depth invariance
r̃oe Disparity from Po to Pe with depth and spatial invariance
boe Birefractive baseline
b̂oe Baseline with depth invariance
b̃avg
oe Average of b̂oe along the horizontal axis
b̃oe Baseline with depth and spatial invariance
Ic Captured superimposed image
Ĩc Rectified captured image
Ĩo Rectified image component from ordinary rays
Ĩe Rectified image component from extraordinary rays
Î
z,(n)
o Restored image of Ĩo at nth iteration for a given depth candidate z

∆z,(n) Residual image we intend to eliminate from Îz,no

∆̂z,(n) Approximated residual image
Îzo Restored image result of Ĩo for a given z (slice of the restoration volume)
ÎZo Restored image of Ĩo with our estimated depth Z
τ Intensity proportion between the e-ray and o-ray
C Stereo matching cost

Table 1. Symbols and notations used in the paper.

of calcite, we made two observations on disparity and base-
line. First, the maximum magnitude of bod is bounded:∥∥bod(Po)

∥∥
2
< α = 485,∀Po.

Second, the difference of bde of two closest points, (Po +
Qo) and Po, is bounded:∥∥bde(Po +Qo)− bde(Po)

∥∥
2
< β = 0.28,∀Po, Qo

s.t. ‖Qo‖2 ≤ 1.

This indicates the local consistency of bde that can be gen-
eralized to any point Qo as:∥∥bde(Po +Qo)− bde(Po)

∥∥
2
< β ‖Qo‖2 .

Proof We can apply our observations on both bod and bde
to detach the depth-dependency of the birefractive base-
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line boe. Specifically, we extend our observation on the lo-
cal consistency of bde by setting Qo as rod(Po, z) with the
scaler of f

z as:

‖f
z
bde(Po + rod(Po, z))−

f

z
bde(Po)‖2 <

f

z
β‖rod(Po, z)‖2.

We then apply our observation of rod as:

‖f
z
bde(Po + rod(Po, z))−

f

z
bde(Po)‖2 <

f2

z2
αβ.

Since f , α, and β are known, we can find out the value
of z so that the bound becomes less than one: f2

z2 αβ <
1, s.t. ∀ z > 410 mm. This bound enables us to replace
the depth-dependent term in Equation (1) with the depth-
invariant term as follows:

f

z
bde

(
Po + rod(Po, z)

)
≈ f

z
bde (Po) .

3. Calibrating Uneven Double Refraction
We propose a simple yet effective calibration method to

obtain the unevenness of the double refraction: the inten-
sity proportion τ between o-ray and e-ray. To this end, we
captured stripe patterns printed on a sheet of white paper
and computed the gradient magnitudes of the stripe patterns
along the disparity direction as shown in Figure 1. The
peaks with lower gradient magnitudes correspond to e-ray
and higher gradient magnitudes come from o-ray as we set
the linear polarizer angle to attenuate e-ray. We compute
the intensity proportion τ for these classified peaks (Fig-
ure 1). τ is computed only for the pixels near peaks and av-
eraged to a single value. Note that we also calibrate camera
parameters and birefringent properties of calcite, following
Zhang [9] and Baek et al. [1]. We choose the mean value of
the computed τ values for reconstruction.
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Figure 1. Calibration of uneven double refraction. (a) We captured
the stripe pattern and (b) identify the gradient peaks of o-ray and e-
ray based on intensity differences. (c) We estimate the unevenness
τ from the proportion between these peaks.

4. Depth Densification and Applications
For many graphics applications, such as augmented real-

ity and depth image-based rendering, it is desirable to obtain

Table Desk Chair mAP
Trained with our sparse depth 0.79 0.73 0.67 0.74
Trained with densified depth 0.58 0.33 0.60 0.50

Table 2. 3D object detection AP trained with sparse and dense
depth maps and the ground truth dense depth, using the AP met-
ric [5].

a dense depth map instead of a sparse one. Our joint depth-
and-color reconstruction algorithm described in the main
paper produces sparse depth estimates over edges only. We
therefore used the Fast Bilateral Solver [2] with the param-
eters σpos, σy and σuv set to 30, 10 and 10 for our image
editing applications of the refocusing in the main paper and
depth-based segmentation and composition shown in Fig-
ure 2. Note that, even though the densification method [2]
has been effectively utilized for the image-editing applica-
tions, the resulting dense depth maps suffer from lower ac-
curacy on propagated region.

Table 2 shows an example affected by those errors where
the performance of 3D object detection degrades when us-
ing densified depth maps instead of sparse ones. Develop-
ing a robust propagation method remains as a future work.
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Figure 2. Additional editing applications using our estimated color
and depth. (a) We perform image segmentation using grab-cut [6]
on our depth map to segment and recolor middle owl object. (b)
Estimated depth can also be used for depth-aware image composi-
tion of the owl.

5. Evaluation
Depth Accuracy with Varying Sparsity As described in
the main manuscript, we generated a synthetic dataset of 23
inputs with uneven double refraction. To evaluate our algo-
rithm, we vary the threshold parameters of the validity map
to provide different sparsity and accuracy results. Figure 3
shows that accepting larger areas (thus lowering sparsity)
leads to a higher average RMSE error while having very
high thresholds (high sparsity) can also have a negative im-



pact due to quantization.
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Figure 3. Depth error with varying sparsity on the synthetic
dataset. Our method provides significantly lower depth error than
Baek et al.’s [1] for all sparsity values.

Chromatic Aberration The chromatic aberration of the
calcite crystal has a negligible impact within the range of
visible wavelengths. According to the reference [4], the
birefringence (the difference of the refractive indices of the
e-ray and o-ray) of the medium is consistent as 0.17 within
the visible wavelengths from 400 nm to 700 nm, .

Impact of Noise Robustness against image noise is im-
portant for our system because we rely on uneven double
refraction visible around image edges. To evaluate the im-
pact of noise on our method, we used our prototype to cap-
ture the panel scene at different noise levels by varying the
sensor gain and the shutter time while ensuring the same ex-
posure. The performance of our approach degrades as noise
level increases: the depth RMSE rises from 47 mm at 0 db
to 148 mm at 24db. However, we found that the impact of
noise can be mitigated by applying a simple denoising tech-
nique, such as Gaussian filtering: the RMSE falls to 55 mm.
Figure 4 presents reconstructed images and depth maps of
the panel scene with high noise and results after Gaussian
filtering.

Noisy input

Estimated depth

Restored image

Estimated depth after denoising
Figure 4. Qualitative evaluation of the impact of noise to evaluate
the robustness of our algorithm. We used the gain parameter of
24db. The noise impact can be mitigated by applying a simple
Gaussian filtering.

6. Comparison

Color Restoration Methods Our method jointly esti-
mates depth and color efficiently taking 16 ms which is even
faster than previous color-only reconstruction methods re-
quiring additional computation in order to estimate depth.
In addition to being the fastest restoration method, Figure 5
and Table 3 show that our method achieves state of the art
restoration results in terms of accuracy.

Shih et al. Wiener Lucy Yano et al. Ours
Color PSNR (dB) 34.20 34.81 33.43 34.82 34.82

Table 3. Quantitative comparison between our restoration and
other methods for our panel scene.

Captured Ground truth Shih et al. Wiener

Richardson-Lucy Yano et al. Ours
Figure 5. Qualitative comparison between our restoration and
other methods for our panel scene.

Learned Depth Estimation Figure 6 shows results with
our panel scene using a learned depth prediction method [8].
We used our ground truth restoration shown in Figure 5 as
inference input. As the statistical characteristics of the cap-
tured scene and the camera parameters are very different
from those of the training set, the learning algorithm pro-
vides poor results compared to our method, which estimates
depth accurately.

Depth from dual pixel Dual pixel phone cameras have
been successfully employed to obtain close-range depth [7,
3]. However, their disparity is bounded by the defocus blur,
thus not exceeding a few pixels. Figure 7 shows that the
disparity that would be obtained through a dual pixel sensor
becomes saturated much more quickly than the double re-
fraction disparity does when the depth value increases. We
assumed the same setup parameters as ours and DP data
downsampled 2× horizontally and 4× vertically as Wad-
hwa et al. [7] used. We also based our computations on
their model:

r ≈ αLf
(

1

g
− 1

z

)
, (2)

Where r is the disparity, α is a linear coefficient, L is the
aperture and g = 800 mm is the focal plane distance.
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Figure 6. Comparison with depth prediction [8]. The graph shows
the depth values along the light blue lines. This method provide
a poor depth estimation for this scene. In particular, although the
relative depth is well estimated for the first three panels, the abso-
lute values are significantly off.
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Figure 7. Disparity and absolute disparity’s derivative w.r.t the
depth against the depth for our setup and for a dual pixel sensor.
Both disparity curves are shifted to meet at 0 px at 1600 mm. The
disparity’s derivative shows the depth discriminative capability, it
is much higher for double refraction.

Depth from light-field We compare our method with a
light-field method using a plenoptic camera, Lytro Illum as
shown in Figure 8. The light-field camera sacrifices spatial
resolution for angular resolution to estimate depth informa-
tion; depth results are competitive with ours. Therefore, the
restored image suffers from low spatial resolution when ob-
taining data on light field (compare the restored results in
the middle column).

Depth from Double Refraction As described in the main
paper, our method outperforms Baek et al. [1]. Figure 10
and Table 4 show the additional comparison on synthetic
scenes.

The dense depth map was produced by the Lytro software.
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Figure 8. The light-field camera (a) sacrifices spatial resolution for
angular resolution to estimate depth information.

color PSNR (dB) Depth RMSE (mm)
Index Baek et al. Ours Baek et al. Ours

1 24.70 36.10 207 108
2 23.91 37.32 140 101
3 24.77 37.13 259 83
4 25.92 36.90 145 82
5 28.82 36.63 329 146
6 27.77 37.37 142 78
7 29.72 37.31 293 158
8 27.52 36.06 224 63
9 29.35 37.17 327 231

10 27.25 36.28 223 131
11 26.93 36.42 326 228
12 23.51 34.34 148 70
13 26.91 36.44 191 96
14 26.38 35.50 201 50
15 27.30 37.10 179 137
16 28.21 37.46 344 96
17 27.25 37.63 173 139
18 25.99 35.52 311 172
19 24.09 35.88 168 106
20 23.47 35.74 168 95
21 29.12 37.33 136 71
22 28.60 37.55 125 98
23 26.74 37.23 153 124

Mean 26.71 36.63 212 116

Table 4. Quantitative comparison between Baek et al. and our
method on all frames of the synthetic dataset.

7. Additional Results

Figures 11, 12 and 9 show additional results of our sys-
tem on real and synthetic scenes.
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Figure 9. Synthetic results of our algorithm with the ground truth.
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Figure 11. Results with our prototype. (a) Input image shows uneven double refraction. (b) Restoration removes double refraction from
input. (c) Sparse depth map.
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